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Abstract

A set of polynomials M is called a submodule of C[x1, . . . , xn] if M
is a translation invariant linear subspace of C[x1, . . . , xn]. We present
a description of the submodules of C[x, y] in terms of a special type
of submodules. We say that the submodule M of C[x, y] is an L-
module of order s if, whenever F (x, y) =

∑N
n=0 fn(x) · yn ∈ M is

such that f0 = . . . = fs−1 = 0, then F = 0. We show that the
proper submodules of C[x, y] are the sums Md+M , where Md = {F ∈
C[x, y] : deg xF < d}, and M is an L-module. We give a construction
of L-modules parametrized by sequences of complex numbers.

A submodule M ⊂ C[x1, . . . , xn] is decomposable if it is the sum
of finitely many proper submodules of M . Otherwise M is indecom-
posable. It is easy to see that every submodule of C[x1, . . . , xn] is the
sum of finitely many indecomposable submodules. In C[x, y] every in-
decomposable submodule is either an L-module or equals Md for some
d. In the other direction we show that Md is indecomposable for every
d, and so is every L-module of order 1.

Finally, we prove that there exists a submodule of C[x, y] (in fact,
an L-module of order 1) which is not relatively closed in C[x, y]. This
answers a problem posed by L. Székelyhidi in 2011.
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1 Introduction and main results

In this note we are concerned with the translation invariant linear subspaces
of C[x1, . . . , xn], the ring of polynomials of n variables having complex co-
efficients. By making use of Taylor’s formula it is not difficult to see that
a linear subspace of C[x1, . . . , xn] is translation invariant if and only if it is
invariant under partial differentiation [2, Lemma 7]. Thus a linear subspace
of C[x1, . . . , xn] is translation invariant if and only if it is a module under the
ring of partial differential operators. For this reason we say that M is a sub-
module of C[x1, . . . , xn] (or briefly a module) if M is a translation invariant
linear subspace of C[x1, . . . , xn].

It is easy to check that the only submodules of C[x] are C[x] itself and
the modules {f ∈ C[x] : deg f < d} (d = 0, 1, . . .).

Simple examples of submodules of C[x, y] are C[x, y] itself, C[x], C[y],
{f(x+ y) : f ∈ C[x]}, {f(ax+ by) : f ∈ C[x]} (a, b ∈ C), {f(x) + g(y) : f, g ∈
C[x]}, {f ∈ C[x, y] : deg f < d} (d = 0, 1, . . .), {f ∈ C[x, y] : deg xf <
d1, deg yf < d2} (d1, d2 = 0, 1, . . .). Here deg xf and deg yf denote the
degree in the variable x (resp. y) of the polynomial f ∈ C[x, y].

Each of these modules is relatively closed in C[x, y] in the following sense:
if fn belongs to the module M in question for every n and fn → f ∈ C[x, y]
pointwise (or uniformly on compact sets), then f ∈M .

The investigations of these note were motivated by the following problem
posed by L. Székelyhidi [3]: is it true that every submodule of C[x1, . . . , xn]
is relatively closed in C[x1, . . . , xn]? In other words, is every submodule
of C[x1, . . . , xn] a variety? In Theorem 25 we show that the answer to
Székelyhidi’s question is negative. Our example is a special case of a general
construction of some submodules of C[x, y], called L-modules.

We represent the elements of C[x, y] in the form

F (x, y) =
∞∑
n=0

fn(x)
yn

n!
, (1)

where fn ∈ C[x] for every n, and fn = 0 if n is large enough. We say that the
module M ⊂ C[x, y] is an L-module of order s if, whenever F in (1) belongs
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to M and such that fn = 0 for every n < s, then F = 0. In Section 2 we give
a construction of L-modules parametrized by sequences of complex numbers
(Theorem 3).

Let Md denote the module {f ∈ C[x, y] : deg xf < d}. In Section 3 we
show that every proper submodule of C[x, y] can be represented in the form
Md+M , where M is an L-module (Theorem 8). Under some mild restrictions
on M , the representation is unique (see Remark 15). The obstacles in the
way of generalizing this result for polynomials of more than two variables are
discussed in Remark 24.

We say that a submodule of C[x1, . . . , xn] is indecomposable, if it cannot
be written as a finite sum of proper submodules. It is easy to see that ev-
ery submodule of C[x1, . . . , xn] is the sum of finitely many indecomposable
submodules (Proposition 17). It follows from Theorem 8 that every indecom-
posable submodule of C[x, y] is either an L-module or equals Md for some
d. In the other direction we prove that Md is indecomposable for every d,
and that all L-modules of order 1 are indecomposable submodules of C[x, y]
(Theorems 21 and 22).

2 L-modules

Let S = {f(x + y) : f ∈ C[x]}. It is clear that S is a submodule of C[x, y].
Since f(x + y) =

∑∞
n=0 f

(n)(x) · yn
n!

by Taylor’s formula, it follows that the

elements of S are the polynomials
∑∞

n=0 fn ·
yn

n!
, where fn ∈ C[x] for every

n, and fn = f ′n−1 for every n ≥ 1. In particular, S has the property that if
F =

∑∞
n=0 fn ·

yn

n!
∈ S and f1 = 0, then F = 0.

The module S is the prototype of the submodules we are about to define.

Notation 1. Every polynomial F ∈ C[x, y] can be represented uniquely in
the form (1), where f0, f1, . . . ∈ C[x], and fn = 0 if n is large enough. The
polynomials fn will be called the coordinate polynomials of F , and will be
denoted by [F ]n (n = 0, 1, . . .).

If A ⊂ C[x, y] and s is a positive integer, then we put

VA,s = {([F ]0, . . . , [F ]s−1) : F ∈ A}.
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Clearly, if A is a module, then VA,s is a linear subspace of C[x]s. Note
that if F ∈ A, then ([F ]k−s, . . . , [F ]k−1) ∈ VA,s for every k ≥ s. This fol-

lows from ∂k−s

∂yk−sF ∈ A. The set VA,s also has the following property: if

(f0, . . . , fs−1) ∈ VA,s, then (f ′0, . . . , f
′
s−1) ∈ VA,s. This is clear from the fact

that if the polynomial in (1) belongs to A, then

∂

∂x
F =

∞∑
n=0

f ′n(x)
yn

n!
∈ A. (2)

Definition 2. Let s be a positive integer. We say that M ⊂ C[x, y] is an
L-module of order s if M is a module and, whenever F ∈ M and [F ]n = 0
for every n < s, then F = 0.

Since the submodules of C[x, y] are linear spaces, the condition formulated
in Definition 2 is equivalent to the following: if F ∈M , then F is determined
by the coordinate polynomials [F ]0, . . . , [F ]s−1.

It is clear from the definition that if M is an L-module of order s, then
it is also an L-module of order t for every t ≥ s.

Theorem 3. Let M ⊂ C[x, y] be an L-module of order s. Then there exists
a linear map L : C[x]s → C[x] such that for every F ∈M we have

[F ]n = L([F ]n−s, . . . , [F ]n−1) (3)

for every n ≥ s. More precisely, there are complex numbers ai,j (i =
1, . . . , s, j = 1, 2, . . .) such that (3) holds for every n ≥ s, where

L(f1, . . . , fs) =
s∑
i=1

∞∑
j=1

ai,jf
(j)
i (4)

for every f1, . . . , fs ∈ C[x]. (Note that the sum in the right hand side of (4)
only has a finite number of nonzero terms for every f1, . . . , fs ∈ C[x]).

Proof. If F ∈ M , then we put L([F ]0, . . . , [F ]s−1) = [F ]s. This definition
makes sense, since M is an L-module, and thus [F ]s is uniquely determined
by [F ]0, . . . , [F ]s−1. In this way we defined L on the set VM,s. It is clear that
L is linear.
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Suppose F ∈M , and let k ≥ s be given. Then

∂k−s

∂yk−s
F (x, y) =

∞∑
n=0

[F ]n+k−s(x)
yn

n!
∈M, (5)

and thus [F ]k = L([F ]k−s, . . . , [F ]k−1). This proves the first statement of the
theorem including (3), except that L is only defined on VM,s.

If F ∈M , then (2) holds, and thus

L([F ]0, . . . , [F ]s−1)′ = L([F ]′0, . . . , [F ]′s−1),

since both sides equal [F ]′s. Therefore,

L(f0, . . . , fs−1)′ = L(f ′0, . . . , f
′
s−1) (6)

holds for every (f0, . . . , fs−1) ∈ VM,s. Next we prove that

degL(f0, . . . , fs−1) ≤ max
0≤i≤s−1

deg fi (7)

for every (f0, . . . , fs−1) ∈ VM,s. Indeed, let F ∈M , and let max
0≤i≤s−1

deg [F ]i =

d. Then
∂d+1

∂xd+1
F (x, y) =

∞∑
n=0

[F ](d+1)
n

yn

n!
∈M.

Now we have [F ]
(d+1)
i = 0 for every i < s, and thus [F ]

(d+1)
s = 0, since M

is an L-module of order s. This proves (7). Then it follows from (3) that if
F ∈M , then deg [F ]n ≤ max0≤i≤s−1 deg [F ]i for every n. In particular, if the
coordinate polynomials [F ]0, . . . , [F ]s−1 are constants, then [F ]n is constant
for every n.

LetW0 denote the set of s-tuples (c0, . . . , cs−1) ∈ Cs such that (c0, . . . , cs−1) ∈
VM,s. Clearly, W0 is a linear subspace of Cs. Let dimW0 = r, and let
(ci,0, . . . , ci,s−1) (i = 1, . . . , r) be a basis of W0. Let Fi(y) =

∑∞
n=0 ci,n

yn

n!
∈

M ∩C[y] for every i = 1, . . . , r. Then every element of M ∩C[y] is the linear
combination of the functions Fi. Indeed, if

F (y) =
∞∑
n=0

cn
yn

n!
∈M ∩ C[y],
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then there is a linear combination F of F1, . . . , Fr such that F (y) =
∑∞

n=0 dn
yn

n!
,

where dn = cn for every n ≤ s − 1. Since F ∈ M and M is an L-module of
order s, it follows that dn = cn for every n, and F = F .

Thus the dimension of M ∩C[y] is at most r. Since dimW0 = r, we have
dim (M ∩C[y]) = r. Now M ∩C[y] is a proper submodule of C[y], and thus
there is a p ≥ 0 such that M ∩ C[y] = {f ∈ C[y] : deg f < p}. Clearly, we
must have p = r.

This implies p = r ≤ s, and thus degF < s for every F ∈ M ∩ C[y].
That is, cs = 0 whenever

∑∞
n=0 cn

yn

n!
∈ M ∩ C[y]. Therefore, we have

L(c0, . . . , cs−1) = 0 for every (c0, . . . , cs−1) ∈ W0.

We construct the numbers ai,j with the property that, for every d ≥ 1,

L(f0, . . . , fs−1) =
s−1∑
i=0

d−1∑
j=1

ai,jf
(j)
i (8)

whenever (f0, . . . , fs−1) ∈ VM,s and deg fi < d (i = 0, . . . , s − 1). Note that
(8) is true for d = 1. Indeed, deg fi < 1 means that fi is constant, and thus
the left hand side of (8) is zero, and so is the right hand side, since the sums∑d−1

j=1 are empty.

Let d ≥ 1, and suppose we have defined the numbers and ai,j (i =
0, . . . , s−1, j = 1, . . . , d−1) such that (8) holds for every (f0, . . . , fs−1) ∈ VM,s

and deg fi < d (i = 0, . . . , s− 1).

If (f0, . . . , fs−1) ∈ VM,s and deg fi ≤ d (i = 0, . . . , s− 1), then, by (6) and
(8),

(L(f0, . . . , fs−1))′ = L(f ′0, . . . , f
′
s−1) =

s−1∑
i=0

d−1∑
j=1

ai,jf
(j+1)
i ,

and thus

L(f0, . . . , fs−1) =
s−1∑
i=0

d−1∑
j=1

ai,jf
(j)
i + C(f0, . . . , fs−1),

where C(f0, . . . , fs−1) is constant. Clearly, the map

(f0, . . . , fs−1) 7→ C(f0, . . . , fs−1)
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is linear. Let fi =
∑d

ν=0 αi,νx
ν (i ≤ s − 1). Then C(f0, . . . , fs−1) only

depends on the coefficients αi,d. Indeed, if (g0, . . . , gs−1) ∈ VM,s, where gi =∑d
ν=0 βi,νx

ν and αi,d = βi,d (i ≤ s − 1), then deg (fi − gi) < d, and C(f0 −
g0, . . . , fs−1 − gs−1) = 0 by (8). Then it follows that there are numbers bi,d
(i = 0, . . . , s− 1) such that

C(f0, . . . , fs−1) =
s−1∑
i=0

bi,d · αi,d =
s−1∑
i=0

bi,d ·
f

(d)
i

d!
.

Putting ai,d = bi,d/d!, we obtain (8) with d + 1 in place of d for every
(f0, . . . , fs−1) ∈ VM,s, deg fi ≤ d (i = 0, . . . , s − 1). In this way we ob-
tain the numbers ai,j by induction on j. It is clear that the numbers ai,j
defined above satisfy (4) for every (f1, . . . , fs) ∈ VM,s. Now, the right hand
side of (4) makes sense for every (f1, . . . , fs) ∈ C[x]s, and defines a linear
extension of L to C[x]s. This completes the proof of the theorem. �

Remark 4. Let M be an L-module of order s. Then VM,s and L are con-
nected by the following necessary condition: if (f0, . . . , fs−1) ∈ VM,s and
the sequence of polynomials is defined by fn = L(fn−s, . . . , fn−1) for ev-
ery n ≥ s, then (fn−s, . . . , fn−1) ∈ VM,s for every n ≥ s. Indeed, let
F (x, y) =

∑∞
n=0 gn(x)y

n

n!
∈ M be such that gi = fi for every i < s. Since

gn = L(gn−s, . . . , gn−1) for every n ≥ s, it follows that gn = fn for every n.
For every k ≥ s we have (5), hence (fk−s, . . . , fk−1) ∈ VM,s.

In the constructions of L-modules this condition should be taken into
account. Consider the following example. Let s = 2, V = {(f, f) : f ∈ C[x]},
and let L be the identically zero map from C[x]2 into C[x]. Then (f, f) ∈ V ,
L(f, f) = 0, but (f, 0) /∈ V if f 6= 0. Accordingly, the set M of functions of
the form (1) such that (f0, f1) ∈ V and fn = L(fn−2, fn−1) for every n ≥ 2
is not a module. Indeed, F = f(x) · (1 + y) ∈ M for every f ∈ C[x], but
∂
∂y
F = f(x) /∈M if f 6= 0.

Note that the necessary condition above is automatically satisfied if VM,s =
C[x]s. Therefore, the following construction always produces L-modules.

Notation 5. Let Γ = {ai,j : i = 1, . . . , s, j = 1, 2, . . .} be a set of complex
numbers, and let MΓ denote the set of polynomials of the form (1) such that
fn = L(fn−s, . . . , fn−1) for every n ≥ s, where L is defined by (4).
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The definition of L implies that

deg fk < max
k−s≤i≤k−1

deg fi (9)

for every k ≥ s. Therefore, we have fn = 0 for every n > s+max0≤i≤s−1 deg fi.

Lemma 6. MΓ is an L-module of order s.

Proof. It is enough to show that MΓ is a module. Since L is a linear map,
MΓ is a linear subspace of C[x, y]. If F (x, y) is defined by (1), then

∂

∂x
F (x, y) =

∞∑
n=0

f ′n(x) · y
n

n!
.

Since f ′n = L(f ′n−s, . . . , f
′
n−1) for every n ≥ s, we have ∂

∂x
F ∈ MΓ. We also

have
∂

∂y
F (x, y) =

∞∑
n=1

fn(x) · yn−1

(n− 1)!
=
∞∑
n=0

fn+1(x) · y
n

n!
.

It is clear that ∂
∂y
F ∈MΓ, and thus MΓ is a module. �

3 A representation of the proper submodules

of C[x, y]

By the sum of the sets of polynomials A,B ⊂ C[x1, . . . , xn] we mean the set
A+B = {f+g : f ∈ A, g ∈ B}. It is easy to see that if A,B are submodules
of C[x1, . . . , xn], then so is A+B.

Notation 7. For every nonnegative integer d we denote by Md the set of
polynomials F ∈ C[x, y] such that deg [F ]n < d for every n.

It is easy to check that Md is a submodule of C[x, y] for every nonnegative
integer d. Note that M0 = {0} and M1 = C[y].

In this section our aim is to prove the following.
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Theorem 8. Let A be a proper submodule of C[x, y]. Then there are integers
d ≥ 0 and s ≥ 1 such that A = Md + M , where M is an L-module of order
s.

As for the uniqueness of the representation see Remark 15. First we show
that the sum of an L-module and Md is always a proper submodule of C[x, y].

Lemma 9. If M is an L-module of order s and d ≥ 0, then xdys /∈Md +M .
Consequently, Md +M is a proper submodule of C[x, y].

Proof. Suppose xdys = F + G, where F ∈ Md and G ∈ M . Then we have
(1), where deg fn < d for every n. Thus

−G(x, y) = F (x, y)− xdys

=
s−1∑
n=0

fn(x) · y
n

n!
+ (fs(x)− s! · xd) · y

s

s!
+

∞∑
n=s+1

fn(x) · y
n

n!
,

and −G ∈M . By (7) we obtain

d = deg ((fs(x)− s! · xd) ≤ max
0≤i≤s−1

deg fi < d,

a contradiction. �

Corollary 10. If A,B are L-modules and Md1 +A = Md2 +B, then d1 = d2.

Proof. Suppose d1 < d2. By Lemma 9, there is an s such that xd1ys /∈Md1 +
A = Md2 +B. However, xd1ys ∈Md2 ⊂Md2 +B, which is a contradiction.�

The rest of the section is devoted to the proof of Theorem 8.

Since A $ C[x, y] and A is a linear space, we have xmys /∈ A for some
m, s ≥ 0. Let d be the smallest nonnegative integer such that xdys /∈ A for
some s ≥ 0. Then we have Md ⊂ A. Let s be the smallest nonnegative
integer such that xdys /∈ A. In the course of the proof we fix the module A
and the nonnegative integers d and s with these properties.

Lemma 11. For every polynomial F ∈ A we have

deg [F ]n < max(d, max
0≤i≤s−1

deg [F ]i) (10)

for every n ≥ s.
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Proof. Let e = max0≤i≤s−1 deg [F ]i, and suppose that m ≥ max(d, e), where
m = maxn≥s deg [F ]n. (Note that [F ]n = 0 if n is large enough.)

First we suppose e ≤ d; then m ≥ d. Turning to the polynomial ∂m−d

∂xm−dF
we may assume that m = d. Let k be the largest index with deg [F ]k = d.
Then k ≥ s, deg [F ]n ≤ d for every n, and deg [F ]n < d for every n >

k. Turning to the polynomial ∂k−s

∂yk−sF we may assume that k = s. Then

deg [F ]n ≤ d for every n, deg [F ]s = d, and deg [F ]n < d for every n > s.
Since Md ⊂ A and xdyn ∈ A for every n < s by the choice of s, it follows
that [F ]n · y

n

n!
∈ A for every n 6= s, and thus [F ]s · y

s

s!
∈ A. Using Md ⊂ A

again we find xdys ∈ A, which is impossible.

Next suppose e > d; then m ≥ e. Turning to the polynomial ∂e−d

∂xe−dF we
reduce this case to the case when e = d. �

If d = 0, then it follows from Lemma 11 that if F ∈ A and [F ]0 = . . . =
[F ]s−1 = 0, then F = 0. That is, if d = 0 then A is an L-module of order s.
Then A = M0 +A gives a representation needed. Therefore, we may assume
that d ≥ 1.

If s = 0, then it follows from Lemma 11 that if F ∈ A, then deg [F ]n < d
for every n. Thus A ⊂ Md and, consequently, we have A = Md. Putting
M = {0} (which is an L-module of arbitrary order with an arbitrary L), we
obtain A = Md +M . Therefore, we may assume s ≥ 1.

Notation 12. If φ ∈ C[x]s and φ = (f0, . . . , fs−1), then we use the notation
φ′ = (f ′0, . . . , f

′
s−1). We say that a subset V of C[x]s is closed under differenti-

ation, if φ ∈ V implies φ′ ∈ V . Note that VA,s is closed under differentiation
by (2).

Let Vk = {(f1, . . . , fs) ∈ VA,s : deg fi < k (i = 1, . . . , s)} for every in-
teger k. Note that Vk is also closed under differentiation. We have Vd =
{(f1, . . . , fs) ∈ C[x]s : deg fi < d (i = 1, . . . , s)}, as Md ⊂ A.

For every polynomial F ∈ C[x, y] we denote

Φ(F ) = ([F ]0, . . . , [F ]s−1) ∈ C[x]s.

Clearly, Φ is a linear map from C[x, y] onto C[x]s, and maps A onto VA,s.

It follows that there exists a linear map φ 7→ Fφ from VA,s into A such
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that Φ(Fφ) = φ for every φ ∈ VA,s.

Lemma 13. For every integer k > d there is a linear map L : Vk → C[x]
with the following properties.

(i) For every φ ∈ Vk we have

deg (L(φ)− [Fφ]s) < d. (11)

(ii) L(φ′) = L(φ)′ for every φ ∈ Vk.

(iii) L(φ) = 0 for every φ ∈ Vd.

Proof. Let X denote the quotient space of the linear space Vk modulo the
linear subspace Vd. (That is, let X = Vk/Vd.) Since the linear space Vk is of
finite dimension (its dimension is at most ks), so is X. Let φ 7→ φ denote
the natural homomorphism from Vk into X. That is, let φ = φ+Vd for every
φ ∈ Vk.

The derivation φ 7→ φ′ maps Vd into itself. Therefore, we can define the
derivation on X by D(φ) = φ′ (φ ∈ Vk).

It is clear that D is a nilpotent linear map from X into itself. By [1,
§57, Theorem 2, p. 111], there are positive integers r, q1, . . . , qr and elements
u1, . . . , ur ∈ X such that Dqiui = 0 for every i = 1, . . . , r, and the elements
Djui (i = 1, . . . , r, j = 0, . . . , qi− 1) form a basis for X. Let ψ1, . . . , ψr ∈ Vk
be such that ui = ψi (i = 1, . . . , r). We put

Λ(Djui) = ([Fψi
]s)

(j) (12)

for every i = 1, . . . , r and j = 0, . . . , qi − 1, and extend Λ linearly to X. We
define L(φ) = Λ(φ) for every φ ∈ Vk. Then L : Vk → C[x] is linear. We show
that L has properties (i)-(iii).

If φ ∈ Vd, then φ = 0, L(φ) = Λ(φ) = 0, and thus (iii) holds.

Next we prove (i). Since L and the map φ 7→ Fφ are both linear, the set
of elements φ ∈ Vk satisfying (11) is a linear subspace of Vk. Therefore, in
order to prove (i) it is enough to check that (11) holds for a set of polynomials
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generating Vk. We show that Ψ = {ψ(j)
i : i = 1, . . . , r, j = 1, . . . , qi − 1} ∪ Vd

is such a set. Indeed, let φ ∈ Vk. Since Djui is a basis for X, we have

φ =
r∑
i=1

qj∑
j=1

λi,jD
jui (13)

with suitable complex coefficients λi,j. Now α′ = Dα (α ∈ Vk) implies

that ψ
(j)
i = Djui for every i, j, and thus the right hand side of (13) equals

the image under the natural homomorphism of a linear combination of the
elements ψ

(j)
i . Thus the difference of φ and this linear combination belongs

to Vd, showing that Ψ generates Vk.

If φ ∈ Vd, then L(φ) = 0 by (iii) and deg [Fφ]s < d by Lemma 11, and
thus (11) holds.

If φ = ψ
(j)
i , then we have Φ(Fψi

) = ψi,

Φ( ∂j

∂xj
Fψi

) = ψ
(j)
i = Φ(F

ψ
(j)
i

) = Φ(Fφ),

and thus Φ( ∂j

∂xj
Fψi
− Fφ) = 0. In other words, the first s coordinate polyno-

mials of ∂j

∂xj
Fψi
− Fφ are zero. By Lemma 11 it follows that

d > deg ([ ∂
j

∂xj
Fψi
− Fφ]s) = deg ([ ∂

j

∂xj
Fψi

]s − [Fφ]s)

= deg (([Fψi
]s)

(j) − [Fφ]s) = deg (Λ(Djui)− [Fφ]s)

= deg (L(φ)− [Fφ]s),

which proves (i).

We turn to the proof of (ii). Since L is linear and L(φ) = 0 if φ ∈ Vd, in
order to prove (ii) it is enough to check that L(φ′) = L(φ)′ holds in the cases

when φ = ψ
(j)
i . Let 1 ≤ i ≤ r and 0 ≤ j ≤ qi− 1 be fixed. If j < qi− 1, then

L(φ)′ = [Fψi
]
(j+1)
s = L(φ′), and we are done.

If j = qi− 1, then φ′ = ψ
(qi)
i = 0, so we have φ ∈ V1 ⊂ Vd. Then L(φ) = 0

by (iii), and L(φ′) = L(φ)′ = 0 follows. �

Lemma 14. There exists a linear map L : VA,s → C[x] such that

(i) (11) holds for every φ ∈ VA,s,
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(ii) L(φ′) = L(φ)′ for every φ ∈ VA,s, and

(iii) L(φ) = 0 for every φ ∈ Vd.

Proof. We define

L(φ) = [Fφ]s + uφ,d−1x
d−1 + . . .+ uφ,1x+ uφ,0, (14)

where uφ,i is an unknown for every φ ∈ VA,s and i = 0, . . . , d − 1. We show
that we can assign values to these unknowns in such a way that the resulting
map L satisfies the requirements. Since the map φ 7→ Fφ is linear, L will be
linear if

uλφ+µψ,d−1x
d−1 + . . .+ uλφ+µψ,1x+ uλφ+µψ,0 =

λ(uφ,d−1x
d−1 + . . .+ uφ,1x+ uφ,0)+

µ(uψ,d−1x
d−1 + . . .+ uψ,1x+ uψ,0)

holds for every φ, ψ ∈ VA,s and λ, µ ∈ C. It is clear that condition (i) is
satisfied with any choice of the unknowns uφ,i. Condition (ii) is satisfied if

[Fφ′ ]s + uφ′,d−1x
d−1 + . . .+ uφ′,1x+ uφ′,0 =

([Fφ]s)
′ + (d− 1)uφ,d−1x

d−2 + . . .+ uφ,1

holds for every φ ∈ VA,s. Finally, (iii) is satisfied if the right hand side of (14)
is zero for every φ ∈ Vd. Summing up: in order that L satisfy the conditions,
the unknowns uφ,i must satisfy a certain infinite system of linear equations
S. We have to show that S is solvable. It is well-known that a system S
of linear equations is solvable if and only if every finite subsystem of S is
solvable. Now a finite subsystem T of S only involves a finite number of
elements φ ∈ VA,s. Then there is a k such that all these elements belong to
Vk. As we proved above, there is a map L on Vk satisfying (i)-(iii) on Vk.

Now condition (i) implies that L is of the form (14) with concrete values
of the unknowns uφ,i for every φ ∈ Vk. These values constitute a solution
of the subsystem T , showing that T is solvable. Therefore, S is solvable,
proving the existence of L with the required properties. �

Proof of Theorem 8. Fix a map L as in Lemma 14. We prove that if φ =
(f0, . . . , fs−1) ∈ VA,s, then the recursion fn = L(fn−s, . . . , fn−1) (n = s, s +
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1, . . .) defines a sequence of polynomials such that fn = 0 for every n large
enough, and

deg (fn − [Fφ]n) < d (15)

for every n. It is clear that (15) holds for every n < s.

Let k ≥ s, and suppose we have defined fn for every n < k such that (15)
holds for every n < k. Let ψ = (fk−s, . . . , fk−1). We have Fφ ∈ A and G =
∂k−s

∂yk−sFφ ∈ A. Since deg (fk−s+i−[Fφ]k−s+i) < d and [G]i = [Fφ]k−s+i for every

i < s, we have Φ(G)− ψ ∈ Vd. Since Vd ⊂ VA,s and Φ(G) ∈ VA,s, we obtain
ψ ∈ VA,s. Therefore, L(fk−s, . . . , fk−1) is defined. Let fk = L(fk−s, . . . , fk−1).
By (i) of Lemma 14, we have deg (fk − [Fψ]s) < d.

Now G − Fψ ∈ A and Φ(G − Fψ) ∈ Vd. By Lemma 11, this implies
deg [G− Fψ]s < d. Since [G]s = [Fφ]k, we obtain deg ([Fφ]k − [Fψ]s) < d and
deg (fk − [Fφ]k) < d. This proves that the recursion fn = L(fn−s, . . . , fn−1)
defines fn for every n such that (15) holds for every n.

Since Fφ ∈ A, there is an N such that [Fφ]n = 0 for every n ≥ N . Then
deg fn < d for every n ≥ N . If n > N + s, then (fn−s, . . . , fn−1) ∈ Vd by
(15), and thus fn = L(fn−s, . . . , fn−1) = 0 by (iii) of Lemma 14. Therefore
fn = 0 for every n large enough. Let Hφ denote the polynomial

∑∞
n=0 fn ·

yn

n!
.

Then (15) implies that Hφ − Fφ ∈Md. Since Md ⊂ A and Fφ ∈ A, it follows
that Hφ ∈ A.

Let M be the set of polynomials Hφ, where φ ∈ VA,s. Then we have
M ⊂ A. It is easy to see that the map φ 7→ Hφ is linear, and thus M is a
linear subspace of A. It is also easy to check that F ∈M implies ∂

∂y
F ∈M .

Now (ii) of Lemma 14 implies that ∂
∂x
Fφ = Hφ′ ∈M for every φ ∈ VA,s. Thus

M is also closed under partial differentiation w.r.t. x. Consequently, M is a
module. It is clear that M is an L-module of order s.

If F ∈ A, then φ = Φ(F ) ∈ VA,s. Now F − Fφ ∈ Md by Lemma 11, and
Hφ − Fφ ∈Md by (15). Thus

F = ((F − Fφ)− (Hφ − Fφ)) +Hφ ∈Md +M,

which proves A = Md +M . �

Remark 15. In the representation A = Md +M , where M is an L-module,
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the value of d is unique (see Corollary 10). However, the term M is not
unique in general, as the following example shows.

Let Md,s denote the set of polynomials of the form (1), where deg fn < d
for every n < s, and fn = 0 for every n ≥ s. It is clear that Md,s is an L-
module of order s. Since Md,s ⊂Md, we have Md = Md + {0} = Md +Md,s.

We can make the representations unique if we restrict the L-module terms.
Note that the proof of Theorem 8 produces L-modules with a linear map L
such that L(f1, . . . , fs) = 0 whenever deg fi < d (i = 1, . . . , s); see (iii) of
Lemma 14. We may also assume that Md,s ⊂M , since otherwise we replace
M by M+Md,s. Now, it is easy to check that the representation A = Md+M
is unique, if we require that the L-module M should satisfy both Md,s ⊂ M
and L(f1, . . . , fs) = 0 whenever deg fi < d (i = 1, . . . , s).

4 Indecomposable submodules

Definition 16. We say that a submodule M of C[x1, . . . , xn] is decomposable,
if M can be represented as the sum of finitely many proper submodules of
M . Otherwise the submodule M is indecomposable.

Proposition 17. Every submodule of C[x1, . . . , xn] is the sum of finitely
many indecomposable submodules.

Proof. The family of submodules of C[x1, . . . , xn] has the minimal condi-
tion; that is, if M1 ⊃ M2 ⊃ . . . are submodules of C[x1, . . . , xn], then
there is a positive integer K such that Mk = MK for every k ≥ K (see
[2, Lemma 8]). Therefore, if the statement of the proposition is not true,
then there is a minimal counterexample M . Then M must be decomposable.
If M = A1 + . . . + Ak, where A1, . . . , Ak are proper submodules of M then,
by the minimality of M , each Ai is the sum of finitely many indecomposable
submodules. Then the same is true for M , which is impossible. �

It is not clear if the representation of a module as the sum of indecom-
posable submodules containing a minimal number of terms is unique or not.

In the following we confine ourselves to the submodules of C[x, y] (except
in Remark 24). It follows from Theorem 8 that if M is an indecomposable
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submodule of C[x, y], then either M = Md for some d or M is an L-module
of order s for some s.

Our next aim is to show that Md is indecomposable for every d, and so
is every L-module of order 1.

Lemma 18. The system of translation invariant linear subspaces of C[x]s

has the minimal condition.

Proof. We prove the statement by induction on s. Since every translation
invariant linear subspace of C[x] equals C[x] or {f ∈ C[x] : deg f < d} for
some d ≥ 0, it easily follows that the statement is true for s = 1.

Let s ≥ 1, suppose that the statement is true for s, and let V1 ⊃ V2 ⊃ . . .
be translation invariant linear subspaces of C[x]s+1. We have to show that
Vn = Vn+1 = . . . if n is large enough.

Put An = {f ∈ C[x] : (0, . . . , 0, f) ∈ Vn} for every n. Since An is a
translation invariant linear subspace of C[x] and A1 ⊃ A2 ⊃ . . ., there is an
N1 such that An = AN1 for every n ≥ N1. Let

Bn = {(f1, . . . , fs) ∈ C[x]s : ∃ f, (f1, . . . , fs, f) ∈ Vn}.

ThenBn is a translation invariant linear subspace of C[x]s andB1 ⊃ B2 ⊃ . . ..
By the induction hypothesis it follows that there is an N2 such that Bn = BN2

for every n ≥ N2. Let N = max(N1, N2); we prove that Vn = VN for
every n ≥ N . Let n ≥ N and (f1, . . . , fs+1) ∈ VN be given; we prove
(f1, . . . , fs+1) ∈ Vn.

We have (f1, . . . , fs) ∈ BN = Bn, and thus there is a g such that
(f1, . . . , fs, g) ∈ Vn ⊂ VN . From (f1, . . . , fs+1) ∈ VN we obtain (0, . . . , 0, fs+1−
g) ∈ VN , fs+1 − g ∈ AN = An and (0, . . . , 0, fs+1 − g) ∈ Vn . Thus

(f1, . . . , fs+1) = (f1, . . . , fs, g) + (0, . . . , 0, fs+1 − g) ∈ Vn,

and the proof is complete. �

Theorem 19. If A,B ⊂ C[x, y] are L-modules, then so is A+B.

Proof. Suppose A is of order s1 and B is of order s2. If s = max(s1, s2), then
A,B are both of order s. For every k > s we denote by Zk the set of s-tuples
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(f1, . . . , fs) ∈ VA,s ∩ VB,s such that if F ∈ A, G ∈ B and [F ]n = [G]n = fn
for every n < s, then [F ]n = [G]n for every n < k.

It is easy to check that Zk is a translation invariant linear subspace of
C[x]s, and Zs+1 ⊃ Zs+2 ⊃ . . .. By Lemma 18, there is a K > s such that
Zk = ZK for every k ≥ K. We prove that A+B is an L-module of order K.

Let S ∈ A + B such that [S]n = 0 for every n < K. We show that
[S]K = 0. Let S = F + G, where F ∈ A and G ∈ B. Then [F ]n + [G]n = 0;
that is, [F ]n = −[G]n for every n < K. Since −G ∈ B, it follows that
([F ]0, . . . , [F ]s−1) ∈ VA,s ∩ VB,s. We prove ([F ]0, . . . , [F ]s−1) ∈ ZK .

Suppose H ∈ A and [H]n = [F ]n for every n < s. Since F,H ∈ A and A
is an L-module of order s, it follows that F = H, and thus [H]n = [F ]n for
every n < K. Similarly, if P ∈ B and [P ]n = [F ]n = −[G]n for every n < s,
then P = −G, and thus [P ]n = −[G]n = [F ]n for every n < K, proving
([F ]0, . . . , [F ]s−1) ∈ ZK .

Since ZK = ZK+1, we find ([F ]0, . . . , [F ]s−1) ∈ ZK+1. This implies [F ]K =
−[G]K ; that is, [S]K = 0. �

Remark 20. The proof above does not give any estimate of the order of
A+B. We do not know if the order of A+B is bounded from above by, say,
the sum of the order of A and of B.

Theorem 21. Md is indecomposable for every d.

Proof. Suppose this is not true, and let Md = A1 + . . .+Ak, where A1, . . . , Ak
are proper submodules of Md. By Theorem 8, we have Ai = Mdi +Bi, where
Bi is an L-module for every i. By Theorem 19 we find that B = B1 + . . .+Bk

is an L-module. It is clear that Md1 +. . .+Mdk = Me, where e = max1≤i≤k di.
Therefore, Md = A1 + . . .+Ak gives Md = Me +B, where B is an L-module.
By Corollary 10, we have e = d, and thus di = d for a suitable 1 ≤ i ≤ k.
Then Md = Mdi ⊂ Ai, which is impossible, since Ai is a proper submodule
of Md. �

Theorem 22. Every L-module of order 1 is indecomposable.

Proof. Let M be an L-module of order 1, and suppose M = A1 + . . . + Ak,
where A1, . . . , Ak are proper submodules of M . Each of the linear spaces
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VM,1 and VAi,1 (i = 1, . . . , k) equals one of C[x] or {f ∈ C[x] : deg f < d} for
some d ≥ 0. Since

VM,1 = VAi,1 + . . .+ VAk,1,

it follows that VM,1 = VAi,1 for a suitable i. Then we have M = Ai by the
definition of L-modules, which is impossible. �

Remarks 23. (i) There are decomposable L-modules: if A,B are L-modules,
A ( B and B ( A, then A+B is a decomposable L-module.

(ii) There are indecomposable L-modules of order > 1. Indeed, let

A∗ = {f(y, x) : f(x, y) ∈ A}

for every A ⊂ C[x, y]. It is clear that if M is a module, then so is M∗, and
if M is indecomposable then so is M∗. Thus M∗

2 is indecomposable. On the
other hand, M∗

2 = {f(x) + g(x)y : f, g ∈ C[x]}. It is clear that M∗
2 is an

L-module of order 2. Similarly, M∗
d is an indecomposable L-module of order

d for every d.

(iii) It follows from the definition that a submodule of an L-module is also
an L-module. Also, we have Md 6⊂ M for every d ≥ 1 and for every L-
module M . Indeed, if M is an L-module of order s, then ys /∈ M and
ys ∈M1 ⊂Md. From these observations it follows that the representation of
the submodules of C[x, y] as sums of indecomposable submodules containing a
minimal number of terms is unique if and only if this is true for L-modules.

Remark 24. We show that Theorem 8 does not have a straightforward gen-
eralization to C[x, y, z]. Such a generalization would operate with modules
defined as follows. Generalizations of the modules Md could be defined as
the set of polynomials

F (x, y, z) =
∞∑
n=0

fn(x, y)
zn

n!
(16)

such that the degrees of the polynomials fn(x, y) ∈ C[x, y] satisfy some pre-
scribed inequalities. Let these modules be called bounded modules. We call
M an L-module of order s if, whenever the polynomial in (16) belongs to M
and fn = 0 for every n < s, then F = 0.

Now suppose Theorem 8 had a generalization to C[x, y, z]. It would claim
that every proper submodule of C[x, y, z] is the sum of bounded modules and
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L-modules. Then it would follow that whenever M is an indecomposable
submodule of C[x, y, z], then either M is bounded, or M is an L-module.

We show that this is false, no matter how we define bounded modules.
Let M be the set of polynomials

∞∑
n=0

(an(x+ y) + bn) · z
n

n!
, (17)

where an and bn are complex numbers and an = bn = 0 if n is large enough.
It is clear that M is a module. Suppose M = A1 + . . .+Ak, where A1, . . . , Ak
are submodules of M . Then there is an i such that Ai has the following
property: for every N there is a polynomial of the form (17) belonging to Ai
and such that an 6= 0 for at least one index n > N . It is easy to check that
this condition implies Ai = M , and thus M is indecomposable.

Now M is not a bounded module, since no matter how we prescribe the
inequalities satisfied by the elements of M , the polynomial x+ 2y would also
satisfy these conditions, but x + 2y /∈ M . It is also clear that M is not
an L-module, since the coordinate polynomials an(x+ y) + bn can be chosen
independently. This shows that no generalization of the form described above
is possible.

5 Construction of a submodule of C[x, y] which

is not closed

We equip C[x1, . . . , xn] with the topology of uniform convergence on compact
sets. The closure of a set M ⊂ C[x1, . . . , xn] w.r.t. this topology is denoted
by clM .

Theorem 25. There exists a module M ⊂ C[x, y] such that x ∈ clM but
x /∈M .

Proof. We use the notation e(x) = ex, e2(x) = e(e(x)) and e3(x) = e(e2(x)).
Then we have

e3(n− 1)e(n)/e3(n)→ 0 (n→∞). (18)
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Indeed, we have n+e(n−1)−e(n)→ −∞, hence e(n) ·e2(n−1)/e2(n)→ 0,
hence e(n)·e2(n−1)−e2(n)→ −∞, hence e3(n−1)e(n)/e3(n)→ 0 as n→∞.

Let a1 = 1 and an = −e3(n) for every n ≥ 2. We put L(f) = a1f
′ +

a2f
′′ + . . . for every f ∈ C[x]. Note that the number of nonzero terms in the

sum is finite for every f ∈ C[x]. Let M denote the set of polynomials

∞∑
n=0

Ln(f)(x) · y
n

n!
, (19)

where f ∈ C[x] is arbitrary. By Lemma 6, M is a submodule of C[x, y].
Now we have x /∈ M . Indeed, if F (x, y) is defined by (1) and F (x, y) = x,
then f0(x) = x and f1 = 0. However, we have f1 = L(f0) = L(x) = 1, a
contradiction. (In fact, the same argument gives f /∈ M for every f ∈ C[x]
with deg f ≥ 1.)

We put εn = |an ·n!|−1, gn(x) = x+εnx
n and Gn(x, y) =

∑n
k=0 L

k(gn) · yk
k!

for every n. We show that the sequence of polynomials Gn converges to x
locally uniformly on C2. Since Gn ∈ M for every n, this will prove that
x ∈ clM .

If f ∈ C[x], f =
∑n

i=0 cix
i, then we put ‖f‖ = max0≤i≤n |ci|. Clearly, ‖.‖

is a norm on C[x]. If deg f ≤ n and |x| ≤ en, then

|f(x)| ≤ ‖f‖ · (1 + e(n) + e(2n) + . . .+ e(n2)) < (n+ 1) · e(n2) · ‖f‖
< e2(n) · ‖f‖ < e3(n− 1) · ‖f‖

(20)

if n > n0. If f ∈ C[x] and deg f ≤ n, then ‖f ′‖ ≤ n · ‖f‖. Therefore,

‖Lf‖ ≤
n∑
i=1

|ai| · ‖f (i)‖ ≤ n!
n∑
i=1

|ai| · ‖f‖

≤ n! · n · e3(n) · ‖f‖
≤ e2(n) · e3(n) < e3(n)2 · ‖f‖

(21)

for every f ∈ C[x] with deg f ≤ n. (We used the trivial estimate n! · n ≤
nn < e(n2) < e2(n).) Let n ≥ 2 be fixed. If |x| ≤ en, then

|gn(x)− x| ≤ εn · e(n2) < e(n2)/e3(n) = e(n2 − e2(n)). (22)
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Now we have

L(gn) = g′n +
n−1∑
i=2

aig
(i)
n + ang

(n)
n

= 1 + n · εnxn−1 +
n−1∑
i=2

ai · n(n− 1) · · · (n− i+ 1)εnx
n−i + an · n! · εn

= n · εnxn−1 +
n−1∑
i=2

ai · n(n− 1) · · · (n− i+ 1)εnx
n−i,

and thus

‖L(gn)‖ ≤ εn · max
1≤i≤n−1

|ai| · n! < εn · e3(n− 1) · n! = e3(n− 1)/e3(n).

Since degL(gn) = n− 1, (21) gives

‖Lk(gn)‖ ≤ e3(n− 1)2k−2 · ‖Lgn‖ < e3(n− 1)2k−1/e3(n).

for every k ≥ 2. Then we find, by (20), that if 2 ≤ k ≤ n and |x| ≤ en, then

|Lk(gn)(x)| ≤ e3(n− 1)2n/e3(n). (23)

If |x| ≤ en and |y| ≤ en, then it follows from (22) and (23) that

|Gn(x, y)− x| < e(n2 − e2(n)) + n · e(n2) · e3(n− 1)2n/e3(n)

if n > n0. Since e(n2 − e2(n))→ 0 and

e(n2) · e3(n− 1)2n < e3(n− 1)2n+1 < e3(n− 1)e(n),

it follows from (18) that Gn(x, y)→ x locally uniformly on C2. �

Remarks 26. (i) It is easy to see that C[x1, x2] is a closed submodule of
C[x1, . . . , xn] for every n ≥ 2. Therefore, Theorem 25 implies that for every
n ≥ 2 there exists a submodule of C[x1, . . . , xn] which is not closed.

(ii) Using an elaborate version of the proof of Theorem 25 one can show that
there are L-modules of order 1 which are everywhere dense in C[x, y] w.r.t.
the topology of uniform convergence on compact sets.

21



References

[1] P.R. Halmos: Finite-Dimensional Vector Spaces. Springer, 1987.
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