7 Seventh exercise set

E 7.1. Condition the simple random walk on T_d to converge to a given boundary point. Describe this new random walk directly!

E 7.2. Let $\Gamma \leq \operatorname{Aut}(T_d^\circ)$. When is the action $\Gamma \curvearrowright (\partial T_d^\circ, \mu)$ ergodic? (Here ∂T_d° is the boundary, and μ is the standard $\operatorname{Aut}(T_d^\circ)$ -invariant measure, one can pick a random infinite non-backtracking path from the root by making a uniform random choice among the d continuations at every step.)

E 7.3. Show an example of an IRS in $\text{Sym}_{f}(\mathbb{N})$ that has infinite index almost surely.

E 7.4. Let $\Gamma = \text{Alt}_f(T_d)$ (or $\text{Aut}_f(T_d)$). Pick two independent μ -random points x and y from ∂T_d° . Show that $H = \text{Stab}_{\Gamma}(\{x, y\})$ is an IRS in Γ . Is it ergodic?

E 7.5. Show that an ergodic, infinite index nontrivial IRS of the free group has infinite rank almost surely.

E 7.6. Let Γ be a countably infinite group, and

$$\Omega = \{0, 1\}^{\Gamma} = \{\omega : \Gamma \to \{0, 1\}\}$$

be the space of all 0-1-colorings with the product topology. Let u_2 stand for the uniform $\{1/2, 1/2\}$ measure on $\{0, 1\}$ and endow Ω with the product measure $\mu = u_2^{\Gamma}$. Γ acts on (Ω, μ) by shifting the coloring:

$$g.\omega(h) = \omega(g^{-1}h).$$

Show that this action is ergodic.

E 7.7. (Ornstein-Weiss example) Show that $F_2 \curvearrowright (\{0, 1, 2, 3\}^{F_2}, u_4^{F_2})$ is a factor of $F_2 \curvearrowright (\{0, 1\}^{F_2}, u_2^{F_2})$.

E 7.8. Let *B* denote the infinite rooted binary tree. Show that two independent random elements of Aut(B) generate a free group with probability 1 that acts freely on the boundary.

Definitions

Definition 7.9 (Ergodic action). A probability measure preserving (p.m.p.) action $\Gamma \curvearrowright (X, \mu)$ (i.e. an action of Γ on the probability space (X, μ) by measurable bijections that preserve μ) is called *ergodic*, if for every Γ -invariant measurable subset $A \subseteq X$ we have $\mu(A) = 0$ or $\mu(A) = 1$. (A is Γ -invariant, if $\Gamma A = A$.)

Definition 7.10 (Factor). Let α and β be two p.m.p. actions of the group Γ on the spaces (X, μ) and (Y, ν) respectively. We say β is a *factor* of α , if (up to discarding nullsets) there exists a surjective measure preserving Γ -equivariant map $\Phi : X \to Y$. (Γ -equivariant means $\Phi(\gamma . x) = \gamma . \Phi(x)$ for all x and γ .)