4 Fourth exercise set

E 4.1. Let *a* and *b* be two bijections of the set *X*. Assume there exist disjoint subsets $A, B \subseteq X$ such that $\forall n \neq 0$ we have $a^n B \subseteq A$ and $b^n A \subseteq B$. Show that *a* and *b* generate a free group.

E 4.2. We call a subset of the integers *absolutely small*, if it has zero measure with respect to any invariant finitely additive measure. Show that a set is absolutely small if and only if the closure of its translates (in the product topology) contains only zero-density subsets (in the classical sense).

E 4.3. Show that the trajectory of the simple random walk on the *d*-regular tree T_d $(d \ge 3)$ converges to a point on the boundary ∂T with probability 1.

E 4.4. We call a vertex of a Cayley graph a *trap*, if it has no neighbour that is at a greater distance to the identity than itself. Give an example of an infinite Cayley graph of a finitely generated group with a trap.

E 4.5. Let A be an Abelian group. A vertical sheer of $A \times A$ is a bijection F(x, y) = (x, y + f(x)) where $f : A \to A$ is an arbitrary function. We define horizontal sheers accordingly. Show that for $A = C_p$, horizontal and vertical sheers generate the full alternating group $Alt(A \times A)$ but you need at least C|A| sheers to get all elements of $Alt(A \times A)$ as their product.

E 4.6. Show that for a *d*-regular graph *G* the Markov operator is self adjoint on $\ell^2(V(G))$ and

$$||M||_2 = \lim_{n \to \infty} (p_{o,o,2n})^{1/2n}.$$

E 4.7. (Ornstein-Weiss example) Show that $F_2 \curvearrowright (\{0, 1, 2, 3\}^{F_2}, u_4^{F_2})$ is a factor of $F_2 \curvearrowright (\{0, 1\}^{F_2}, u_2^{F_2})$. (As before, u_n stands for the uniform distribution on n elements.)

E 4.8. Let ∂T denote the boundary of the regular tree T_d $(d \ge 3)$ as before. Find a σ -finite Borel measure on the product $\partial T \times \partial T$ that is Aut(T)-invariant.

Definitions

Definition 4.9 (Density). The *density* of a set $A \subseteq \mathbb{Z}$ is

$$d(A) = \lim_{n \to \infty} \frac{|A \cap [-n, n]|}{2n + 1},$$

whenever the limit exists.

Definition 4.10 (Factor). Let α and β be two p.m.p. actions of the group Γ on the spaces (X, μ) and (Y, ν) respectively. We say β is a *factor* of α , if (up to discarding nullsets) there exists a surjective measure preserving Γ -equivariant map $\Phi : X \to Y$. (Γ -equivariant means $\Phi(\gamma . x) = \gamma . \Phi(x)$ for all x and γ .)