1 Third exercise set

E 1. Let ∂F_{2} denote the boundary of the free group, i.e. the Cantor space of infinite reduced words in the letters $\{a, b\}$. Let ν denote the product measure on ∂F_{2} : the first letter is chosen uniformly from $\left\{a, a^{-1}, b, b^{-1}\right\}$, while every later letter is chosen independently and uniformly from the 3 letters that do not cancel the previous one.

Show that $F_{2} \curvearrowright \partial\left(F_{2}, \nu\right)$ by precomposition, but the action does not preserve ν. On the other hand, show that ν is stationary with respect to the simple random walk on F_{2}.

E 2. Consider a random walk μ on a group G, and assume $H \leq G$ is a recurrent subgroup, i.e. it is visited infinitely often with probability 1 . Define μ_{H} as the hitting measure on H. Prove that $H^{\infty}(G, \mu)=H^{\infty}\left(H, \mu_{H}\right)$.

E 3. Let Γ be a group, and μ the step-distribution of some random walk on Γ. Consider the wreath product $G=C_{2} \swarrow \Gamma$, and equip it with the random walk that has step-distribution $\nu * \mu * \nu$, where ν is the uniform distribution on $\left\{\operatorname{id}_{G}, \delta_{\mathrm{id}_{\Gamma}}\right\}$. Show that this random walk on G is Liouville (i.e. all bounded harmonic functions are constant) if and only if the μ-random walk on Γ is recurrent.
($\operatorname{In} \bigoplus_{\Gamma} C_{2}$ the element $\delta_{\mathrm{id} d_{\Gamma}}$ is the vector with value 1 at id_{Γ}, and 0 everywhere else. Taking a step on G with respect to $\nu * \mu * \nu$ means first flipping a fair coin to decide if we switch the lamp or not, then taking a μ-random step with the lamplighter, and finally flipping a fair coin again to decide if we switch the lamp at the new position.)

