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Abstract

Equation
n∑

i=0

aif(bix+ (1− bi)y) = 0

belongs to the class of linear functional equations. The solutions form
a linear space with respect to the usual pointwise operations. Accor-
ding to the classical results of the theory they must be generalized
polynomials. New investigations have been started few years ago.
They clarified that the existence of non-trivial solutions depends on
the algebraic properties of some related families of parameters. The
problem is to find the necessary and sufficient conditions for the ex-
istence of non-trivial solutions in terms of these kinds of properties.
One of the most earlier results is due to Z. Daróczy [1]. It can be
considered as the solution of the problem in case of n = 2. We are
going to take more steps forward by solving the problem in case of
n = 3.
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1 Introduction

Consider functional equation

n∑
i=0

aif(bix+ (1− bi)y) = 0 (x, y ∈ I) (1)

where I is a nonempty open real interval, 0 < b0 < b1 < . . . < bn < 1 and
a0, a1, . . . , an are given nonzero real numbers, such that

∑n
i=0 ai = 0 (it is

natural because of the substitution x = y). The solutions form a linear space
with respect to the usual pointwise operations. According to the classical re-
sults of the theory they must be generalized polynomials. New investigations
have been started few years ago. They clarified that the existence of non-
trivial solutions depends on the algebraic properties of some related families
of parameters. We present the basic results of the theory together with some
sufficient and necessary conditions for the existence of non-trivial solutions
in special cases. The starting point of the investigations is summarized in
the following theorem.

Theorem 1.1. [4] Let n ≥ 2 be a given natural number. The function
f : I → R is a solution of equation (1) if and only if there exist symmetric
k-additive functions Ak : Rk → R and A0 ∈ R such that

f(x) =
n−1∑
k=1

Ak(x, . . . , x) + A0 (x ∈ I) (2)

and for any k = 1, . . . , n− 1

(Ak) :



Ak(s, . . . , s, t) +
∑n−1

i=1 αiAk(s, . . . , s, tβi) = 0,

Ak(s, . . . , s, t, t) +
∑n−1

i=1 αiAk(s, . . . , s, tβi, tβi) = 0,
...
...
...

Ak(t, . . . , t) +
∑n−1

i=1 αiAk(tβi, . . . , tβi) = 0,

where s, t ∈ R,

αi :=
ai
an

and βi :=
bi − b0
bn − b0

(i = 1, . . . , n− 1).
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By the help of an extension theorem due to Zs. Páles [5] the proof goes
back to L. Székelyhidi’s basic results [7]. The system (Ak) gives sufficient
and necessary conditions for the existence of solutions of degree 1, 2, ...,
n−1, respectively. The finer structure of the solutions has been investigated
only the past couple of years. A. Varga and Cs. Vincze [4] applied some
field homomorphisms to construct non-trivial solutions. The method leads
naturally to the problem of algebraic characterization [3]. The basic results
can be formulated in the following way.

Definition 1.2. β⃗ := (β1, . . . , βm) ∈ Rm or Cm is called an algebraically
dependent system if there exists a not identically zero p ∈ Q[x1, . . . , xm] such

that p(β⃗) = 0. Otherwise we say that it is an algebraically independent system.
The ideal

I(β⃗) := { p ∈ Q[x1, . . . , xm] | p(β⃗) = 0 }

of the polynomial ring Q[x1, . . . , xm] is called the defining ideal of β⃗. If

I(β⃗) = I(γ⃗) then we say that β⃗ and γ⃗ are algebraically conjugated.

Theorem 1.3. [4] There exists a field isomorphism

δ : Q(β1, . . . , βm) → Q(γ1, . . . , γm)

such that δ(βi) = γi (i = 1, 2, . . . ,m) if and only if β⃗ and γ⃗ are algebraically
conjugated.

Theorem 1.4. [3] Let n ≥ 2 be a given natural number. Suppose that the
outer parameters αi’s (i = 1, . . . , n − 1) form an algebraically independent
system. There exists a not identically zero A1 : R → R additive solution of
equation

(A1) : A1(t) +
n−1∑
i=1

αiA1(tβi) = 0 (t ∈ R) (3)

iff at least one of the inner parameters βi’s is transcendent.

The proof goes back to the construction of a field homomorphism δ1
satisfying

1 +
n−1∑
i=1

αiδ1(βi) = 0.

Note that the role of the outer and the inner parameters in Theorem 1.4
is symmetric; for the details see [3]. Another interesting pure case when all
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the inner (or the outer) parameters are algebraic numbers over the rationals.
Then we have an eliminating technic due to A. Varga [2] to solve equation (3).
The mixed cases (algebraically dependent systems of parameters containing
transcendental numbers) are open problems.

An important recent trend in the theory of linear functional equations is
the applications of spectral analysis and spectral synthesis in some related
varieties. M. Laczkovich [11], A. Varga and G. Kiss [9] clarified that the ex-
istence of injective homomorphisms satisfying some special relationships is a
necessary and sufficient condition for the existence of a non-trivial k-additive
solution. The proof uses the theorem due to M. Laczkovich and G. Székelyhi-
di [8]. They proved that spectral analysis holds on a discrete Abelian group
G if the cardinality of G is less than 2ω (the cardinality of continuum). This
means that there exist non-trivial exponentionals in the varieties of the linear
space of complex valued functions defined on G. In what follows we apply
this theorem to the variety of the monomial solutions Ak restricted to the
Cartesian product G := (K∗)k, where K∗ := Q(β1, . . . , βn−1) \ {0} is the
multiplicative group for any k = 1, . . . , n− 1. Suppose that Ak is a not iden-
tically zero k-additive symmetric function satisfying the system (Ak) and let
the variable t be fixed for a moment. Consider the left hand sides of the
equations as the diagonals of the symmetric multi-additive functions

Bk−1(s1, . . . , sk−1) := Ak(s1, . . . , sk−1, t) +
n−1∑
i=1

αiAk(s1, . . . , sk−1, tβi),

Bk−2(s1, . . . , sk−2) := Ak(s1, . . . , sk−2, t, t) +
n−1∑
i=1

αiAk(s1, . . . , sk−2, tβi, tβi),

...

B1(s1) := Ak(s1, t, . . . , t) +
n−1∑
i=1

αiAk(s1, tβi, . . . , tβi),

respectively. It is known that the values of the diagonals determine the
symmetric multi-additive functions and we have the vanishing of Bk−1, ...,
B1. We can set free the variable t in a similar way. Therefore (Ak) can be
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written into the multi-variable form

(Mk) :



Ak(s1, . . . , sk−1, t1) +
∑n−1

i=1 αiAk(s1, . . . , sk−1, t1βi) = 0,

Ak(s1, . . . , sk−2, t1, t2) +
∑n−1

i=1 αiAk(s1, . . . , sk−2, t1βi, t2βi) = 0,
...
...
...

Ak(t1, . . . , tk) +
∑n−1

i=1 αiAk(t1βi, . . . , tkβi) = 0.

The vector space

V := {Ak|G | Ak : Rk → C is k-additive satisfying the system (Mk)

for any permutations of the variables in each equation}

• is nontrivial: if Ak is a non-trivial monomial solution of equation (1)
then the translation invariance of the space of the solutions allows us
to translate Ak in such a way that Ak|G is not identically zero.

• is translation invariant1: if φ ∈ V then for any k-tuple x⃗ = (x1, . . . , xk)
the map τx⃗φ(y1, . . . , yk) := φ(x1y1, . . . , xkyk) is in V .

• V is closed under the pointwise convergence.

Therefore V is a variety on the group G. According to [8] spectral analysis
holds on G which means that there exists a not identically zero mapping
m : G → C in V satisfying the exponential property

m(x1y1, . . . , xkyk) = m(x1, . . . , xk)m(y1, . . . , yk).

We can write

m(x1, . . . , xk) = m(x1, 1, . . . , 1) ·m(1, x2, 1, . . . , 1) · . . . ·m(1, . . . , 1, xk),

where each mapping on the right hand side can be considered as an injective
homomorphism2 of Q(β1, . . . , βn−1) into the set of complex numbers:

δ1(x1) := m(x1, 1, . . . , 1), . . . , δk(xk) := m(1, . . . , 1, xk).

1Note that τx⃗φ is not a symmetric mapping in general even if it is the translate of a
symmetric element in V . This is the reason why to write the system of equations into the
multi-variable form. The condition for any permutations of the variables in each equation
provides that V is closed under the usual symmetrization process. The problem disappears
in case of A1 because of the single variable.

2The exponential property shows that the vanishing of m at a single non-zero element
implies that m must be identically zero.
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Substituting m as a product δ1 · . . . · δk into the equations (together with the
permutations of the variables) of (Mk) we have the following theorem.

Theorem 1.5. [9] Let k ∈ {1, . . . , n− 1} be given. There exists a not iden-
tically zero k-additive symmetric function Ak such that its diagonalization is
a solution of equation (1) if and only if there exists a collection of injective
homomorphisms

δ1, . . . , δk : Q(β1, . . . , βn−1) → C

such that

(Fk) :



1 +
∑n−1

i=1 αiδj(βi) = 0, (j = 1, . . . , k)

1 +
∑n−1

i=1 αiδj1(βi)δj2(βi) = 0, (j1 ̸= j2, j1, j2 = 1, . . . , k)
...
...
...

1 +
∑n−1

i=1 αiδ1(βi) · . . . · δk(βi) = 0

where αi :=
ai
an

and βi :=
bi−b0
bn−b0

(i = 1, . . . , n− 1).

To see that the condition is sufficient let us define Ak as

Ak :=
∑
σ

δσ(1) · . . . · δσ(k),

where σ runs through the permutations of 1, 2, ..., k (it is a usual symmetriza-
tion process). The real solutions are the real and the imaginary parts of Ak,
respectively. As a recent result M. Laczkovich and G. Kiss [10] proved that
spectral synthesis also holds in the variety V and the space of the restricted
solutions Ak|G is spanned by exponential monomials - they also show that ex-
ponential monomials can be written in terms of exponentials and differential
operators on the field Q(β1, . . . , βn−1).

The basic problem is when injective homomorphisms satisfying (Fk) exist.
It is natural to formulate conditions in terms of the algebraic properties of
the parameters. The aim is to find them in some special cases. Z. Daróczy [1]
proved, that there exists a not identically zero A1 : R → R additive function
satisfying equation (A1) in case of n = 2 if and only if the reals β1 and
−(1/α1) are algebraically conjugated (i.e. they are transcendent or they are
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algebraic with the same defining polynomial). This condition is equivalent
to the existence of an injective homomorphism δ1 satisfying

δ1(β1) = −(1/α1) ⇔ 1 + α1δ1(β1) = 0.

As we can see the value of δ1(β1) can be directly expressed from (F1) in case
of n = 2. In case of n > 2 the situation is more complicated3.
In what follows we are going to present the full solution for the first non-
trivial case of n = 3 with several parameters. We formulate necessary and
sufficient conditions for the existence of non-trivial first and second order
solutions of equation (1).

2 The case of n = 3

In case of n = 3 the maximal degree of the solutions of equation (1) is
2. Because of Theorem 1.5 there exists a not identically zero symmetric
biadditive function such that its diagonalization is a solution of equation

3∑
i=0

aif(bix+ (1− bi)y) = 0 (x, y ∈ I) (4)

iff there exist injective homomorphisms δ1, δ2 : Q(β1, β2) → C such that

(F2) :


1 + α1δ1(β1) + α2δ1(β2) = 0
1 + α1δ2(β1) + α2δ2(β2) = 0

1 + α1δ1(β1)δ2(β1) + α2δ1(β2)δ2(β2) = 0

where

αi :=
ai
a3

and βi :=
bi − b0
b3 − b0

(i = 1, 2).

In what follows we shall frequently use that any injective homomorphism
δ : Q(β1, β2) → C can be extended to an authomorphism δ : C → C.

3In some sense Theorem 1.4 can be considered as one of the generalizations of Daróczy’s
original result.
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2.1 The existence of a nontrivial A2 term

Lemma 2.1. Let α1, α2 and β1, β2 be nonzero real numbers such that β1 <
β2. There exist injective homomorphisms

δ1, δ2 : Q(β1, β2) → C

such that the system (F2) holds if and only if there exist µ ∈ C satisfying

(⋆)

 α1 = δ2

(
1−β2

β2−β1
· µ(β1−1)+1

β1

)
,

α2 = δ2

(
β1−1
β2−β1

· µ(β2−1)+1
β2

)
and an injective homomorphism φ : Q(β1, β2) → C such that

(⋆⋆)

{
φ(β1) =

β1

µ(β1−1)+1

φ(β2) =
β2

µ(β2−1)+1

Proof. ⇐ It is easy to check, that if (⋆) and (⋆⋆) hold, then the system (F2)
is satisfied under the choice δ1 := δ2 ◦ φ.
⇒ Using the standard Cramer-rule for the first and third equations of the
system (F2) we get that

α1 =
1− δ2(β2)

δ1(β1)(δ2(β2)− δ2(β1))
and α2 =

δ2(β1)− 1

δ1(β2)(δ2(β2)− δ2(β1))
. (5)

Similarly, from the second and third equations of the system we have

α1 =
1− δ1(β2)

δ2(β1)(δ1(β2)− δ1(β1))
and α2 =

δ1(β1)− 1

δ2(β2)(δ1(β2)− δ1(β1))
. (6)

Comparing (5) and (6) the basic properties of the homomorphisms imply
that

δ1

(
β1(1− β2)

β2 − β1

)
= δ2

(
β1(1− β2)

β2 − β1

)
(7)

Since λ := β1(1−β2)
β2−β1

is an invariant parameter, δ1 and δ2 act on Q(λ) in the

same way. If φ := δ−1
2 ◦ δ1, then φ(λ) = λ, that is

φ(β1)(1− φ(β2))

φ(β2)− φ(β1)
=

β1(1− β2)

β2 − β1

. (8)
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Moreover φ(x) = x (x ∈ Q(λ)). Equation (8) implies that the quadruples of
the complex numbers β1, 1, 0, β2 and φ(β1), 1, 0, φ(β2) have the same cross
ratio4:

(β1 1 0 β2) = (φ(β1) 1 0 φ(β2)). (9)

It is well known, that the cross ratio is invariant under the Möbius transfor-
mation. It is also true, that the Möbius transformation group is 3-transitive,
i.e. for given complex numbers zi, wi (i = 1, 2, 3) there exist a uniquely
determined Möbius transformation

M(z) =
az + b

cz + d
(z ∈ C)

where a, b, c, d ∈ C and ad− bc ̸= 0 such that M(zi) = wi (i = 1, 2, 3).
Using (9) we get that there exists a uniquely determined Möbius transfor-
mation such that

M(β1) = φ(β1), M(1) = 1, M(0) = 0, M(β2) = φ(β2)

M(0) = 0 says that b = 0. Since M(1) = 1, we have that a = c+d. Therefore

M(z) =
z

µ(z − 1) + 1
,

where µ = c
c+d

. Especially

φ(β1) =
β1

µ(β1 − 1) + 1
and φ(β2) =

β2

µ(β2 − 1) + 1
.

Since φ := δ−1
2 ◦ δ1, it follows that

δ1(β1) =
δ2(β1)

δ2(µ)(δ2(β1)− 1) + 1
and δ1(β2) =

δ2(β2)

δ2(µ)(δ2(β2)− 1) + 1
.

Substituting these expressions as δ1(β1) and δ1(β2) into (F2) we have

(F ⋆
2 ) :


1 + α⋆

1δ2(β1) + α⋆
2δ2(β2) = 0

1 + α1δ2(β1) + α2δ2(β2) = 0
1 + α⋆

1δ
2
2(β1) + α⋆

2δ
2
2(β2) = 0

4Recall that the cross ratio is real iff the elements are lying on the same line or circle.
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where

α⋆
1 =

α1

δ2(µ)(δ2(β1)− 1) + 1
and α⋆

2 =
α2

δ2(µ)(δ2(β2)− 1) + 1.
(10)

Using the Cramer-rule for the first and third equations of the system (F ⋆
2 )

we get that

α⋆
1 =

1− δ2(β2)

δ2(β1)(δ2(β2)− δ2(β1))
and α⋆

2 =
δ2(β1)− 1

δ2(β2)(δ2(β2)− δ2(β1))
. (11)

Comparing (10) and (11) the basic properties of the homomorphisms imply
that  α1 = δ2

(
1−β2

β2−β1
· µ(β1−1)+1

β1

)
,

α2 = δ2

(
β1−1
β2−β1

· µ(β2−1)+1
β2

)
.

Combining Theorems 1.5, 1.3 and Lemma 2.1 we have the following result:

Theorem 2.2. Let the reals ai ̸= 0, bi (i = 0, 1, 2, 3) be given such that

a0 + a1 + a2 + a3 = 0 and 0 < b0 < b1 < b2 < b3 < 1.

There exist a not identically zero symmetric biadditive function such that its
diagonalization is a solution of equation

3∑
i=0

aif(bix+ (1− bi)y) = 0 (x, y ∈ I),

if and only if there exists µ ∈ C such that

• (β1, β2) and
(

β1

µ(β1−1)+1
, β2

µ(β2−1)+1

)
are algebraically conjugated,

• (α1, α2) and
(

1−β2

β2−β1
· µ(β1−1)+1

β1
, β1−1
β2−β1

· µ(β2−1)+1
β2

)
are algebraically con-

jugated,

where αi :=
ai
a3

and βi :=
bi−b0
b3−b0

(i = 1, 2).

10



2.2 The existence of a nontrivial A1 term

Theorem 1.1 and 1.5 imply, that there exists a not identically zero additive
solution A1 of equation (4) iff A1 satisfies equation

A1(t) + α1A1(tβ1) + α2A1(tβ2) = 0 (t ∈ R) (12)

or equivalently, there exists an injective homomorphism δ1 : Q(β1, β2) → C
such that

1 + α1δ1(β1) + α2δ1(β2) = 0 (13)

where αi :=
ai
an

and βi :=
bi − b0
bn − b0

(i = 1, 2).

Our aim is to decide the existence of not identically zero additive solutions
in view of the parameters α⃗ := (α1, α2) and β⃗ := (β1, β2). According to
Theorem 1.4 and the concluding remark about the symmetric role of the
parameters it is enough to investigate the case of algebraically dependent
parameters. Suppose that β⃗ := (β1, β2) is an algebraically dependent system.
Then we have a not identically zero irreducible polynomial p ∈ I(β1, β2), i.e.

p(β1, β2) = 0.

Using the basic properties of homomorhisms we have: p(δ1(β1), δ1(β2)) = 0.
Equation (13) says that

p

(
δ1(β1),−

1

α2

(1 + α1δ1(β1))

)
= 0 and p

(
− 1

α1

(1 + α2δ1(β2)), δ1(β2)

)
= 0.

Taking the polynomials

p1(x) := p

(
x,− 1

α2

(1 + α1x)

)
=

∑
k,l

pk,lx
k(−1)l

1

αl
2

(1 + α1x)
l (14)

and

p2(y) := p

(
− 1

α1

(1 + α2y), y)

)
=

∑
k,l

pk,ly
l(−1)k

1

αk
1

(1 + α2y)
k (15)

we can determine δ1(β1) or δ1(β2) as one of the finitely many roots provided
that none of the polynomials p1 and p2 are identically zero. In what follows
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we investigate the possible cases. It is easy to check that the constant terms
of p1 and p2 can be given by the sums∑

k=0,l

p0,l(−1)l
1

αl
2

and
∑
k,l=0

pk,0(−1)k
1

αk
1

, respectively. (16)

Consider the polynomials

r(t) :=
∑
k=0,l

p0,l(−1)ltl and q(t) :=
∑
k,l=0

pk,0(−1)ktk. (17)

The constant terms of p1 and p2 are equal to r( 1
α2
) and q( 1

α1
), respectively.

Lemma 2.3. None of the polynomials r and q are identically zero.

Proof. Suppose that for example r is the identically zero polynomial. Then
p0,l = 0 for any indices l and, consequently, we can write that p(x, y) =
x · p̃(x, y) for some p̃ ∈ Q[x1, x2]. This contradicts to the irreducibility.

To finish the discussion of the existence of a non-zero additive term in
the solution of equation (4) we distinguish the following three cases:

I. r
(

1
α2

)
= 0 and q

(
1
α1

)
= 0,

II. r
(

1
α2

)
̸= 0 and q

(
1
α1

)
̸= 0,

III. r
(

1
α2

)
̸= 0 and q

(
1
α1

)
= 0.

I. In this case α1 and α2 are algebraic numbers and we can determine their
algebraic conjugates {x1, . . . , xu} and {y1, . . . , yv} respectively. Let us write
equation (13) into the form

1 + δ−1
1 (α1)β1 + δ−1

1 (α2)β2 = 0 (18)

by the inverse of δ. Here

δ−1
1 (α1) ∈ {x1, . . . , xu} and δ−1(α2) ∈ {y1, . . . , yv}.

Therefore there exists a not identically zero solution iff there exists a pair
(xi, yj) such that it is algebraically conjugated to α⃗ = (α1, α2) and

1 + xiβ1 + yjβ2 = 0,
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where xi and yj belong to the finite sets of the algebraic conjugates of α1

and α2, respectively. Recall that if all the outer parameters are algebraic
numbers then we have an alternative method to check the existence of the
non-zero additive solution by an algorithm due to A. Varga [2].
II. In this case we can determine the possible values of δ1(β1) and δ1(β2) as
one of the finitely many roots of the polynomials p1 and p2, respectively:

δ1(β1) ∈ {x1, . . . , xu} and δ1(β2) ∈ {y1, . . . , yv}.

Therefore there exists a not identically zero solution iff there exists a pair
(xi, yj) such that it is algebraically conjugated to β⃗ = (β1, β2) and

1 + α1xi + α2yj = 0,

where xi and yj belong to the finite sets of the roots of the polynomials p1
and p2, respectively.
III. In this case we can determine the possible values of δ1(β1) as one of the
finitely many roots of the polynomial p1: δ1(β1) ∈ {x1, . . . , xu}. This means
that δ1(β2) can be explicitly expressed from equation (13) in terms of xi (cf.
the case of n = 2). Therefore there exists a not identically zero solution iff
there exists a root xi such that

(β1, β2) and

(
xi,−

1 + α1xi

α2

)
are algebraically conjugated. The case of r( 1

α2
) = 0 and q( 1

α1
) ̸= 0 is similar.

3 An observation about the A1 term in case

of n ≥ 3

The following theorem is a generalization of Theorem 3.1 and 3.2 in [2].

Theorem 3.1. Suppose that n ≥ 3, the parameters β1, . . . , βs are algebraic
numbers and βs+1, . . . , βn−1 are algebraically independent over Q, where 1 ≤
s ≤ n − 1. If the parameters α1, . . . , αn−1 are algebraic numbers, then the
only additive solution of (3) is the identically zero function.
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Proof. If A1 is a nonzero additive solution of (3) then by Theorem 1.5 there
exists an injective homomorphism δ1 : Q(β1, . . . , βn−1) → C such that

1 +
n−1∑
i=1

αiδ1(βi) = 0.

Let us assume that every αi is algebraic. Since β1, . . . , βs are algebraic num-
bers, the algebraic independence of βs+1, . . . , βn−1 (s < n − 1) implies that
βn−1 is transcendental over the algebraic closure of Q(β1, . . . , βn−2). The
exact statement and the proof can be found in [6]. Since any injective ho-
momorphism δ1 : Q(β1, . . . , βn−1) → C can be extended to an automorphism
δ1 : C → C we can reformulate the previous equation as

1 +
n−1∑
i=1

δ−1
1 (αi)βi = 0.

Therefore βn−1 can be expressed as

βn−1 = −1 +
∑n−2

i=1 δ−1
1 (αi)βi

δ−1
1 (αn−1)

.

Since δ−1
1 (α) is algebraic, if α is algebraic, the right hand side belongs to the

algebraic closure of Q(β1, . . . , βn−2). This is a contradiction.

The role of the parameters can be changed in the theorem, the proof is
similar.
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