4 Fourth exercise set

E 4.1. Let a and b be two bijections of the set X. Assume there exist disjoint subsets $A, B \subseteq X$ such that $\forall n \neq 0$ we have $a^{n} . B \subseteq A$ and $b^{n} . A \subseteq B$. Show that a and b generate a free group.

E 4.2. We call a subset of the integers absolutely small, if it has zero measure with respect to any invariant finitely additive measure. Show that a set is absolutely small if and only if the closure of its translates (in the product topology) contains only zerodensity subsets (in the classical sense).

E 4.3. Show that the trajectory of the simple random walk on the d-regular tree T_{d} $(d \geq 3)$ converges to a point on the boundary ∂T with probability 1 .

E 4.4. We call a vertex of a Cayley graph a trap, if it has no neighbour that is at a greater distance to the identity than itself. Give an example of an infinite Cayley graph of a finitely generated group with a trap.

E 4.5. Let A be an Abelian group. A vertical sheer of $A \times A$ is a bijection $F(x, y)=$ $(x, y+f(x))$ where $f: A \rightarrow A$ is an arbitrary function. We define horizontal sheers accordingly. Show that for $A=C_{p}$, horizontal and vertical sheers generate the full alternating group $\operatorname{Alt}(A \times A)$ but you need at least $C|A|$ sheers to get all elements of $\operatorname{Alt}(A \times A)$ as their product.

E 4.6. Show that for a d-regular graph G the Markov operator is self adjoint on $\ell^{2}(V(G))$ and

$$
\|M\|_{2}=\lim _{n \rightarrow \infty}\left(p_{o, o, 2 n}\right)^{1 / 2 n}
$$

E 4.7. (Ornstein-Weiss example) Show that $F_{2} \curvearrowright\left(\{0,1,2,3\}^{F_{2}}, u_{4}^{F_{2}}\right)$ is a factor of $F_{2} \curvearrowright\left(\{0,1\}^{F_{2}}, u_{2}^{F_{2}}\right)$. (As before, u_{n} stands for the uniform distribution on n elements.)

E 4.8. Let ∂T denote the boundary of the regular tree $T_{d}(d \geq 3)$ as before. Find a σ-finite Borel measure on the product $\partial T \times \partial T$ that is $\operatorname{Aut}(T)$-invariant.

Definitions

Definition 4.9 (Density). The density of a set $A \subseteq \mathbb{Z}$ is

$$
d(A)=\lim _{n \rightarrow \infty} \frac{|A \cap[-n, n]|}{2 n+1},
$$

whenever the limit exists.
Definition 4.10 (Factor). Let α and β be two p.m.p. actions of the group Γ on the spaces (X, μ) and (Y, ν) respectively. We say β is a factor of α, if (up to discarding nullsets) there exists a surjective measure preserving Γ-equivariant map $\Phi: X \rightarrow Y$. (Γ-equivariant means $\Phi(\gamma \cdot x)=\gamma \cdot \Phi(x)$ for all x and γ.)

