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Abstract. The aim of this paper is to prove that the p-Wasserstein space Wp(X) is
isometrically rigid for all p ≥ 1 whenever X is a countable graph metric space. As a
consequence, we obtain that for every countable group H and any p ≥ 1 there exists a
p-Wasserstein space whose isometry group is isomorphic to H.

1. Introduction

Due to its deep impact on both pure and applied sciences, one of the most intensively
studied metric spaces nowadays is the so-called p-Wasserstein spaceWp(X): the collection
of Borel probability measures on a complete separable metric space (X, %) with finite p-th
moment, endowed with a transport related metric dp, which is calculated by means of
optimal couplings and the p-th power of the underlying distance %. We mention here
only three comprehensive textbooks [1, 22, 24], more references and precise definitions
will follow later. In this paper we consider those p-Wasserstein spaces whose underlying
metric space (X, %) is a graph metric space. This class contains many important metric
spaces, just to mention a few: any countable set with the discrete metric; the set of
natural numbers and the set of integers with the usual | · |-distance; d-dimensional lattices
endowed with the l1-metric or the l∞-metric (for the relevance of these metrics in pattern
recognition see e.g. [21]); finite strings with the Hamming distance (as it was mentioned
in [5] in connection with the quantum 1-Wasserstein distance, the classical 1-Wasserstein
distance with respect to the Hamming metric is called Ornstein’s distance, and was first
considered in [20]); and infinite regular trees (see the very recent manuscript [9]).

When working with a structure, the most fundamental and natural task is to ex-
plore its transformations and symmetries. In the case of metric spaces, such symme-
tries are isometries, that is, distance preserving bijections. In the recent past, many
authors investigated isometries of various important metric spaces of probability mea-
sures [2,6,7,11–14,16,19,23,25]. To mention a few, in [19] Molnár explored the structure
of isometries of the space of distribution functions with respect to the Lévy distance.
Later Gehér and the second author generalised his result to the Lévy-Prokhorov metric
in [11]. Namely, it was shown that if the space P(X) of all Borel probability measures
on a real Banach space (X, ‖ · ‖) is endowed with the Lévy-Prokhorov metric dLP, then
the isometry group of

(
P(X), dLP

)
is isomorphic to the isometry group of the underlying

space X. Bertrand and Kloeckner showed that a similar phenomenon occurs when one
considers a 2-Wasserstein space built on a negatively curved metric space: each isometry
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of the space of measures is the push-forward of an isometry of the underlying space. This
phenomenon is called isometric rigidity. Finally, we mention a very recent rigidity result,
Santos-Rodŕıguez proved that p-Wasserstein spaces built on compact rank one symmetric
spaces are all isometrically rigid [23] if p > 1.

Our main result is Theorem 6, where we prove that p-Wasserstein spaces over graph
metric spaces are all isometrically rigid. As a consequence, in Corollary 7 we will con-
clude that for every countable group G and for every p ≥ 1 there exists a p-Wasserstein
space whose isometry group is isomorphic to G.

Before going into the details, we make some comments on rigidity. It comes easy to say
that these rigidity results are not surprising because of the intimate connection between
dp and %. It is well known that if p ≥ 1 then the distance between any two Dirac measures
equals to the distance of their supporting points, and every measure can be approximated
by convex combinations of Dirac measures. In other words, Wp(X) contains an isometric
copy of X, and the convex hull of this copy is dense inWp(X). Moreover,Wp(X) inherits
many nice properties of X, e.g. completeness, compactness, existence of geodesics. So one
may have the impression that although the p-Wasserstein space Wp(X) is much bigger
than X (see e.g. [17] for many interesting results), the strong connection between the
metrics does not allow Wp(X) to have more symmetries than X has. A possible sketch
of proof is this:

Step 1. Prove that an isometry Φ : Wp(X) → Wp(X) leaves the set of Dirac masses
invariant. Once it is done, one can conclude that the action on Dirac masses is
generated by an isometry f : X → X, that is, Φ(δx) = δf(x) for all x ∈ X.

Step 2. Prove that this action extends to a set S of finitely supported probability measures,

that is, Φ
( ∑
j∈J

λjδxj

)
=
∑
j∈J

λjδf(xj) for all
∑
j∈J

λjδxj ∈ S.

Step 3. Show that S is dense inWp(X). Since Φ is continuous, Φ must be the push-forward

of f−1, where f is the above defined isometry.

The problem with this sketch is that it does not work in general. And even if it works,
these seemingly easy steps can be nontrivial. For example, Step 1 fails if p = 1 and
X = [0, 1]. In that case, there exists an isometry j (called flip) which is mass-splitting,
i.e. which does not leave the set of Dirac masses invariant: j(δt) = tδ0 + (1 − t)δ1 for
all t ∈ [0, 1], for more details see [13, Section 2.1]. Step 2 can fail (even if Step 1 can be
done) as it was shown by Kloeckner in [16]: if p = 2 and X = R, then there exists a flow
of strangely behaving isometries. These isometries leave all Dirac masses fixed, but they
differ from the identity of W2(R), for more details see [16, Section 5.1]. We mention that
all these strange isometries disappear once we modify the value of p: it was proved in [13]
that if p 6= 1, then Wp

(
[0, 1]

)
is isometrically rigid, and similarly, if p 6= 2, then Wp(R)

is isometrically rigid. Furthermore, Gehér et al. showed in [14, Section 2] that for every
p ≥ 1 there exists a compact metric space X such that Wp(X) admits mass-splitting
isometries.

Summarising the above comments, we can say that isometric rigidity of p-Wasserstein
spaces is a quite regular phenomenon (only a few non-rigid example is known), but there
is no general recipe which helps to decide whether a space is rigid or not.

Acknowledgements: We would like to thank the referee for the careful reading of the
manuscript and the constructive comments that helped us to improve the presentation.
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2. Technical preliminaries

First we fix the terminology. Given a metric space (Y, d), we call a bijection f : Y → Y
an isometry if d(f(x), f(y)) = d(x, y) holds for all x, y ∈ Y . The isometry group of (Y, d)
will be denoted by Isom(Y, d). For two groups H1, H2 the symbol H1

∼= H2 means that
they are isomorphic.

In this paper G(X,E) always denotes a graph with a countable vertex set X and edge
set E. Two different vertices x, y ∈ X are called adjacent if there exists an edge e ∈ E
which joins them. A path between two vertices x, y ∈ X is a finite sequence of distinct
edges which joins a sequence x0 = x, x1, . . . , xk = y of distinct adjacent vertices. The
length of such a path is the number of edges that the path contains. The graph G(X,E)
is called connected if every two different vertices can be connected by a path. The vertex
set X of a connected graph can always be endowed with a metric: for x, y ∈ X we say
that the shortest path distance of x and y is the minimum number of k such that there
exists a path between x and y of length k. Now we can define the central notion of this
paper: we say that a countable metric space (X, %) is a graph metric space if there exists
a connected graph G(X,E), such that the shortest path distance in the graph coincides
with the distance % in X. That is, %(x, y) equals to the minimum number of edges in a
path in G(X,E) between x and y. Since the existence of loops and multiple edges do
not change the length of the shortest path, one can assume that the graph in question is
simple.1

Now we recall the notion of a p-Wasserstein space in the special case when the under-
lying metric space is a countable graph metric space (X, %). The symbol M+(X) stands
for the set of nonnegative Borel measures on X. In this setting each measure µ ∈M+(X)
is uniquely determined by its value on singletons:

(1) µ(A) =
∑
x∈A

µ({x}) for all A ⊆ X,

and therefore µ can be handled as a one-variable function on X. Such a function is often
referred to as a probability mass function. For the sake of simplicity, we will write shortly
µ(x) instead of µ({x}). For a given real number p ≥ 1 we denote by Wp(X) the set of all
probability measures such that

(2)
∑
x∈X

%p(x, x̂)µ(x) <∞

for some (hence all) x̂ ∈ X. The support µ of a µ ∈ Wp(X) in this setting equals to the
set {x ∈ X |µ(x) 6= 0}. A Borel probability measure π on X ×X is said to be a coupling
for µ and ν if the marginals of π are µ and ν, that is,

(3)
∑
x′∈X

π(x, x′) = µ(x) and
∑
x∈X

π(x, x′) = ν(x′).

The set of all couplings (which is never empty because the product measure is a coupling)
is denoted by Π(µ, ν). We will refer to couplings as transport plans, as π(x, x′) is the
weight of mass that is transported from x to x′ while µ is transported to ν along π. For a
given measure µ we will denote by πµ ∈ Π(µ, µ) the coupling which leaves µ undisturbed,
that is, πµ(x, x) := µ(x) for all x ∈ X and π(x, y) := 0 otherwise.

1The following characterization of graph metric spaces was proved in [3]: a countable metric space
(X, %) is a graph metric space if and only if the distance between every two points of X is an integer,
and if a, b ∈ X and %(a, b) ≥ 2 then there exists a point x ∈ M such that %(a, x) > 0, %(x, b) > 0, and x
saturates the triangle inequality: %(a, b) = %(a, x) + %(x, b). It was assumed in [3] that the graph is finite,
but the proof works in the countable case as well.
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If the cost function on X ×X is %p, then the optimal cost of transporting µ into ν is

(4) dp(µ, ν) :=
(

inf
π∈Π(µ,ν)

∑
(x,x′)∈X×X

%p(x, x′) · π(x, x′)
)1/p

.

It is known (see e.g. Theorem 1.5 in [1] with c = %p) that the infimum in (4) is in fact
a minimum. Those transport plans that minimise the transport cost are called optimal
transport plans. We will refer to the metric space

(
Wp(X), dp

)
as the p-Wasserstein space

Wp(X). Let us denote the set of all finitely supported probability measures by F(X).
A very important feature of p-Wasserstein spaces is that if p ≥ 1, then X embeds into
Wp(X) isometrically (that is, dp(δx, δy) = %(x, y) for all x, y ∈ X) and that F(X) is dense
in Wp(X) (see e.g. Example 6.3 and Theorem 6.16 in [24]). Although it is known that
the isometry group of X embeds into the isometry group of Wp(X), we provide with a
short proof here for the sake of completeness.

Proposition 1. Let (X, %) be countable graph metric space and let p ≥ 1 be fixed. Then
the push-forward ψ 7→ ψ# defined by

(5)
(
ψ#(µ)

)
(x) := µ

(
ψ−1(x)

)
(x ∈ X)

induces an embedding, which is in fact a group homomorphism

(6) # : Isom(X, %)→ Isom(Wp(X), dp).

Proof. Let us fix a ψ ∈ Isom(X, %), two measures µ, ν ∈ Wp(X), and an optimal transport
plan π̃ ∈ Π(µ, ν). Since Isom(X, %) is a group, ψ−1 is a bijection such that %(ψ(x), ψ(y)) =
%(x, y) = %(ψ−1(x), ψ−1(y)) for all x, y ∈ X. Furthermore, π′(x, y) := π̃(ψ−1(x), ψ−1(y)) is
a coupling for ψ#(µ) and ψ#(ν), because

∑
y∈X

π̃(ψ−1(x), ψ−1(y)) = µ(ψ−1(x)) = ψ#(µ)(x)

and
∑
x∈X

π̃(ψ−1(x), ψ−1(y)) = ν(ψ−1(y)) = ψ#(ν)(y). Using that the p-Wasserstein dis-

tance is always smaller or equal to the cost of any coupling, the above observation implies

dpp(µ, ν) =
∑

(x,y)∈X×X

%p(x, y) · π̃(x, y)

=
∑

(x,y)∈X×X

%p(ψ−1(x), ψ−1(y)) · π̃(ψ−1(x), ψ−1(y))

=
∑

(x,y)∈X×X

%p(x, y) · π̃(ψ−1(x), ψ−1(y)) ≥ dpp(ψ#(µ), ψ#(ν)).

(7)

The reverse inequality dpp(ψ#(µ), ψ#(ν)) ≥ dpp(µ, ν) can be proved along the same lines by
using an optimal coupling π̂ ∈ Π(ψ#(µ), ψ#(ν)) and the observation that π′′ defined by
π′′(x, y) := π̂(ψ(x), ψ(y)) is a coupling for µ and ν.

Finally, we verify that the map ψ 7→ ψ# is indeed a group homomorphism. For all
ψ, χ ∈ Isom(X, %) and for all µ ∈ Wp(X) and x ∈ X we have((

ψ ◦ χ
)

#
(µ)
)

(x) = µ
((
ψ ◦ χ

)−1
(x)
)

= µ
(
χ−1
(
ψ−1(x)

))
=
(
χ#(µ)

)(
ψ−1(x)

)
=
(
ψ#

(
χ#(µ)

))
(x).

(8)

�

Isometries of the form ψ# are called trivial isometries. We say that Wp(X) is isomet-
rically rigid if the map # is onto, i.e. Isom(X, %) ∼= Isom(Wp(X), dp). In other words, if
every isometry of Wp(X) is trivial.
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In order to prove isometric rigidity, it would be useful to find properties which can be
characterized by means of the metric, and thus are preserved by isometries. As we will
see later in Proposition 4, the neighbouring property – which says that two probability
mass functions differ at the end-points of a given edge and nowhere else (see Figure 1
below) – is one of such properties.

Definition 2. For a given α ∈ (0, 1] we say that two measures µ, ν ∈ Wp(X) are α-
neighbouring, if there exists an η ∈ M+(X) and u, v ∈ X with %(u, v) = 1 such that
µ = η + αδu and ν = η + αδv. In symbols, we write µ ≡ ν [α].

µ

ν

Figure 1. An illustration of α-neighbouring property.

In particular, µ ≡ ν [1] means that µ = δu and ν = δv, where u and v are different
endpoints of an edge in the underlying graph. We note that ≡ is not an equivalence
relation, as it is not reflexive and not transitive. In order to see the metric side of the
neighbouring property, let us introduce the set Bs(µ, ν) for µ, ν ∈ Wp(X)

(9) Bs(µ, ν) :=
{
ξ ∈ Wp(X)

∣∣∣ dp(µ, ξ) ≤ p
√
sdp(µ, ν), dp(ξ, ν) ≤ p

√
(1− s)dp(µ, ν)

}
.

The following proposition says that Bs(µ, ν) is always non-empty. For the sake of brevity,
we will use the notation in the sequel ξµ,νs := (1− s)µ+ sν.

Proposition 3. Let (X, %) be a countable graph metric space and let p ≥ 1 and s ∈ (0, 1)
be fixed real numbers. Then for any µ, ν ∈ Wp(X) the measure ξµ,νs belongs to Bs(µ, ν).
In particular, the statement that Bs(µ, ν) is a singleton is equivalent to Bs(µ, ν) = {ξµ,νs }.

Proof. First we show that ξµ,νs satisfies dp(µ, ξ
µ,ν
s ) ≤ p

√
sdp(µ, ν). Let us fix a optimal

transport plan π̃ ∈ Π(µ, ν). Recall that πµ is a coupling which leaves µ undisturbed:
πµ(x, x) = µ(x) and πµ(x, y) = 0 otherwise. Then πs := (1 − s)πµ + sπ̃ ∈ Π(µ, ξµ,νs ).

Indeed,
∑
y∈X

(
(1− s)πµ(x, y) + sπ̃(x, y)

)
= (1− s)µ(x) + sµ(x) = µ(x) for all x ∈ X and∑

x∈X

(
(1− s)πµ(x, y) + sπ̃(x, y)

)
= (1− s)µ(y) + sν(y) = ξµ,νs (y) for all y ∈ X. Using the

transport plan πs ∈ Π(µ, ξs) we can estimate dp(µ, ξ
µ,ν
s ) as

dpp(µ, ξ
µ,ν
s ) = inf

π∈Π(µ,ξs)

∑
(x,y)∈X×X

%p(x, y) · π(x, y) ≤
∑

(x,y)∈X×X

%p(x, y) · πs(x, y)

= (1− s)
∑

(x,y)∈X×X

%p(x, y) · πµ(x, y) + s
∑

(x,y)∈X×X

%p(x, y) · π̃(x, y)

= sdpp(µ, ν),

(10)

where we used π̃ is optimal and that %p(x, y) · πµ(x, y) = 0 for all (x, y) ∈ X × X. The
other inequality dp(ξ

µ,ν
s , ν) ≤ p

√
1− sdp(µ, ν) can be proved in the same way using a similar

combination of π̃ and πν (which leaves ν undisturbed). �

In Proposition 3 we saw that ξµ,νs ∈ Bs(µ, ν) for all µ, ν ∈ Wp(X). Our next aim is to
find a metric characterization for those pairs such that Bs(µ, ν) = {ξµ,νs }.
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Proposition 4. Let (X, %) be a countable graph metric space and let p ≥ 1 and α ∈ (0, 1]
be fixed real numbers. Then the following statements are equivalent:

(i) µ and ν are α-neighbouring, that is, there exists an η ∈ M+(X) and u, v ∈ X
with %(u, v) = 1 such that

(11) µ = η + αδu and ν = η + αδv.

(ii) dp(µ, ν) = p
√
α and Bs(µ, ν) = {ξµ,νs } for all s ∈ (0, 1).

(iii) dp(µ, ν) = p
√
α and B 1

2
(µ, ν) = {ξµ,ν1

2

}.

Proof. (i)=⇒(ii): First we show that dp(µ, ν) ≥ p
√
|ν(x̂)− µ(x̂)| holds for all µ, ν ∈

Wp(X) and x̂ ∈ X. By symmetry, we can assume without loss of generality that µ(x̂) ≤
ν(x̂). Then for any coupling π ∈ Π(µ, ν) we have

ν(x̂) =
∑
x∈X

π(x, x̂) = π(x̂, x̂) +
∑
x∈X
x 6=x̂

π(x, x̂)

≤
∑
y∈X

π(x̂, y) +
∑
x∈X
x 6=x̂

π(x, x̂) = µ(x̂) +
∑
x∈X
x6=x̂

π(x, x̂).
(12)

which implies

(13) ν(x̂)− µ(x̂) ≤
∑
x∈X
x6=x̂

π(x, x̂).

Since x 6= y implies %p(x, y) ≥ 1, we have the following lower bound for the cost of π

(14) ν(x̂)− µ(x̂) ≤
∑
x∈X
x 6=x̂

π(x, x̂) ≤
∑
x∈X

%p(x, x̂) · π(x, x̂) ≤
∑

(x,y)∈X×X

%p(x, y) · π(x, y).

By taking the minimum over Π(µ, ν), one gets ν(x̂) − µ(x̂) ≤ dpp(µ, ν). In (11) we have

ν(v)−µ(v) = α, and therefore dp(µ, ν) ≥ p
√
α holds. To see the reverse inequality, observe

first that the following π ∈ Π(µ, ν) has cost α

π(x, y) =


µ(x) if x = y and x 6= u,
µ(x)− α if x = y = u,
α if x = u and y = v,
0 otherwise.

And therefore, dp(µ, ν) ≤ p
√
α. Now assume that ξ ∈ Bs(µ, ν). We have to show that

ξ = ξδu,δvs = η + (1− s)αδu + sαδv. Let π∗ ∈ Π(µ, ξ) be an optimal transport plan, i.e.

(15) αs ≥ dpp(µ, ξ) =
∑

(x,y)∈X×X

%p(x, y) · π∗(x, y).

By adding π∗(u, u)− π∗(u, u) = 0, the right hand side in (15) can be written as

(16)
∑

(x,y)∈X×X
x 6=u

%p(x, y) · π∗(x, y) +

[∑
y∈X

%p(u, y) · π∗(u, y) + π∗(u, u)

]
− π∗(u, u),

which gives

(17) αs ≥ µ(u)− π∗(u, u),



ISOMETRIC RIGIDITY OF Wp(X) - THE GRAPH METRIC CASE 7

because

(18)
∑

(x,y)∈X×X
x 6=u

%p(x, y) · π∗(x, y) ≥ 0,

and if u 6= y, then %(u, y) ≥ 1, and thus

(19)
∑
y∈X

%p(u, y) · π∗(u, y) + π∗(u, u) ≥
∑
y∈X

π∗(u, y) = µ(u).

Since µ(u) = η(u) + α according to (11), we can rearrange (17) as

(20) π∗(u, u) ≥ α(1− s) + η(u).

Using that π∗ ∈ Π(µ, ξ) we get ξ(u) =
∑

x∈X π
∗(x, u) ≥ π∗(u, u), and thus

(21) ξ(u) ≥ π∗(u, u) ≥ η(u) + (1− s)αδu(u).

Combination of (15) and (21) asserts now that

(22) sα ≥ dpp(µ, ξ) ≥
∣∣ξ(u)− µ(u)| ≥ |η(u) + (1− s)α−

(
η(u) + αδu(u)

)∣∣ = sα.

Furthermore, a very similar calculation with ξ and ν gives

(23) (1− s)α ≥ dpp(ν, ξ) ≥ |ξ(v)− ν(v)| ≥
∣∣η(v) + sα−

(
η(v) + αδv(v)

)∣∣ = (1− s)α.

Since every inequality in (22) and (23) is actually an equality, we get

(24) ξ(u) = η(u) + (1− s)αδu(u) and ξ(v) = η(v) + sαδv(v)

which together with dpp(µ, ξ) = |µ(u)− ξ(u)| and dpp(ξ, ν) = |ξ(v)− ν(v)| imply that

(25) ξ = η + (1− s)αδu + sαδv = ξδu,δvs .

This proves that (i)=⇒ (ii).

(ii)=⇒(iii): This implication is straightforward.

(iii)=⇒(i): We have to show that if dp(µ, ν) = p
√
α and B 1

2
(µ, ν) = {ξµ,ν1

2

}, then (11)

holds. Let π ∈ Π(µ, ν) be an optimal transport plan

(26) α = dpp(µ, ν) =
∑

(x,y)∈supp(π)
x 6=y

%p(x, y) · π(x, y).

and recall that π 1
2

:= 1
2
πµ + 1

2
π ∈ Π(µ, ξµ,ν1

2

). First assume indirectly that there exists an

(x′, y′) ∈ supp(π) for which k := %(x′, y′) > 1. Let us choose a path of length k between

x′ and y′ along the vertices x0 = x′, x1, . . . , xk1 , xk = y′. Set c = π(x′,y′)
4

and modify ξµ,ν1
2

along this path as

(27) ξ := ξµ,ν1
2

− cδx0 + cδx1 + cδxk−1
− cδxk .

x0 = x
′

xk = y
′

xk−1

ξ

ξ 1

2

x1

Figure 2. An illustration of how to modify ξµ,ν1
2

in order to get ξ.
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Since k > 1 and p ≥ 1, we have ξ 6= ξµ,ν1
2

and it follows from the construction that

(28) dpp(µ, ξ) ≤ dpp(µ, ξ
µ,ν
1
2

)− kpc+ (k − 1)pc+ 1pc ≤ dpp(µ, ξ
µ,ν
1
2

) ≤ α

2
.

A similar calculation shows that dpp(ξ, ν) ≤ α
2
, and thus ξ ∈ B 1

2
(µ, ν), a contradiction.

This contradiction means that %(x, y) = 1 for all (x, y) ∈ supp(π) in (26).
Now assume indirectly that supp(π) has at least two different elements (x1, y1) and

(x2, y2). Set c̃ := min{π(x1,y1),π(x2,y2)}
4

and modify ξµ,ν1
2

as follows

(29) ξ := ξµ,ν1
2

+ c̃δx1 + c̃δy1 − c̃δx2 − c̃δy2 .

Again, we have that ξ 6= ξµ,ν1
2

. In order to give an upper bound for dpp(µ, ξ), let us define

the coupling π̃ ∈ Π(µ, ξ) by modifying π 1
2

= 1
2
πµ + 1

2
π ∈ Π(µ, ξµ,ν1

2

) as follows

π̃(x, y) =


π 1

2
(x1, y1) + c̃ if (x, y) = (x1, y1),

π 1
2
(x2, y2)− c̃ if (x, y) = (x2, y2),

π 1
2
(x, y) otherwise.

Since %(x, y) = 1 for all (x, y) ∈ supp(π) and πµ(x, y)%(x, y) = 0 for all x, y ∈ X, we have

(30) dpp(µ, ξ) ≤
∑

(x,y)∈supp(π̃)
x 6=y

π̃(x, y) =
∑

(x,y)∈supp(π)
x 6=y

π(x, y)

2
=
α

2
.

Similarly, dpp(ξ, ν) ≤ α
2
, and thus ξ belongs to B 1

2
(µ, ν), a contradiction. The only remain-

ing possibility is that there exists u, v ∈ X such that %(u, v) = 1 and (26) can be written
as α = dpp(µ, ν) = %p(u, v) · π(u, v) = π(u, v), which means exactly that (11) holds. This
proves (i)⇐⇒(ii). �

Corollary 5. Let (X, %) be a countable graph metric space and let p ≥ 1 and α ∈ (0, 1] be
fixed real numbers. For any isometry Φ :Wp(X)→Wp(X) and for any pair of measures
µ, ν ∈ Wp(X) the following holds

(31) µ ≡ ν [α] ⇐⇒ Φ(µ) ≡ Φ(ν) [α].

Proof. Since Φ and Φ−1 are both distance preserving bijections, we have that Bs(µ, ν) is
a singleton if and only if Bs

(
Φ(µ),Φ(ν)

)
is a singleton. According to Proposition 4, this

implies that µ ≡ ν [α] if and only if Φ(µ) ≡ Φ(ν) [α]. �

3. The main result

Now we are ready to state and prove the main result of the paper.

Theorem 6. Let (X, %) be a countable graph metric space and let p ≥ 1 be fixed. Then
the p-Wasserstein spaceWp(X) is isometrically rigid, i.e., Isom(Wp(X), dp) ∼= Isom(X, %).

Proof. We have seen in Proposition 1 that # : Isom(X, %) → Isom(Wp(X), dp) is a
group homomorphism. Therefore, it is enough to prove that it is surjective, i.e., for
any Φ ∈ Isom(Wp(X), dp) there exists a ψ ∈ Isom(X, %) such that Φ = ψ#. The strategy
of proof is similar to the sketch (Step 1–3.) mentioned in the introduction.

Step 1. First we prove that Φ maps the set of Dirac masses onto itself. Assume that
µ = δu is a Dirac measure and choose a v ∈ X such that %(u, v) = 1. Since δu ≡ δv [1],
we have Φ(δu) ≡ Φ(δv) [1] according to Corollary 5. That is, Φ(µ) = δû and Φ(ν) = δv̂
for some û, v̂ ∈ X with %(û, v̂) = 1. In particular, Φ(µ) is a Dirac measure. Since
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dp(δx, δy) = %(x, y) for all x, y ∈ X and Φ−1 is an isometry as well, we see that Φ maps
the set of Dirac masses bijectively onto itself, and the function ψ : X → X defined by

(32) Φ(δx) := δψ(x) (x ∈ X)

is an isometry. Let us consider the isometry Φ̃ := ψ−1
# ◦ Φ. On the one hand, Φ̃ fixes

all Dirac measures. On the other hand, if Φ̃(µ) = µ for all µ ∈ Wp(X), then Φ = ψ#.
Therefore we can assume without loss of generality that ψ(x) = x, and hence Φ(δx) = δx
for all x ∈ X.

Step 2. Our next task is to prove that Φ leaves a dense set of finitely supported measures
fixed. We do this by induction with respect to the prescribed location of the supports
in question. Since the underlying graph G(X,E) is connected, starting with an arbitrary
x1 ∈ X we can enumerate X in a way that for all n ≥ 2 the vertex xn is connected to
the initial segment Xn−1 = {x1, . . . , xn−1} with at least one edge. If µ ∈ F(X), then
supp(µ) ⊆ XN for some large enough N ∈ N, and therefore it is enough to show that
measures supported in Xn are fixed by Φ for all n ∈ N.

If n = 1, then supp(µ) ⊆ X1 implies µ = δx1 , and Φ(δx1) = δx1 according to Step 1.

If n = 2, then supp(µ) ⊆ X2 implies µ = (1−s)δx1 +sδx2 for some s ∈ [0, 1]. If s = 0 or
s = 1 then µ is a Dirac measure and thus Φ(µ) = µ. Assume now that 0 < s < 1. In this

case, µ = ξ
δx1 ,δx2
s and we know from Proposition 3 that ξ

δx1 ,δx2
s ∈ Bs(δx1 , δx2). Moreover,

Φ(ξ
δx1 ,δx2
s ) ∈ Bs(δx1 , δx2) holds as well, because Φ(δxi) = δxi for i = 1, 2, and thus

(33) dp(δx1 ,Φ(µ)) = dp(Φ(δx1),Φ(µ)) = dp(δx1 , µ) ≤ p
√
sdp(δx1 , δx2),

and

(34) dp(Φ(ξ
δx1 ,δx2
s ), δx2) = dp(Φ(ξ

δx1 ,δx2
s ),Φ(δx2)) = dp(ξ

δx1 ,δx2
s , δx2) ≤

p
√

1− sdp(δx1 , δx2).
But δx1 ≡ δx2 [1], and thus Bs(δx1 , δx2) is a singleton according to Proposition 4. This

implies that Φ(ξ
δx1 ,δx2
s ) = ξ

δx1 ,δx2
s .

Assume now that Φ(ζ) = ζ holds whenever supp(ζ) ⊆ Xn = {x1, . . . , xn}, and choose a
finitely supported measure µ =

∑n+1
i=1 µ(xi)δxi which satisfies the following two properties:

(35) for all x, y ∈ supp(µ) : x 6= y implies µ(x) 6= µ(y),

and

(36) for all pairwise different elements x, y, z ∈ supp(µ) : µ(x) + µ(y) 6= µ(z).

If µ(xn+1) = 0, then supp(µ) ⊆ Xn, and if µ(xn+1) = 1, then µ = δxn+1 . In both cases,
Φ(µ) = µ according to the inductive hypothesis and Step 1. So it remains to deal with the
case 0 < µ(xn+1) < 1. According to the construction, there exists an u ∈ Xn such that
%(u, xn+1) = 1. Set c := µ(u) + µ(xn+1) and define two (in a sense extremal) measures µ∗
and µ∗ as follows

(37) µ∗ := µ− µ(u)δu + µ(u)δxn+1 and µ∗ := µ− µ(xn+1)δxn+1 + µ(xn+1)δu.

Observe that µ∗ ≡ µ∗ [c], and supp(µ∗) ⊆ Xn implies Φ(µ∗) = µ∗. Furthermore, we have

(38) µ∗(u) = µ∗(xn+1) = 0, µ∗(xn+1) = µ∗(u) = c

and

(39) µ∗ ≡ µ [µ(u)], µ∗ ≡ µ [µ(xn+1)].
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Let us define a curve γ which connects µ∗ and µ∗ (see Figure 3 below)

(40) γ : [0, c]→Wp(X); γ(t) := µ∗ + tδxn+1 − tδu.

Xn

xn+1
u v

w

µ

γ(0) = µ∗

Xn

xn+1
u v

w

µ

γ(t)

Xn

xn+1
u v

w

µ

γ(c) = µ∗

Figure 3. An illustration of teleporting µ∗ to µ∗ along the curve γ.

Observe that γ(0) = µ∗, γ
(
µ(xn+1)

)
= µ, γ(c) = µ∗, and that

(41) γ(t) ≡ µ [|t− µ(xn+1)|] for all t ∈ [0, c] \ {xn+1}.
According to Corollary 5, µ∗ ≡ µ∗ [c] implies Φ(µ∗) ≡ Φ(µ∗) [c], and thus we can

issue a curve Γ from Φ(µ∗) to Φ(µ∗) with a structure similar to that of γ. Recall that
supp(µ∗) ⊆ Xn implies Φ(µ∗) = µ∗, and therefore Φ(µ∗) ≡ Φ(µ∗) [c] can be written as
Φ(µ∗) ≡ µ∗ [c]. Proposition 4 indicates that there exist a v ∈ supp(µ∗) and a w ∈ X
with %(v, w) = 1 such that Φ(µ∗) = µ∗− cδv + cδw. Therefore the natural way to connect
µ∗ = Φ(µ∗) and Φ(µ∗) with a curve is

(42) Γ : [0, c]→Wp(X); Γ(t) := µ∗ − tδv + tδw.

It follows from (31) and (39) that Φ(µ) ≡ Φ(µ∗) [µ(xn+1)] and Φ(µ) ≡ Φ(µ∗) [µ(u)]. And
thus, Φ(µ) must have the form µ∗−tδv+tδw for some t ∈ (0, c). In fact, Φ(µ) = Γ

(
µ(xn+1)).

And similarly, it follows form (41) and Corollary 5 that the Φ-image of γ is Γ.
We need more, in fact we want to prove that γ = Γ, or equivalently, xn+1 = w and

u = v. To show that u = v, it is enough to prove that µ∗(u) = µ∗(v). Indeed, assume
indirectly that µ∗(u) = µ∗(v), but u 6= v. First recall that u 6= v implies µ∗(v) = µ(v). If
µ(u) = 0, then

(43) 0 < µ(xn+1) = µ(xn+1) + µ(u) = µ∗(u) = µ∗(v) = µ(v)

which contradicts (35), unless v = xn+1. But v = xn+1 is impossible because v ∈ Xn and
xn+1 /∈ Xn. If µ(u) 6= 0, then µ(v) = µ∗(v) = µ∗(u) > µ(u) > 0, and thus u, v, xn+1 are
pairwise different elements of supp(µ) such that

(44) µ(v) = µ∗(v) = µ∗(u) = µ(u) + µ(xn+1),

which contradicts (36). Now we know that if µ∗(u) = µ∗(v), then u = v. In this case,
Φ(µ) can be written as Φ(µ) = µ∗ − µ(xn+1)δu + µ(xn+1)δw, and thus

(45) dpp(δxn+1 ,Φ(µ)) = dpp(δxn+1 , µ
∗)− µ(xn+1) + %p(xn+1, w)µ(xn+1).

Moreover, we have that dp(δxn+1 ,Φ(µ)) = dp(Φ(δxn+1),Φ(µ)) = dp(δxn+1 , µ), and that

(46) dpp(δxn+1 , µ) = dpp(δxn+1 , µ
∗)− µ(xn+1).

Now we can conclude from (45) and (46) that %p(xn+1, w)µ(xn+1) = 0. Since µ(xn+1) 6= 0,
we get xn+1 = w.

What remains to prove in this step is that c = µ∗(u) = µ∗(v). On the one hand, we
know from (38) that µ∗(u) = c. On the other hand, we have µ∗(v) ≥ c, because

(47) 0 ≤ Φ(µ∗)(v) = µ∗(v)− cδv(v) + cδw(v) = µ∗(v)− c.
Assume indirectly that µ∗(v) > c. In this case, we can extend Γ from [0, c] to [0, µ∗(v)] by

(48) Γ̃ : [0, µ∗(v)]→Wp(X); Γ̃(t) := µ∗ − tδv + tδw.
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This extension has the property that

(49) Φ(µ) ≡ Γ̃(t) [|t− µ(xn+1)|] for all t ∈ [0, µ∗(v)] \ {µ(xn+1)}.

Since Φ−1 is an isometry as well, Corollary 5 says that Φ−1
(
Γ̃(t)

)
≡ µ [|t−µ(xn+1|] holds

for all t ∈ [0, µ∗(v)] \ {µ(xn+1)}, and thus γ can be extended through γ(c) = µ∗ with
measures which are all in neighbouring relation with µ, a contradiction. Indeed, in order
to continue γ, we need to add more weight to xn+1. But µ∗(u) = 0, so we should teleport
mass from a point x ∈ X \ {xn+1, u} which would ruin the neighbouring relation with µ.
Summarising the above observations: µ∗(u) = µ∗(v), and thus Φ(µ) = µ.

Step 3. We saw that Φ(µ) = µ holds if µ satisfies (35) and (36). Since Φ is continuous

and F(X) is dense in Wp(X), it is enough to show that every ν :=
∑L

i=1 aiδui ∈ F(X)
can be approximated by such measures. Here we assume that ui 6= uj if i 6= j and that
ai > 0 for all 1 ≤ i ≤ L. For an arbitrary ε > 0 we are going to construct a measure ν ′

with supp(ν) = supp(ν ′) such that dp(ν, ν̃) < ε.
If L = 1 then ν itself satisfies (35) and (36), so we can assume that L ≥ 2. Set

(50) K := max{%(ui, uj) | 1 ≤ i, j ≤ L},
and if necessary, choose a smaller 0 < ε̃ ≤ ε such that 0 < ai− ε̃

KpL2 holds for all 1 ≤ i ≤ L.
Using such an ε̃, the intersection of the cube

(51) C =
L∏
i=1

[
ai −

ε̃p

KpL2
, ai +

ε̃p

KpL2

]
⊆ RL

with the hyperplane P = {(c1, . . . , cL) |
∑L

i=1 ci = 1} contains only vectors (c1, . . . , cL)

such that
∑L

i=1 ciδui ∈ Wp(X). The set of representing vectors of those measures which
violate (35) or (36) can be covered by the union of finitely many lower dimensional linear
subspaces in RL. Since none of these subspaces are identical with P , we can choose an
uncovered (c1, . . . , cL) ∈ C ∩ P and set ν ′ =

∑L
i=1 ciδui .

We claim that dp(ν, ν
′) < ε. To see this, we construct a π ∈ Π(ν, ν ′) which leaves

all mass shared by ν and ν ′ undisturbed. Set mi = min{ai, ci} (1 ≤ i ≤ L) and M :=∑L
i=1mi, and subtract

∑L
i=1miδui from ν and ν ′. Now we have ζ :=

∑L
i=1(ai − mi)δui

and ζ ′ :=
∑L

i=1(ci − mi)δui with supp(ζ) ∩ supp(ζ ′) = ∅. For the product measure(
ζ × ζ ′

)
(ui, uj) := ζ(ui)ζ

′(uj) we have
(
ζ × ζ ′

)
(ui, ui) = 0 for all 1 ≤ i ≤ L, and if i 6= j

then

(52)
(
ζ × ζ ′

)
(ui, uj) = ζ(ui)ζ

′(uj) ≤ ζ(ui) = ai −mi ≤ |ai − ci| ≤
ε̃p

KpL2
.

Now define π ∈ Π(ν, ν ′) as follows: π(ui, uj) :=
(
ζ×ζ ′

)
(ui, uj) if i 6= j, and π(ui, ui) := mi

for 1 ≤ i ≤ L. Since %p(ui, ui)π(ui, ui) = 0 for all 1 ≤ i ≤ L, using (52) we have the
following upper bound for dp(ν, ν

′)

(53) dp(ν, ν
′) ≤ p

√ ∑
1≤i,j≤L

%p(ui, uj) · π(ui, uj) <
p

√
L2Kp

ε̃p

KpL
= ε̃ ≤ ε.

�

4. Wasserstein spaces with prescribed isometry group

A natural question was raised by Kőnig in [18]: which groups are isomorphic to the
automorphism group of a graph? We recall that an automorphism of a simple graph
G(X,E) is a permutation f : X → X such that for any two x, y ∈ X the pair {x, y} form
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an edge (i.e., belongs to E) if and only if the pair {f(x), f(y)} also form an edge. The
group of automorphisms will be denoted by Aut

(
G(X,E)

)
.

Of course, one can replace graphs with other mathematical structures, for example with
Wasserstein spaces, and ask the same question. Since in the metric context, automor-
phisms are in particular isometries, the corresponding question reads as follows: which
groups are isomorphic to the isometry group of a Wasserstein space? Using some famous
results in graph theory, the answer for countable groups is a corollary of Theorem 6. (For
analogous results for autohomeomorphism groups see [4, Theorem 7].)

Corollary 7. Let H be a countable group and p ≥ 1 any real number. Then there exists
a metric space (X, %) such that Isom

(
Wp(X), dp

) ∼= H.

Proof. As an extension of Frucht’s theorem [8], de Groot proved that every countable
group H is isomorphic to the automorphism group of a countable simple graph G(X,E)
(see [4, comments on p.96]). Let (X, %) be the metric space associated to G(X,E) and
consider the p-Wasserstein space Wp(X). According to Theorem 6, Isom

(
Wp(X), dp

) ∼=
Isom(X, %), and therefore it is enough to show that Isom(X, %) ∼= Aut

(
G(X,E)

)
. It will

turn out that these groups are identical as a set with the same operation (composition),
so the identity map is an isomorphism.

If ψ ∈ Isom(X, %) then for any pair x, y ∈ X we have %(x, y) = 1 if and only if
%(ψ(x), ψ(y)) = 1. Or equivalently, x and y are joined by an edge if and only if ψ(x) and
ψ(y) are joined by an edge. Since ψ is a bijection, this means that ψ ∈ Aut

(
G(X,E)

)
.

On the other hand, every ψ ∈ Aut
(
G(X,E)

)
induces a length preserving bijection on the

set of all paths as follows: if we have a path of length k along the sequence of distinct
vertices x0 = x, x1, . . . , xk = y, then the sequence ψ(x0), . . . , ψ(xk) determines a path of
length k between ψ(x) and ψ(y). And therefore, the shortest path distance of x and y
must be the same as the shortest path distance of ψ(x) and ψ(y). Since an automorphism
is a bijection by definition, we have that ψ ∈ Isom(X, %). �

We remark that there is no uniqueness above, because there is no uniqueness in Frucht’s
and de Groot’s theorems. In fact, Izbicki proved in [15] that there are uncountably many
infinite graphs realizing any finite symmetry group. We also remark that although de
Groot’s theorem is valid for non-countable groups as well, we do not know the smallest
possible order of the representing graph. However, it is important to note that if the
cardinality of the vertex set is bigger than ℵ0, then our method of proof does not work,
therefore the following question remains open.

Problem 8. Given an uncountable group G and a fixed number p ≥ 1, does there exists
a p-Wasserstein space whose isometry group is isomorphic to G?
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