1 First exercise set

(Definitions on the next page.)
E 1.1. Show that the 3 -cycles generate $\operatorname{Alt}_{f}(\mathbb{N})$, the group of finitely supported, even permutations of \mathbb{N}.

E 1.2. (Double commutators) Show that $\operatorname{Alt}_{f}(\mathbb{N})$ is simple.
E 1.3. Show that an automorphism of a d-regular (infinite) tree fixes either a vertex, an edge, or a biinfinite geodesic, on which it acts by translation.

E 1.4. Show that recurrence/transience of a random walk on an infinite, connected graph does not depend on the choice of starting vertex.

E 1.5. Show that transience is equivalent to the expected number of returns to the root being finite.

E 1.6. Show that the fundamental group of a graph is a free group of rank equal to the number of edges of outside an arbitrary spanning tree.

E 1.7. Show that two translations along disjoint axes on the d-regular tree generate a free group.

E 1.8. Show that the lamplighter group $C_{2} \backslash Z$ is not finitely presented.
E 1.9. Consider the simple random walk on \mathbb{Z} between a and $b(a<b)$, stopped at the endpoints. Condition the walk on ending up at b.
a) Show that after the conditioning the random walk is still a Markov chain.
b) Determine the transition probabilites.

E 1.10. Show that on the d-regular tree the Markov operator has no eigenfunctions in $\ell^{2}(V)(d \geq 2)$.

E 1.11. Show that every group has $0,1,2$ or infinitely many ends, and the number of ends does not depend on the choice of generating set.

2 Definitions

Definition 2.1 (Recurrence, transience). Let G be a connected, infinite graph and $o \in V(G)$ a starting vertex. We say that a random walk on G is transient, if (started from o) with positive probability the walk never returns to o again. Otherwise it is called recurrent, i.e. when the walk returns to o with probability 1.

Definition 2.2 (Wreath product and lamplighter group). The (restricted) wreath product of two groups L and B, denoted $L \backslash B$ is the semidirect product $\bigoplus_{B} L \rtimes B$, where B acts on $\bigoplus_{B} L$ by translation of coordinates, i.e. if $\omega \in \bigoplus_{B} L$ and $b \in B$, then $b \cdot \omega(a)=\omega\left(b^{-1} a\right)$. The lamplighter group is the wreath product $C_{2} \backslash \mathbb{Z}$, and it should be thought of as a person walking up and down an infinite street with lamps at every integer, and switching the light at certain lamps.

Definition 2.3 (Finitely presented). A group Γ is finitely presented if it has a representation with finitely many generators and relations, i.e. $\Gamma=\langle S \mid R\rangle$ with $|S|,|R|<\infty$.

Definition 2.4 (Markov operator). The Markov operator on a locally finite graph G is the operator that averages the value at the neighbors of all vertices, i.e.

$$
M: \ell^{2}(V) \rightarrow \ell^{2}(V), \quad(M f)(u)=\frac{1}{\operatorname{deg}(u)} \sum_{(u, v) \in E} f(v)
$$

Definition 2.5 (Number of ends). Let G be an infinite, locally finite, connected graph, and for a finite subset of vertices F denote by $c_{\infty}(F)$ the number of infinite components of $G \backslash F$. The number of ends of G is defined as $\sup \left\{c_{\infty}(F) \mid F \subseteq V\right.$ finite $\}$. (It is infinite if $c_{\infty}(F)$ is not bounded.) For a finitely generated group $\Gamma=\langle S\rangle$ the number of ends is computed for the Cayley graph Cay (Γ, S).

