1 Second exercise set

E 1.1. Show that the simple random walk is recurrent on \mathbb{Z} , but transient on the *d*-regular tree T_d for $d \geq 3$.

E 1.2. Let *H* be a subgroup of the free group F(S). Show that the fundamental group of the coset Schreier graph Sch(F/H, S) is isomorphic to *H*. As a consequence deduce that *H* is itself free. In case *H* has finite index derive a formula for its rank.

E 1.3. Show that $Alt_f(\mathbb{N})$ is simple.

E 1.4. Show that two translations along disjoint axes on the d-regular tree generate a free group.

E 1.5. Assume $\langle R \mid S \rangle$ is a finite presentation of the group G. Show that any other presentation $\langle R' \mid S' \rangle$ contains a finite presentation of G.

E 1.6. Show that a maximal filter is an ultrafilter. Show that as a consequence, Zorn's lemma implies the existence of a non-principal ultrafilter.

E 1.7. Let Γ be a transitive permutation group. Show that Γ is primitive if and only if the point stabilizer Γ_{α} is a maximal subgroup in Γ .

E 1.8. Pyramid scheme. Let G be an infinite, locally finite, connected graph. Define the *value* of a pyramid scheme $f: \vec{E} \to \mathbb{R}$ to be the infimum of gains, that is

$$value(f) = \inf_{v \in V(G)} \sum_{e^+ = v} f(e) - \sum_{e^- = v} f(e).$$

How large can the value of a bounded $(||f||_{\infty} \leq 1)$ pyramid scheme be?

Definitions

Definition 1.9. (Filter, ultrafilter) Let Ω be a set. A family of subsets $F \subseteq 2^{\omega}$ is a *filter*, if it is nontrivial ($\emptyset \notin F$, $\Omega \in F$), upward closed ($A \in F$, $A \subseteq B \Rightarrow B \in F$), and closed under finite intersection ($A, B \in F \Rightarrow A \cap B \in F$). A filter U is an *ultrafilter*, if for any $A \subseteq \Omega$ either $A \in U$ or $\Omega \setminus A \in U$. An ultrafilter U is *principal* if it consists exactly of the sets containing a fixed element $\omega \in \Omega$, i.e. $U = \{A \subseteq \Omega \mid \omega \in A\}$.

Definition 1.10 (Primitive permutation group). For a transitive permutation group $\Gamma \subseteq$ Sym(\leq) a partition $P = \{P_i\}_{i \in I}$ of Ω is Γ -invariant, if for every $g \in \Gamma$, and $\omega_1, \omega_2 \in \Omega$ that are in the same part P_i , the images $g.\omega_1$ and $g.\omega_2$ are also in the same part P_j (but maybe $i \neq j$). The group Γ is primitive, if there is no Γ -invariant partition of \mathbb{N} .

Definition 1.11 (Schreier graph). Given a (finitely generated) group $\Gamma = \langle S \rangle$ with a generating set, and an action $\Gamma \curvearrowright X$ the *Schreier graph* Sch(Γ, X, S) has vertex set X, and we connect every $x \in X$ to s.x for every generator $s \in S$. (The Cayley graph is a special case, with $\Gamma \curvearrowright \Gamma$ the left or right multiplication.) For a subgroup $H \leq \Gamma$ the coset Schreier graph Sch($\Gamma/H, S$) is the one corresponding to the action $\Gamma \curvearrowright \Gamma/H$.