$7 \quad$ Seventh exercise set

E 7.1. Show that an ergodic, infinite index nontrivial IRS of the free group has infinite rank almost surely.

E 7.2. Let B denote the infinite rooted binary tree. Show that two independent random elements of $\operatorname{Aut}(B)$ generate a free group with probability 1 that acts freely on the boundary.

E 7.3. Show the converse of Exercise 6.6, i.e. that if a group Γ is nonamenable, the the Markov operator on its Cayley graph G has norm strictly less than 1.
a) Note that $\|M\|=\sup _{f \in H}\left\{\frac{\langle M f, f\rangle}{\langle f, f\rangle}\right\}$, where $H \subseteq \ell^{2}(\Gamma)$ are the finitely supported functions.
b) Let C stand for the edge Cheeger constant of G. Given a function g : $\Gamma \rightarrow[0, \infty)$ consider all level sets $\{x \mid g(x)>t\}$ of g and show that

$$
C \cdot \sum_{v \in V(G)} g(v) \leq \sum_{(x, y) \in E(G)}|g(y)-g(x)| .
$$

c) Show that

$$
\langle f, f\rangle^{2} \leq \frac{1}{C^{2}}[\langle f, f\rangle-\langle M f, f\rangle][\langle f, f\rangle+\langle M f, f\rangle] .
$$

E 7.4. (Vershik's theorem) We characterize all ergodic IRS's H of $\operatorname{Sym}_{f}(\mathbb{N})$.
a) We will repeatedly use the obvious fact that there is no uniform distribution on a countably infinite set.
b) First consider the orbits of H, and use De Finetti's theorem (Exercise 5.2).
c) Let B_{0} be the set of fixed points of H, and B_{1}, B_{2}, \ldots denote the other orbits. Show that the action of H on each $B_{i}(i>0)$ is primitive almost surely, and use the Jordan-Wielandt theorem (Exercise 3.8).
d) We aim to show that $H \triangleleft \Gamma$, where $\Gamma=\operatorname{Sym}_{f}\left(B_{1}\right) \times \operatorname{Sym}_{f}\left(B_{2}\right) \times \ldots$ Show that it is equivalent to prove $H^{\prime}=\operatorname{Alt}_{f}\left(B_{1}\right) \times \operatorname{Alt}_{f}\left(B_{2}\right) \times \ldots=\Gamma^{\prime}$.
e) By item (c) the projection p_{i} is surjective from H^{\prime} to $\operatorname{Alt}_{f}\left(B_{i}\right)$. Use (a) and Goursat's lemma (Exercise 5.4) to show that for any pair of indices i, j the projection $\pi_{i j}$ is also surjective from H^{\prime} to $\operatorname{Alt}_{f}\left(B_{i}\right) \times \operatorname{Alt}_{f}\left(B_{j}\right)$. $\left(\operatorname{Fact:} \operatorname{Aut}\left(\operatorname{Alt}_{f}(\mathbb{N})\right)=\operatorname{Sym}(\mathbb{N})\right.$. $)$
f) Show that for any finite set of coordinates $\mathbf{i}=\left(i_{1}, \ldots, i_{l}\right)$ the projection $\pi_{\mathbf{i}}$ is surjective from H^{\prime} to $\operatorname{Alt}_{f}\left(B_{i_{1}}\right) \times \ldots \times \operatorname{Alt}_{f}\left(B_{i_{l}}\right)$.
g) Finally show the same as in (f) for all the (possibly infinitely many) coordinates.

