7 Seventh exercise set

E 7.1. Show that an ergodic, infinite index nontrivial IRS of the free group has infinite rank almost surely.

Fint: how many finitely generated subgroups are there?

E 7.2. Let *B* denote the infinite rooted binary tree. Show that two independent random elements of Aut(B) generate a free group with probability 1 that acts freely on the boundary.

Hint: Let $w(a, b) = u_1 \dots u_n$ be a reduced word of length n, and let $w_i = u_i \dots u_n$. Show that with probability 1 there is a level L_k of the tree where $x, w_n, x, \dots w_{1,x}$ are all distinct for every $x \in L_k$.

E 7.3. Show the converse of Exercise 6.6, i.e. that if a group Γ is non-amenable, the the Markov operator on its Cayley graph G has norm strictly less than 1.

- a) Note that $||M|| = \sup_{f \in H} \left\{ \frac{\langle Mf, f \rangle}{\langle f, f \rangle} \right\}$, where $H \subseteq \ell^2(\Gamma)$ are the finitely supported functions.
- b) Let C stand for the edge Cheeger constant of G. Given a function $g : \Gamma \to [0, \infty)$ consider all level sets $\{x \mid g(x) > t\}$ of g and show that

$$C \cdot \sum_{v \in V(G)} g(v) \le \sum_{(x,y) \in E(G)} |g(y) - g(x)|.$$

c) Show that

$$\langle f, f \rangle^2 \leq \frac{1}{C^2} \Big[\langle f, f \rangle - \langle Mf, f \rangle \Big] \Big[\langle f, f \rangle + \langle Mf, f \rangle \Big].$$

- **E 7.4.** (Vershik's theorem) We characterize all ergodic IRS's H of $\text{Sym}_{f}(\mathbb{N})$.
- a) We will repeatedly use the obvious fact that there is no uniform distribution on a countably infinite set.
- b) First consider the orbits of H, and use De Finetti's theorem (Exercise 5.2).

- c) Let B_0 be the set of fixed points of H, and B_1, B_2, \ldots denote the other orbits. Show that the action of H on each B_i (i > 0) is primitive almost surely, and use the Jordan-Wielandt theorem (Exercise 3.8).
- d) We aim to show that $H \triangleleft \Gamma$, where $\Gamma = \text{Sym}_f(B_1) \times \text{Sym}_f(B_2) \times \dots$ Show that it is equivalent to prove $H' = \text{Alt}_f(B_1) \times \text{Alt}_f(B_2) \times \dots = \Gamma'$.
- e) By item (c) the projection p_i is surjective from H' to $\operatorname{Alt}_f(B_i)$. Use (a) and Goursat's lemma (Exercise 5.4) to show that for any pair of indices i, j the projection π_{ij} is also surjective from H' to $\operatorname{Alt}_f(B_i) \times \operatorname{Alt}_f(B_j)$. (Fact: $\operatorname{Aut}(\operatorname{Alt}_f(\mathbb{N})) = \operatorname{Sym}(\mathbb{N})$.)
- f) Show that for any finite set of coordinates $\mathbf{i} = (i_1, \ldots, i_l)$ the projection $\pi_{\mathbf{i}}$ is surjective from H' to $\operatorname{Alt}_f(B_{i_1}) \times \ldots \times \operatorname{Alt}_f(B_{i_l})$.
- g) Finally show the same as in (f) for all the (possibly infinitely many) coordinates.