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Abstract. Fagin defined the class NP by the means of Existential Second-Order logic. Feder and Vardi
expressed it (up to polynomial equivalence) by special fragments of Existential Second-Order logic (SNP), while
the authors used forbidden expanded substructures (cf. lifts and shadows). Consequently, for such problems there
is no dichotomy, unlike for CSPs.

We prove that ordering problems for graphs defined by finitely many forbidden ordered subgraphs capture
the full power of the class NP, that is, any language in the class NP is polynomially equivalent to an ordering
problem. In particular, we refute a conjecture of Hell, Mohar and Rafiey that dichotomy holds for this class. On
the positive side, we confirm the conjecture of Duffus, Ginn and Rédl that ordering problems defined by a single
obstruction which is a biconnected ordered graph are N P-complete if the graph is not complete.

We initiate the study of meta-theorems for classes which have the full power of the class N P. For example,
homomorphism problems (or CSPs) do not have full power (similarly to coloring problems). On the other hand,
we show that problems defined by the existence of an ordering, which avoids certain ordered patterns, have full
power. We find it surprising that such simple structures can express the full power of N P.

It is essential that we treat these problems in a more general context. An interesting feature appeared: while
the full power is reached by disconnected structures, and one can even guarantee the connectivity of all patterns,
this is no longer the case for biconnected patterns. We prove that we have here a general phenomenon: For finite
sets of biconnected patterns (which may be colored structures or ordered structures) dichotomy holds, while for
general patterns we have full power. A principal tool for obtaining these results is the Sparse Incomparability
Lemma in many of its variants, which are classical results in the theory of homomorphisms of graphs and structures.
We prove it here in the setting of ordered stuctures as a Temporal Sparse Incomparability Lemma. This is a
non-trivial result, even in the random setting, and a deterministic algorithm requires more effort. Interestingly,
our proof involves the Lovasz Local Lemma.

Dichotomy results for forbidden biconnected patterns encourage to prove that the ordering problem for any
non-trivial biconnected graph is N P-complete (as conjectured by Duffus, Ginn and Rodl). We confirm this by
bringing together most of the techniques developed in the paper, and we also use the results of Bodirsky and
Kara on the complexity of temporal CSPs.

1 Introduction and main results. We assume P # NP throughout this paper. The study of the class
NP usually focuses on the two extremes, tractable problems and N P-complete problems. Ladner [29] showed
that there are intermediate problems in NP which are neither tractable nor N P-complete. Feder and Vardi [18]
investigated subclasses of N P in terms of second-order logic searching for a large class that may admit dichotomy.
The class of Constraint Satisfaction Problems (CSP) became their natural candidate. Bulatov [11] and Zhuk [42]
proved the Feder-Vardi dichotomy conjecture.

Here we propose the study of those classes, which may admit dichotomy or have the full computational power
of the class VP with the aim to clarify the boundary between classes admitting dichotomy and those classes which
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have the full power of NP. It is particularly interesting to study these problems in the combinatorial context of
orderings and restricted colorings of graphs. Surprisingly, connectivity plays a major role here.

An ordered graph, denoted by G<, is an undirected graph G with a fixed linear ordering < of its vertices.
Similarly, we denote by F< a set of ordered graphs. For a fixed set of ordered graphs F< we consider the following
decision problems:

F<-free ordering problem
Given a graph G does there exist an ordering < of the vertices of G such that G< does not contain an ordered
subgraph isomorphic to F< for any F< € F<?

Induced F<-free ordering problem
Given a graph G does there exist an ordering < of the vertices of G such that G< does not contain an ordered
induced subgraph isomorphic to F< for any F< € F<?

Observe that induced ordering problems have greater expressive power than ordering problems. We formulate
this in the following way:

Remark 1.1. For every finite set of ordered graphs F< there exists a finite set of ordered graphs G< such that
the F<-free ordering problem and the induced G<-free ordering problem are the same languages. For example,
G< can be taken the set of supergraphs of graphs in F<, i.e., G< = {G< : IF< € F<,V(G) = V(F),<¢=<r
,E(G) 2 E(F)}).

The interplay between ordered and unordered structures is interesting from the structural as well as the
algorithmic point of view. From the structural side one can mention the relationship to posets and their diagrams
[10, 39], for the relationship to Ramsey theory (“order property”) see [36, 10], while for the statistics of orderings
see [35, 38, 39, 2] with applications to unique ergodicity [1].

From the computational point of view one can mention results relating chromatic numbers to orderings
starting with the classical results of Gallai, Hasse, Minty, Roy and Vitaver (see, e.g., [25] but also [32]). This was
considered in the algorithmic context by Duffus, Ginn and Rodl [14] and by Hell, Mohar and Rafiey [24], where
various complexity results were obtained and some conjectures were formulated, see also [13, 19, 23]. Note that
such problems may be N P-complete even for very simple ordered graphs. For example, for the monotone path
of length k the ordering problem is equivalent to having chromatic number at most k, and hence N P-complete.

Hell, Mohar and Rafiey [24] have conjectured that induced ordering problems always have dichotomy and
proved it in several cases. Our first main result refutes their conjecture.

THEOREM 1.2. For every language L in the class NP there exists a finite set F< such that the F=<-free
ordering problem and L are polynomially equivalent.

Shortly, finitely many forbidden ordered graphs determine (up to polynomial equivalence) any language in
NP. In other words, the class of F<-free ordering problems has the full computational power of the class NP.
By Remark 1.1 this holds in the induced case too:

COROLLARY 1.3. For every language L in the class NP there exists a finite set F< such that the induced
F<-free ordering problem and L are polynomially equivalent.

Thus, using Ladner’s theorem [29] we can refute the conjecture of [24].

COROLLARY 1.4. There is no dichotomy for the induced F<-free ordering problems.

One can define coloring problems similarly to ordering problems. A colored graph, denoted by G’, is an
undirected graph G with a fixed coloring of its vertices. We denote by F’ a set of colored graphs. For a fixed set
of colors and colored graphs F’ we consider the following decision problems:

F'-free coloring problem
Given a graph G does there exist a coloring of the vertices of G such that the colored graph G’ does not contain
a colored subgraph isomorphic to F/ for any ¥/ € F'?
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For such coloring problems we have the analogue of Theorem 1.2, formulated as Theorem 4.1. In particular,
Theorem 4.1 also answers a question of Guzméan-Pro (Question 6.3., [22]). Theorem 4.1 is an important milestone
towards proving Theorem 1.2.

One can also prove that there is no dichotomy for connected ordered graphs, see Theorem 4.7, and for connected
colored graphs, see Theorem 4.4.

This is interesting since the landscape is fundamentally different in the biconnected case as our second main
result shows. The definition of the F<-free ordering problem extends to relational structures in a straightforward
way. A relational structure is biconnected if its Gaifman graph is biconnected (2-connected).

THEOREM 1.5. Let F< be a finite set of finite biconnected relational structures of the same type equipped with
an ordering. Then the F<-free ordering problem is either N P-complete or tractable, and the induced F<-free
ordering problem is also either N P-complete or tractable.

Theorem 1.5 also holds in terms of colorings of relational structures, see the full version for the precise
statement. As finite CSPs are defined by colorings using single relational tuples, and these are biconnected, this
generalizes the dichotomy theorem of Bulatov [11] and Zhuk [42].

Most ordering problems seem to be N P-complete. We will add one exact result: Duffus, Ginn and Rédl
[14] conjectured that if F< consists of a single ordered biconnected graph that is not complete then the induced
F<-free ordering problem is N P-complete. We give a characterization of tractable ordering problems defined by
a single biconnected graph and verify their conjecture.

THEOREM 1.6. Let F< be a finite biconnected ordered graph that is not complete. Then the {F<}-free ordering
problem and the induced {F<}-free ordering problem are both N P-complete.

The main tool in the proof of Theorem 1.5 is the Temporal Sparse Incomparability Lemma (Theorem 5.2),
the main technical result of the paper. The connection of the SIL and biconnectivity goes back to [18]. Using
SIL, they proved a randomized reduction of a finite CSP to the CSP restricted to structures with large girth.
This was derandomized by the first author [26]. We exploit this idea in a much more general context of forbidden
patterns defined either by orderings or by (potentially infinite) colorings. Our paper highlights the role of SIL for
temporal CSPs, which is proved in the setting of orderings of relational structures by a novel application of the
Lovasz Local Lemma. Several natural problems are motivated by our paper. Let us mention here just one:

Problem 1.7. Do families defined by forbidden ordered trees (forests) admit a dichotomy? Or perhaps they
have full power?

The paper is organized as follows. We introduce the necessary definitions in Section 2. In Section 3 we give
two typical examples of our results for biconnected patterns and, as a warm-up, we sketch the proofs for these. In
Section 4.2 we prove Theorem 1.2 on the full power of orderings and its colored version, Theorem 4.1: these show
the relationship between coloring and ordering problems, and give a feeling when might these be extended to
prove full power of further classes. In Section 5 we state the Temporal SIL and give a probabilistic construction.

2 Notions and Notation For a relational symbol R and relational structure A let A denote the universe
of A and let R(A) denote the set of tuples of A which belong to R. Similarly, as for ordered graphs, we define the
ordered relational structure A< as a structure A with an ordering <, sometimes denoted by <. A finite interval
w.r.t. the ordering is a set of consecutive elements. The relational structure A is called temporal if A = Q and
every r-ary relation R C Q" is invariant under every automorphism of (Q, <), i.e., the quasiorder of the elements
in an r-tuple tells if the tuple is in R.

Let 7 denote the signature (type) of relational symbols, and let Rel(7) denote the class of all finite relational
structures with signature 7. We will often work with two (fixed) signatures, 7 and 7 U 7’, where the signatures
7 and 7/ are always supposed to be disjoint and 7’ consists of monadic relational symbols. For convenience, we
denote structures in Rel(7) by A, B etc. and structures in Rel(7U7’) by A’, B’ etc. We will denote Rel(T7U7T’) by
Rel(r,7"). The classes Rel(7) and Rel(r,7’) will be considered as categories endowed with all homomorphisms.
Recall that a homomorphism is a mapping which preserves all relations. Just to be explicit, for relational structures
A B € Rel(r) a mapping f : A — B is a homomorphism A — B if for every relational symbol R € 7 and for
every tuple (z1,...,2¢) € R(A) we have (f(z1),..., f(z:)) € R(B). Similarly, we define homomorphisms for the
class Rel(r,7").

The following special subclass of Rel(r,7’) will be important: denote by Rel®”(r,7") the class of all structures
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in Rel(r,7") where we still assume that all relations in 7/ have arity one, and that every element of a structure
is contained by some relation in 7/. The class Rel®’(7,7’) corresponds to structures in Rel°”(7) together with
some coloring of all its elements.

We will also work with other similar categories. We denote by Rel;;(7) the category where the objects are
again the finite relational structures of type 7, but the morphisms are the injective homomorphisms A <— B. We
denote by Rel{:% (7, 7') the corresponding category containing the same class of objects as Rel**” (7, 7').

Let F be a set of structures in one of the above categories. We denote by Forb(F) the class of all structures
A satisfying F /— A for every F € F. Combining the above notions we can consider the class ®(Forb;,;(F’))
which is the class of all objects A for which there exists an A’ that does not contain any F’ € F’ as a substructure.
Classes defined in this way are central to this paper. We often refer to ®(Forb;,;(F’)) as the language of the
F'-free coloring problem viewing 7' as the set of colors.

Combining the above notions we can consider the class ®(Forb;,,;(F')) which is the class of all objects A for
which there exists a lift A’ which does not contain any F/ € 7’ as a substructure. Classes defined in this way are
central to this paper. We often refer to ®(Forb;,;(F’)) as the language of the F’-free coloring problem viewing
7' as the set of colors.

The following basic lemma might be folklore.

LEMMA 2.1. For every temporal relational structure T of finite type there exists D such that CSP(T) can be
polynomially reduced to its restriction to relational structures with mazximum degree at most D.

3 The biconnected phenomenon by two examples We give two examples to illustrate the proof that
a finite set of finite biconnected patterns (subgraphs with a given coloring or ordering) leads to a CSP and hence
to dichotomy. First, we consider a coloring problem:

ExaMpPLE 3.1. Consider the language L of undirected graphs admitting a two-coloring of the vertices without
a monochromatic triangle. What is the complexity of L?

Thus, we have two colors and the forbidden patterns are the two monochromatic triangles. Consider NAFE
(Not-All-Equal SAT) or, equivalently, the uniform 3-hypergraph 2-coloring problem. Clearly L can be reduced
to NAE, by assigning to a graph the 3-hypergraph on its vertex set, where we impose a 3-hyperedge on every
triangle of the graph: the good 2-colorings of this hypergraph are exactly the good colorings of the graph, i.e.,
colorings avoiding monochromatic triangles.

On the other hand, given a 3-hypergraph H, we can assign to it a graph G on the same base set by replacing
every hyperedge by a triangle. Unfortunately, this might not be a reduction of NAFE to L, since G can have
triangles that do not originate from a single hyperedge. However, if the girth of H is at least four then this
can not happen: every triangle of G is contained by a 3-hyperedge of H. Thus, the good colorings of H are
exactly the good colorings of G. We know from [26] that NAE is polynomially equivalent to the restriction of
N AEFE to relational structures with girth at least four. Thus, NAFE and L are polynomially equivalent, and L is
N P-complete.

In the second example we consider an ordering problem corresponding to a single ordered graph on four
vertices. Our proof is similar, but it involves many new elements: an interplay of orderings with forbidden colored
subgraphs, using the rational numbers as colors and so leading to temporal CSPs, and the Temporal SIL. The
following example corresponds to a particular case of Theorem 1.5.

EXAMPLE 3.2. Consider the ordered undirected graph F< on F = {1,2,3,4}, where the ordering is the natural
ordering and every distinct pair is in relation but (1,3) and (3,1) (i.e., F< is the undirected complete graph on
{1,2,3,4} without the edge (1,3)). What is the complezity of the {F<}-free ordering problem?

For a finite set S we say that two injective mappings @1, @2 : S < Q are equivalent if 1 (z) <g p1(y) <=
pa2(z) <g p2(y) for every x,y € S. Then the orderings of a finite set S are in one-to-one correspondence with
equivalence classes of injective mappings to Q.

First, we reformulate the {F < }-free ordering problem as a coloring problem with forbidden colored subgraphs.
Let Q be the set of colors and let F’ contain every coloring F of ', where the four vertices get pairwise distinct
colors and the order of these rational numbers defines an ordered graph isomorphic to F<, or where any pair of
vertices gets the same color.

Consider the temporal CSP with base set T = @Q and with one quaternary relation R(T) such that
(¢1,92,93,q4) ¢ R(T) if either ¢; = ¢; for a pair i # j, or the ordering satisfies any of the following four
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chain on inequalities: either 1 < ga < @3 < quor g3 < g2 < g1 < qaor q1 < q4 < q3 < g or g3 < qs < q1 < q2.
Note that these orderings correspond to the automorphisms of the graph F: when forbidding F< with its standard
ordering we also forbid these ordered graphs.

We reduce the {F< }-free ordering problem to C'SP(T). We assign to a finite undirected graph G the structure
S on S = G with one single quaternary relation R(S), where (21,2, z3,24) € R(S) iff the mapping i — z; is an
embedding F — G. It is easy to see that injective mappings G — Q inducing a good ordering are exactly the
injective homomorphisms S — T.

How about a non-injective homomorphism S — T7 The restriction of every homomorphism to a tuple
in relation R(S) has to be injective, so for a non-injective homomorphism S — T a small perturbation gives an
injective homomorphism. Therefore, the {F<}-free ordering problem has a polynomial time reduction to C'SP(T).

On the other hand, given a finite relational structure S with one quaternary relation R(S) and girth greater
than four assign the undirected graph G to it, where G = S and we impose a copy of F on every tuple in R(S).
Since F' is biconnected and its size is less than the girth there are no other copies of F in G, but those induced
by the tuples in R(S). Hence (equivalence classes of) injective homomorphisms S < T correspond to good
orderings for the {F<}-free ordering problem, and non-injective homomorphisms can be changed to injective
homomorphisms by a small perturbation. We can conclude that C'SP(T) restricted to structures with girth
greater than four has a polynomial time reduction to the {F<}-free ordering problem. The reduction of C'SP(T)
to its restriction to relational structures with girth greater than four follows from the Temporal SIL, what will be
explained in Section 5.

In order to show that the {F<}-free ordering problem is N P-complete, i.e., the Duffus-Ginn-Rédl conjecture
holds for it, we check that all the possible algebraic witnesses for tractability of temporal CSPs in [4] fail.

4 Classes with full power

4.1 F'-free coloring problems have full power The graph coloring problems have the full power of
NP. The authors proved this for relational structures in [27]. We will use this to prove Theorem 1.2.

THEOREM 4.1. For every language L € NP there exists a finite set of colors C' and a finite set of C-colored
undirected graphs F' such that L is polynomially equivalent to the F'-free coloring problem.

Incidently, the validity of Theorem 4.1 has been asked recently by Guzmén-Pro (Question 6.3., [22]) in
category theoretic terms.

Proof. (of Theorem 4.1) We know by [27] that there exist relational types 7,7’ and a finite set of relational
structures S’ C Rel(7,7’) such that L is polynomially equivalent to M = ®(Forbf;3(S’)), see Section 2 for the
notation.

We will construct a finite set F' of colored undirected graphs such that ®(Forbg!(F’)) is polynomially
equivalent to M. Let Ry,..., R denote the relational symbols in 7 with arities rq,...,7;|, respectively.

Set K = ||+ r + 3, where r is the maximum arity of relational symbols in 7. We will consider the following
undirected graph G; for every relational symbol R;. Let the vertex set of the graph G; contain a cycle of length
K with vertices denoted by v, ...,vk, where v; is adjacent to v;11 for every j, and vk is adjacent to vy. Let
v1 be also adjacent to vg_1 and vk _o. And for every ¢ < j < i+ r; — 1 let v; be the starting vertex of a path
with K vertices in such a way that these paths are all vertex-disjoint and only share their starting vertex with
the cycle. We will refer to the other endvertex of such a path not on the cycle as root.

Now we define F’. The set of colors will be C' = 7. Let F’ consist of the following colored undirected graphs.

1. Every coloring of the graph G; plus an additional edge (connecting two non-adjacent vertices).

2. Every coloring of the graph G; plus an additional vertex adjacent to one of the vertices of G; that is not a
root.

3. For every S’ € &’ we define the following graph Ggs. The vertex set Gg contains S, the base set of S. And
for every relational tuple (t1,...,t,,) in relation R; on S we add a copy of G; such that these copies are
vertex-disjoint apart from the roots, and the root that is the endvertex of the jth path is exactly ¢;. We
include Gg in F’ with every coloring that extends the coloring of S’ on S.

Note that (1) and (2) forbid eventually subgraphs, i.e., every coloring of certain subgraphs.
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Set N = ®(Forbf%(F')). We will show that M and N are polynomially equivalent.

First we reduce M to N. Let T be a relational structure of type 7. We construct an undirected graph G as
follows. Let the vertex set of G contain the base set T of T plus for every tuple in T of type R; a copy of G; such
that the roots are all in T', and else these copies are pairwise vertex-disjoint. If the relational tuple (¢1,...,¢.,) is

in relation R; on T then the roots of the corresponding copy of G; in the base set are ¢1,...,%,,. See Figure 4.1.

TN,

Figure 4.1: The graph G

Cram 4.2. Te€ M <= G € N. Moreover, given T’, we have T' € Forb$%(S') if and only if there erists
G’ € Forb§%(F') such that the coloring of G’ extends the coloring of T'.

Proof. Indeed, if T' ¢ Forbg%(S’) then there is an 8’ € &' that admits an injective homomorphism
t: 8 — T. Thus, G5 and an injective homomorphism Gg < G’ that agrees with ¢ on S witness that
G’ & Forbi?(F').

Now assume that G" ¢ Forbgt(F'). The construction of G guarantees that it admits no subgraphs of types
(1) and (2) from F’. Note that every cycle with length at most K in G is contained by the homomorphic image
of a G;, where the homomorphism is injective on the non-root vertices, since the paths from the cycle in G; have
length K. Hence every subgraph of G that is the homomorphic image of a graph G;, where the homomorphism
is injective on the non-root vertices, corresponds to a tuple of S in relation R;. There is a colored graph Gg for
an S = ®(8'),8" € S’ and an injective homomorphism ¢ : Gg — G’ witnessing that G’ ¢ Forb;?(F"). Hence

tls : 8" < T/ witnesses that T/ ¢ Forb?(S’). d

inj

Now we prove that N has a polynomial time reduction to M. Consider a graph G, we may assume that G
contains no copy of G; plus one more edge from a non-root vertex (to an external or internal vertex), otherwise
the graphs of type (1) and (2) witness that G ¢ M. Consider the set of vertices which are the image of a root
in a graph G; under an injective homomorphisms: the base set 7" of T consists of these vertices. And for every
copy of G;, where the roots are t1,...,t,, € T, add the tuple (¢1,...,t,,) to the relation R; on T.

CLAaM 4.3. T e M <= G € N, moreover, given the colored graph G’ and T’ obtained by the restriction of
the coloring of G to T, the equivalence T € Forbsey(S') < G’ € Forbi®u(F’) holds.

inj ing

Proof. If G" ¢ Forbg(F') then there is a colored graph G's and an injective homomorphism ¢ : G's — G’

witnessing it. Now ¢[s : 8" < T’ shows that T’ ¢ Forbi % (S’).
On the other hand, if TV ¢ Forbg?4(S’) then an S’ € &’ and an injective homomorphism ¢ : S’ < T witness

ing
it. For every relational tuple of type R; in S there is a corresponding copy of the graph G; whose roots are the
coordinates of the tuple. Thus, there is an injective homomorphism k : Gg < G such that the inequality x| = ¢

holds for the restriction to the roots. The injective mapping k : G§ — G witnesses, for any extension of the

coloring of 8" to Gg, that G’ ¢ Forbi ! (F"). d
This completes the proof of the Theorem 4.1. 0

The following connected version of Theorem 4.1 also holds. Note that this is no longer true in the biconnected
case as explained in the introduction.

THEOREM 4.4. For every language L in the class NP there exists a finite set of colors C' and a finite set F'
of finite connected C-colored graphs such that the following holds.

1. L has a polynomial time reduction to the F'-free coloring problem.
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2. For every graph G there are polynomially many inputs In,..., I, of L computable in polynomial time (of
|G|) such that G is in the language of the F'-free coloring problem if and only if Iy € L for every 1 < ¢ < k.

COROLLARY 4.5. The class of F'-free coloring problems for finite F' with connected underlying graphs admits
no dichotomy.

4.2 F<-free ordering problems have full power

Proof. (of Theorem 1.2) Theorem 4.1 implies that there exists a finite set of colors C' and a finite set of
C-colored undirected graphs F’ such that L is computationally equivalent to the language M of graphs admitting
a C-coloring without a colored subgraph from F’. Choose a complete graph K ¢ M: we may assume that such
a complete graph exists, otherwise M would be the class of all graphs. For a colored graph F’ let F be the
underlying graph without the ordering. Given a graph G define G, to be G plus (|C| — 1) disjoint copies of K.
Let F< consist of the following ordered undirected graphs:

1. Every ordered graph containing K as a subgraph plus one vertex adjacent to a vertex of K,

2. Every ordered graph containing K as a subgraph plus one isolated vertex, where the isolated vertex is not
the smallest or the largest w.r.t. the ordering,

3. The ordered graph that consists of |C| disjoint copies of K, where every copy of K is an interval w.r.t. the
ordering,

4. We add for every F' € F’ (possibly several) ordered graphs to F< in the following way. For every such
ordered graph the underlying graph is F,. The orderings are induced by the C-coloring of F’ such that
every copy of K is an interval w.r.t. the ordering, and the ith color class is the interval between the (i —1)th
and ith copies of K.

1 K 2 K Il

Figure 4.2: The ordered graph FZ

Note that in (4) we have only one underlying graph for every F’ but possibly several orderings, since the
ordering inside a color class can be arbitrary.
Let N be the language of the F'-free ordering problem. We reduce M to N.

CLAM 46. GeM <— G, N

Proof. One direction is straightforward: if G € M then G, € N, since given a good coloring of G we order
the vertices of G, in a way that color class ¢ is smaller than color class j if i < j, and there is a copy of K in the
ordering between consecutive color classes. This ordering witnesses that G, € N.

Now assume that G, € N. By the construction, the graph G. contains exactly (|C| — 1) disjoint copies of
K, and every copy of K is an interval w.r.t. the ordering witnessing that G, € N. Consider the coloring of G,
where color class i consists of the vertices between the (i — 1)th and ith copies of K. This coloring witnesses that
G € M: if there was a copy of a colored graph ¥/ € F’ in it then after adding the (|C| — 1) copies of K the
resulting F, with the restriction of the ordering of G, would be in F<. 0
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Note that the proof used only those ordered graphs in F< of type (4).

Next, we reduce N to M. Consider a graph G. If it has a copy of K and an edge leaving it then G ¢ N as
witnessed by a forbidden (ordered) graph in (1). Otherwise, if it has less than (|C| — 1) copies of K then G € N.
We may also assume that G does not contain |C| disjoint copies of K, else G ¢ M as witnessed by lifts added in
(2) and (3). So it contains exactly (|C| — 1) disjoint copies of K as connected components of G.

Now consider the graph H we get from G by the removal of these (|C| — 1) copies of K. Note that G = H,,
hence Claim 4.6 implies that H € M <= G € N. This completes the proof of Theorem 1.2. ]

The class of ordering problems with connected underlying graphs also has the full power of N P in the following
sense. This is in a remarkable contrast with Theorem 1.5.

THEOREM 4.7. For every language L in the class NP there exists a finite set F< of finite connected ordered
graphs such that the following holds.

1. L has a polynomial time reduction to the F<-free ordering problem.

2. For every graph G there are polynomially many inputs I, ..., I of L computable in polynomial time (of
|G|) such that G is in the language of the F<-free ordering problem if and only if I, € L for every 1 < £ < k.

COROLLARY 4.8. The class of ordering problems with connected underlying graphs admits no dichotomy.

Remark 4.9. Note that if 7= is connected then the language of the F<-free ordering problem is closed under
disjoint union, hence multiple instances can be reduced to a single one. Since we can not expect this to hold for
a general problem in NP we need a more complicated notion of reduction like in Theorem 4.7.

5 Temporal Sparse Incomparability Lemma

5.1 A combinatorial classique Recall that a cycle in a relational structure A is either a sequence of
distinct elements and distinct tuples g, r1, x1, ..., 7, Tt = To, where each tuple r; belongs to one of the relations
R(A) and each element z; € A belongs to tuples r; and r;11, or, in the degenerate case, ¢ = 1 and r; is a relational
tuple with at least two identical coordinates. The length of the cycle is the integer ¢ in the first case, and one in
the second case. The girth of a structure A is the shortest length of a cycle in A (if it contains a cycle, otherwise
it is a forest). The study of homomorphism properties of structures not containing short cycles is a combinatorial
problem studied intensively. The following result called Sparse Incomparability Lemma proved to be particularly
useful in various applications.

LEMMA b5.1. Let k, £ be positive integers, T a finite relational type and B a finite relational structure of type
7. Then there exists a finite relational structure B of type 7 with the following properties.

1. There exists a homomorphism B — B.

2. For every structure C with at most k elements if there exists a homomorphism B — C then there exists a
homomorphism B — C.

3. B has girth at least £.

This result is proved in [37, 18, 40] (see also [25]) by the probabilistic method, based on [15, 30]. In fact,
in [37, 40] it was proved for graphs only but the proof is the same for finite relational structures. The question
whether there exists a deterministic construction of the structure B has been of particular interest. In the case of
digraphs this has been showed in [33], while for general relational structures a deterministic algorithm has been
given in [26].

5.2 The temporal version, outline and key ideas The goal of this section is to formulate a SIL for
orderings of relational structures and explain the key ideas of the proof. We consider a finite relational type 7
and a temporal relational structure T of type 7, by this we mean a relational structure of type 7 on Q which has
the same automorphisms as Q. Note that an injective mapping ¢ : S — Q of a finite structure S of type 7 induces
an ordering on S: x <gy < i(x) < t(y). An ordering <g corresponds to many injective mappings, which are
either all homomorphisms or none of them is a homomorphism. This equivalence allows us to switch between the
language of ordered graphs and homomorphisms to T.

The following result is called Temporal Sparse Incomparability Lemma.
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THEOREM 5.2. For any integer g and any relational structure B of finite type T there is a relational structure
B of type T with girth at least g such that there is a homomorphism B — B, and for any temporal relational
structure T of type T we have B € CSP(T) = B € CSP(T). Moreover, B can be calculated in randomized
polynomial time (of |B|).

The proof of Theorem 5.2 uses the classical randomized construction for the finite SIL. However, the proof
requires also other tools including the Lovasz Local Lemma. This might be of independent interest as an alternative
approach to the finite SIL, too.

First, for the purpose of illustration, we give a randomized algorithm for the finite SIL. We use the notation
[N]={1,...,N}. In this case the standard construction for finite CSPs blows up every instance S to obtain S on
S =S x[N] for a suitable N, and if a tuple is in a relation then its first coordinates in S are in the relation, too.
Clearly S is homomorphic to S, and if S is sufficiently random (under the assumption that every relational tuple
is the preimage of a tuple in S) then a homomorphism ¢ : S — T induces a homomorphism ¢ : S — T by setting
©(s) to be the majority value under ¢ in the preimage of s for every s € S. In order to get a homomorphism ¢ it
is sufficient that for every relational tuple ¢ in S the majority sets in the preimage of the coordinates of the tuple
also span a relational tuple. We ensure this by imposing a relation on every preimage of a relational tuple with
small probability independently at random. Finally, we remove a relational tuple from every short cycle. The
resulting S has large girth, and subsets of size N/|T| in the preimage of a relational tuple still span at least one
relational tuple, hence the majority choice gives a homomorphism.

Such constructions do not seem to be very useful in the case of temporal CSPs when T is infinite and ¢ maps
to Q. However, we will be able to use them by modifying the definition of ¢, and instead of choosing the majority
value in the preimage of every element we choose a random preimage uniformly at random and use the Lovasz
Local Lemma (LLL) to prove that this gives a homomorphism ¢ (with positive probability). This argument works
if the probability that the image of a relational tuple under ¢ is also in the relation is O(A(S)™1!), where A(S)
denotes the maximum degree.

But how to ensure such a bound on this probability for every tuple in S? In the spirit of the hypergraph
regularity lemma for semialgebraic hypergraphs by Fox, Gromov, Lafforgue, Naor, and Pach [20] we prove that,
given ¢ and a relational tuple s = (s1,...,s,) € S” such that the probability that s is mapped to a relational tuple
is low, there exist large subsets in the preimages of the coordinates of s spanning no relational tuples. However,
this can not happen for our construction. In fact, we can choose the parameters in the classical construction to
push this polynomially far, such that sets of size about % (in the preimage of a relational tuple) always span
a relational tuple. Thus, we get the bound needed for the LLL.

How to give a deterministic construction of §? For finite CSPs the first author [26] has given a deterministic
algorithm for S. This also has the pseudorandom property that large sets in the preimage of a relational tuple
span a relational tuple. However, this is not guaranteed for polynomially small subsets of [IN], but it is known if
the subsets give a positive proportion of [N]. Therefore, the LLL based proof of the previous paragraph works in
the case when A(S) is bounded. Thus, it is sufficient to show that every temporal CSP is polynomially equivalent
to its restriction to bounded degree relational structures, cf. Lemma 2.1. For more details see the full version.

5.3 The proof of the Temporal Sparse Incomparability Lemma The following proposition will be
the main tool in the proof of the Temporal Sparse Incomparability Lemma, Theorem 5.2. Recall that a quasi-order
is a reflexive and transitive relation. Let a(n) denote the number of quasi-orders of an n element set, these are
also known as Fubini numbers. We write e for the Euler number.

ProrosiTION 5.3. Consider a finite relational type T with mazimum arity r, the finite relational structures
B,B of type 7 and a temporal relational structure T of type 7. Let § > 0. Assume that B € CSP(T), and
consider a homomorphism B — T and the induced quasi-order. Further assume that

1. ea(r)r(r(AB)—1)+1)0 <1, and

2. there exists a mapping m : B — B such that for every relational tuple (b1,...,bx) € R(B), for subintervals
S; C o t({b;}) (1 < i < k) wrt. the quasi-order on B if |S;| > 6|m=1({b;})|, then there exist b; € S;
(1 <i<k) such that (by,bs,...b,) € R(B).

Then B € CSP(T).
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We will not need any assumption on A(B) in Proposition 5.3 in order to prove Theorem 5.2, as (1) can be
satisfied by balancing § for a fixed B. Note that 7 : B — B does not need to be a homomorphism.
The following lemma will be the key in the proof of Proposition 5.3.

LEMMA 5.4. Let S be a finite set equipped with a quasi-order <g, T a finite relational type, B a finite relational
structure and T a temporal relational structure of type 7.

Consider a mapping w: S — B. Let p > 0 and let r denote the mazximum arity of a relational symbol in 7.
Assume that

1. the inequality ep(r(A(B) — 1) + 1) < 1 holds, and

2. for every relational tuple b = (by, ..., by) € R(B) the probability, that for the elements b; € 7=1({b;}) chosen
uniformly at random the induced quasi-order of {b1,...,by} defined by b; =g b; <= s; =g s; is bad, that
is, the image of the tuple b is not in R(T), is at most p.

Then B € CSP(T).

We will apply the Lovasz Local Lemma [16] in the proof of Lemma 5.4. We use the symmetric variable version
stated as Lemma 5.5. Consider a set of mutually independent random variables. Given an event A determined
by these variables denote by vbl(A) the unique minimal set of variables that determines the event A: such a set
clearly exists.

LEMMA 5.5. Let V be a finite set of mutually independent random variables in a probability space. Let A be a
finite set of events determined by these variables. If there exist p,d > 0 such that ep(d + 1) < 1, for every A€ A
P(A) < p and |[{B : B € A,vbl(A) Nwvbl(B) # 0} < d, then P(\ 4eq A) > 0.

Proof. (of Lemma 5.4) We prove that if we choose an element f(x) € ' (z) for every € B uniformly at
random then the quasi-ordering on B defined by © <p y <= f(x) <s f(y) will with positive probability witness
that B € CSP(T).

We associate to every € B a random variable with value f(z), and to every relational tuple ¢ in B the event
A; that it is badly ordered. Note that the random variables in vbl(A;) correspond to the coordinates of ¢ (without
multiplicity). Thus, vbl(A;) is disjoint from vbl(A,) if ¢t and u do not share a coordinate, hence vbl(A;) is disjoint
from all but at most r(A(B) — 1) other such sets vbl(A,). Since ep(r(A(B) — 1)+ 1) < 1, Lemma 5.5 shows that
the probability that we avoid all the bad events, that is, the induced quasi-ordering witnesses that B € CSP(T),
is positive. 0

We will use the following basic lemma.

LEMMA 5.6. Let k,n be positive integers and v > 0. Consider the quasi-orders =i on [k] and < on
[kn], respectively. Assume that there are at least yYkn* tuples (s1,...,sr) € IE_[(i — 1)k + 1,ik] such that
$; = 8j <= 1 =y j for everyi,j. Then there are sets S; C [(i — 1)k + 1,ik| of size at least yn such that
$; 255 <= i =Xy j for every i,j € [k] and s; € S;,s; € S;.

Proof. We may assume that i < j = ¢ =, j for i,j € [k].

We prove by induction on k, the case k = 1 is trivial. Assume that the statement holds for integers less than
k, and consider a set R of at least vkn* such k-tuples. If k A5 (k—1) then let Sy, be the set of the last yn elements
of [(k — 1)n + 1,kn] w.r.t. <. There are at least y(k — 1)n* k-tuples in R whose last coordinate is not in Sy,
hence it should be smaller than or equal to any element of Sy w.r.t. <. Consider the set Ri_1 of (k — 1)-tuples
obtained by the removal of the last coordinate: Rj_; contains at least y(k — 1)n*~! many (k — 1)-tuples, so by
induction there are sets Sy, ..., Sp_1 satisfying to the conditions. Since any element in Si_; is strictly smaller
than any element of Sg, the sets S1,..., Sk will be as required.

Now assume that there exists £ < k such that k < ¢ ﬁk £ —1. Observe that the number of tuples s € R, such
that the < equivalence class of s, . .., sj intersects at least one of the intervals [({—1)n+1,4n], ..., [(k—1)n+1, kn]
in at most yn elements, is at most (k — ¢ + 1)yn*, since if we fix all but one of these elements then there are
at most yn possibilities to choose the remaining one. Let R’ C R denote the set of the other k-tuples, we have
|R'| > (¢ — 1)yn*. Let us choose the largest equivalence class E w.r.t. < with size at least yn in each of these
k — ¢+ 1 intervals, and set S,, = EN[(m —1)n+ 1,mn] for £ <m < k.

Consider the set Ry_y of (¢ — 1)-tuples obtained by the removal of the last (k — £ 4 1) coordinates from a
tuple in R'. Since |R'| > (¢ — 1)yn* we have |R,_1| > (¢ — 1)yn*~¢~1 so by induction there are sets Sy,...,S¢_1
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of size at least yn that for any choice of elements from these sets the induced quasi-order will be the restriction
of =<k to [¢ —1]. And by the choice of Sy,..., S the set S;_; will be strictly smaller than these w.r.t. =<, hence
the sets 51, ..., Sk will be as required. 0

The semialgebraic hypergraph regularity lemma of Fox, Gromov, Lafforgue, Naor, and Pach [20] provides an
alternative tool to prove a variant of this lemma, see also Tidor and Yu [41].

Proof. (of Proposition 5.3) Assume that B € CSP(T), we will consider the witness homomorphism B — T
and the induced quasi-order on B.

CramM 5.7. Consider the k-ary relation R and the tuple (by,...,bx) € R(B). The probability that for
by € 7Y {b1}),...b, € 7 ({br}) chosen uniformly at random the tuple b is badly quasi-ordered is at most
a(k)kd.

Proof. We prove by contradiction. Suppose that this probability is greater than a(k)kd. Then it is greater
than k¢ for one of the bad quasi-orders < of [k]. We may assume that the preimage of every element under 7
has the same size: we obtain this after replacing B with its blow-up, what does not change the probabilities in
question. Now Lemma 5.6 provides subsets S; C 7~ 1({b;}) with size |S;| > 6|7~ ({b;})| such that the restriction
of the quasi-order is <j on any k-tuple chosen from these sets. We may assume that the sets Si,...,Sy are
intervals w.r.t. to the quasi-order on B. However, by assumption (2) of Proposition 5.3 these sets span a tuple in
relation R, contradicting the fact that the quasi-order witnesses that B € CSP(T). ]

Consider a k-ary relational symbol R € 7. Lemma 5.7 provides for every (z1,...,zx) € R(B) the estimate
Hya, - ye) = (Y, uk) & R(B), Vi n(y;) = i} < 6ka(k)ITE_ |7~ ({z;})|. In other words, the probability
that a random preimage of this relational tuple is badly quasi-ordered in B is at most dka(k). Every relational
tuple has arity at most r. Thus, we can apply Lemma 5.4 to p = ra(r)d since ep(r(A(B) — 1) + 1) < 1. |

Proof. (of Theorem 5.2) We will find a structure B with girth greater than g that satisfies both assumptions
of Proposition 5.3 for a § > 0.

We will use the standard randomized construction for the SIL to get a relational structure B with girth at
least g. We refine [18, 37| who adapted [15]. This will give a randomized polynomial time construction of B. Set
§ = e 1r="=2|7|71B|~", so the assumption of (1) of Proposition 5.3 will be satisfied, since A(B) < |7||B|".

First, let the base set be B = B x {1,...,n} for n large enough (but a polynomial of |B]|) chosen later.
Consider the projection 7 : B — B. And let us choose p1,...,p, > 1 also later. Let B, be the following random
structure with base set B. Given a k-ary relational symbol R, a relational tuple b € R(B) and b € B*, where
m(b;) = b;, add b to R(B,) with probability py, independently for every relational symbol R and pair of tuples
b, b.

Finally, remove a relational tuple of B in every cycle with length at most ¢ in B, in order to get the structure
B with girth at least g. We need to check that assumption (2) of Proposition 5.3 holds (with high probability).

Put p; = n'~7*/9. The number of k-cycles in B with tuples from Ry,..., Ry with arities r1,... 7,
respectively, is at most |B|*|B |Z§:1(T’?_2)7 so the expected number of relational tuples in such k-cycles removed
from By is at most II¥_, p; iz (=) \B|Zf:1(”’1) = nk/g-Hf:ﬂB\Zf:l(”*l). Therefore, the expected number
of all tuples removed is O(|B|9"~Yn), where the constant hidden in O(x) depends on 7 and g only.

Given a k-ary relation R(B), a relational tuple b € R(B) and for i = 1,...,k subsets S; C 7 1(b;),
the expected number of tuples in R(Sy,...,Sk) is ppIIE_,[S;|. If |S;| > dn for every i then this is at least
prd* i = pu(er™217l|BIY) "k = (err 2l BI) i,

Choose n = |B\392”, so for any such (Si,...,Sk) the expected value of R(S,...,S,) is at least n't2 if
|B| is large enough. We can choose the k sets in O(|B|"2"™) ways. The probability, that the number of tuples
spanned by them, is less than half of the expected value is less than an exponentially small function of nitz by
the Chernoff bound. Thus, with high probability, for every choice of (Si,...,Sk) they span at least half of the
number of expected tuples with high probability.

The number of tuples removed is with high probability much smaller than this by the Markov inequality,
since its expected value is already much smaller if |B| is large enough. Hence assumption (2) of Proposition 5.3
holds with high probability for B. This completes the proof of the Theorem 5.2. 0

Acknowledgments. We would like to thank the anonymous referees for their remarks and suggestions.

Copyright (© 2026
Copyright for this paper is retained by authors



(1]

2]

13l

[4]

5]
[6]

7]

18]

19]

[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

References

O. ANGEL, A.S. KECHRIS, AND R. LyoNs, (2014), Random orderings and unique ergodicity of automorphism
groups, Journal of the European Mathematical Society, 16(10), 2059-2095.

P. N. BALISTER, B. BOLLOBAS, AND S. JANSON,(2025), Consistent random vertex-orderings of graphs,
Journal of the European Mathematical Society.

M. BieNVENU, B.T. CaTE, C. LuTz, AND F. WOLTER, (2014), Ontology-based data access: A study through
disjunctive datalog, CSP, and MMSNP. ACM Transactions on Database Systems (TODS), 39(4), 1-44.

M. BODIRSKY AND J. KARA, (2010), The complexity of temporal constraint satisfaction problems, Journal
of the ACM (JACM), 57(2), 1-41.

L. BARTO, A. KROKHIN AND R. WILLARD, (2017), Polymorphisms, and how to use them.

L. BarTO, J. OPRSAL AND M. PINSKER, (2018), The wonderland of reflections, Israel Journal of
Mathematics, 223(1), 363-398.

M. BODIRSKY, F. MADELAINE AND A. MOTTET, (2018, July), A universal-algebraic proof of the complexity
dichotomy for Monotone Monadic SNP, In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic
in Computer Science (pp. 105-114).

M. BODIRSKY AND J. NESETRIL (2006), Constraint satisfaction with countable homogeneous templates,
Journal of Logic and Computation, 16(3), 359-373.

M. BODIRSKY AND M. PINSKER, (2011), Reducts of Ramsey structures, AMS Contemporary Mathematics,
558, 489-519.

G. BRIGHTWELL, (1993), On the complexity of diagram testing, Order, 10, 297-303.

A.A. BuLaTov, (2017, October), A dichotomy theorem for nonuniform CSPs, In 2017 IEEE 58th Annual
Symposium on Foundations of Computer Science (FOCS) (pp. 319-330). IEEE.

P.J. CAMERON, (1976), Transitivity of permutation groups on unordered sets, Mathematische Zeitschrift,
148, 127-139.

P. DAMASCHKE, (1990), Forbidden ordered subgraphs, In Topics in Combinatorics and Graph Theory: Essays
in Honour of Gerhard Ringel (pp. 219-229). Heidelberg: Physica-Verlag HD.

D. Durrus, M. GINN, AND V. RODL, (1995), On the computational complexity of ordered subgraph
recognition, Random Structures Algorithms, 7(3), 223-268.

P. ERDOS, (1959), Graph theory and probability, Canadian Journal of Mathematics, 11, 34-38.

P. ErRDOS AND L. LovAsz, "Problems and results on 3-chromatic hypergraphs and some related questions”,
In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdés on his 60th birthday), (1975) Vol.
II, pages 609-627. Colloq. Math. Soc. Janos Bolyai, Vol. 10. North-Holland, Amsterdam.

R. FAGIN, Generalized first-order spectra and polynomial-time recognizable sets, in: Complexity of Compu-
tation (ed. R. Karp), STAM-AMS Proceedings 7, 1974, pp. 43-73.

T. FEDER AND M.Y. VARDI, (1998), The computational structure of monotone monadic SNP and constraint
satisfaction: A study through Datalog and group theory, SIAM Journal on Computing, 28(1), 57-104.

L. FEUILLOLEY AND M. HABIB, (2021), Graph classes and forbidden patterns on three vertices, SIAM
Journal on Discrete Mathematics, 35(1), 55-90.

J. Fox, M. GrRoMOv, V. LAFFORGUE, A. NAOR AND J. PACH, (2012), Quverlap properties of geometric
expanders, Journal fiir die reine und angewandte Mathematik (Crelles Journal), 2012(671), 49-83.

Copyright (© 2026
Copyright for this paper is retained by authors



[21] R.L. GRAHAM, B.L. ROTHSCHILD AND J.H. SPENCER, (1991), Ramsey theory, John Wiley Sons.
[22] S. GUzZMAN-PRO, (2024), Local expressions of hereditary classes, arXiv preprint arXiv:2401.08796.

[23] S. GuzMAN-PRO, P. HELL AND C. HERNANDEZ-CRUZ, (2023), Describing hereditary properties by forbidden
circular orderings, Applied Mathematics and Computation, 438, 127555.

[24] P. HELL, B. MOHAR AND A. RAFIEY, Ordering without Forbidden Patterns, In: Schulz, A.S., Wagner, D.
(eds) Algorithms - ESA 2014. ESA 2014. Lecture Notes in Computer Science, vol 8737. Springer, Berlin,
Heidelberg.

[25] P. HELL AND J. NESETRIL, (2004), Graphs and homomorphisms (Vol. 28). OUP Oxford.
[26] G. KUN, (2013), Constraints, MMSNP and expander relational structures, Combinatorica, 33(3), 335-347.

[27] G. KuN AND J. NESETRIL, (2008), Forbidden lifts (NP and CSP for combinatorialists), European Journal
of Combinatorics, 29(4), 930-945.

[28] G. KUuN AND M. SzZEGEDY, (2009, May), A new line of attack on the dichotomy conjecture, In Proceedings
of the forty-first annual ACM symposium on Theory of computing (pp. 725-734).

[29] R.E. LADNER, (1975), On the structure of polynomial time reducibility, Journal of the ACM (JACM), 22(1),
155-171.

[30] L. LovAsz, (1968), On chromatic number of finite set-systems, Acta Mathematica Academiae Scientiarum
Hungarica, 19, 59-67.

[31] A. LuBoTzKY, (2018), High dimensional erpanders, In Proceedings of the international congress of
mathematicians: Rio de Janeiro 2018 (pp. 705-730).

[32] Y.V. MATIYASEVICH, (2007), A criterion for wvertex colorability of a graph stated in terms of edge
orientations, arXiv preprint arXiv:0712.1884.

[33] J. MATOUSEK AND J. NESETRIL, (2004), Constructions of sparse graphs with given homomorphisms,
Unpublished manuscript.

[34] S. MEYER AND J. OPRSAL, (2025), A topological proof of the Hell-Nesetiil dichotomy, In Proceedings of the
2025 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (pp. 4507-4519). Society for Industrial
and Applied Mathematics.

[35] A. MARCUs AND G. TARDOS, (2004), Ezcluded permutation matrices and the Stanley—Wilf conjecture,
Journal of Combinatorial Theory, Series A, 107(1), 153-160.

[36] J. NESETRIL, Ramsey Theory, In: Handbook of Combinatorics (ed. R. L. Graham, M. Grétschel, L. Lovész),
Elsevier, 1995, pp. 1331-1403.

[37] J. NESETRIL AND V. RODL, (1989), Chromatically optimal rigid graphs, Journal of Combinatorial Theory,
Series B, 46(2), 133-141.

[38] J. NESETRIL AND V. RODL, (1995), More on the complexity of cover graphs, Commentationes Mathematicae
Universitatis Carolinae, 36(2), 269-278.

[39] J. NESETRIL AND V. RODL, (2017, October), Statistics of orderings, In Abhandlungen aus dem Mathema-
tischen Seminar der Universitdt Hamburg (Vol. 87, No. 2, pp. 421-433). Berlin/Heidelberg: Springer Berlin
Heidelberg.

[40] J. NESETRIL AND X. ZHU, (2004), On sparse graphs with given colorings and homomorphisms, Journal of
Combinatorial Theory, Series B, 90(1), 161-172.

[41] J. Tipor aNnD H. H. H. Yu, (2024), Multilevel polynomial partitioning and semialgebraic hypergraphs:
reqularity, Turdn, and Zarankiewicz results. arXiv preprint arXiv:2407.20221.

[42] D. Znuk, (2020), A proof of the CSP dichotomy conjecture, Journal of the ACM (JACM), 67(5), 1-78.

Copyright (© 2026
Copyright for this paper is retained by authors



	Introduction and main results.
	Notions and Notation
	The biconnected phenomenon by two examples
	Classes with full power
	F'-free coloring problems have full power
	F<-free ordering problems have full power

	Temporal Sparse Incomparability Lemma
	A combinatorial classique
	The temporal version, outline and key ideas
	The proof of the Temporal Sparse Incomparability Lemma


