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Abstract: In this work an (asymptotically) optimal approximation of
the normalized empirical distribution function by a Brownian bridge
is presented in the form of a series of problems. The formulation of the
problems and their solutions are separated in this text. The discussion
is based on the paper An approximation of partial sums of indepen-
dent RV’s and the sample DF. I. written by János Komlós, Péter Ma-
jor and Gábor Tusnády which appeared in the journal Zeitschrift für
Wahrscheinlichkeitstheorie und verwandte Gebiete 32 (1975), pages
111–131. The main difference between this text and the original pa-
per is that here the details are worked out thoroughly, all “it is easy
to see that . . . ” type arguments are omitted. The problems formu-
lated in this work are of different level of difficulty. My main goal
was to give a complete and understandable explanation. I discussed
some technical problems in detail and tried to explain the ideas be-
hind them even if this caused sometimes certain repetition and made
the text longer.

The formulation of the main problem

In this series of problems we investigate the approximation of the normalized empirical
distribution function by a Brownian bridge. Let us formulate this problem in more
details.

Let B(t) = B(t, ω), 0 ≤ t ≤ 1, be a Brownian bridge on a probability space
(Ω,B, P ), i.e. let B(t) be a Gaussian process with expectation EB(t) = 0 and covariance
function EB(s)B(t) = min(s, t) − st, 0 ≤ s, t ≤ 1. Furthermore, we assume that the
trajectories B(·, ω) of the Brownian bridge are continuous functions on the interval [0, 1]
for all elementary events ω ∈ Ω. It follows from classical results of the probability theory
that Brownian bridges with the above properties really exist.

Let Pn(t), 0 ≤ t ≤ 1, denote the empirical distribution function corresponding
to a sample consisting of n independent and on the interval [0, 1] uniformly distributed
random variables, i.e. let ζ1, . . . , ζn be a sequence of independent and on the interval [0, 1]

uniformly distributed random variables, and put Pn(t) =
1

n

n
∑

j=1

I({ζj ≤ t}), 0 ≤ t ≤ 1,

where I(A) denotes the indicator function of the set A. Let

Zn(t) =
√
n[Pn(t)− t] , 0 ≤ t ≤ 1,

be its standardization which we shall further call the standardized empirical distribution
function. The covariance function of the processes Zn(t) and B(t), 0 ≤ t ≤ 1, agree.
We want to show that these two processes can be put close to each other with the help
of an appropriate construction. More explicitly, we want to prove the following result:
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Approximation Theorem. Let a Brownian bridge B(t) be given on a sufficiently
rich probability space (Ω,B, P ). Then for all numbers n = 2, 3, . . . a sequence ζ1, . . . , ζn
of independent and on the interval [0, 1] uniformly distributed random variables can be

constructed in such a way that the empirical distribution function Pn(t) =
1

n

n
∑

k=1

I({ζn ≤

t}) and its standardization Zn(t) =
√
n[Pn(t) − t], 0 ≤ t ≤ 1, made with the help of

these random variables ζ1, . . . , ζn satisfy the relation

P

(√
n sup

0≤t≤1
|Zn(t)−B(t)| > C1 log n+ x

)

≤ C2e
−λx

for all numbers x > 0 with some universal (independent of the parameter n) constants
C1 > 0, C2 > 0 and λ > 0.

Remark: The probability space where we want to make a construction satisfying the
Approximation Theorem is sufficiently rich if there exists a sequence ηk, k = 1, 2, . . . ,
of independent and on the interval [0, 1] uniformly distributed random variables on
it which is also independent of the Brownian bridge B(t). At the expense of some
extra-work such a modified construction could be made which applies no extra random
variables besides the Browian bridge B(t). But it is more convenient to carry out the
construction presented in his work, and the extra-condition we have imposed is not a
serious restriction in possible applications of the result.

In the construction satisfying the above Approximation Theorem we shall construct
the empirical distribution function Pn(t) as an appropriate transform of the Brown-
ian bridge in such a way that its normalization Zn(t) is close to the Brownian bridge
B(t). The method of this construction is an appropriate adaptation of the quantile
transform to the present problem. The main difficulty is caused by the fact that the
multi-dimensional distributions of an empirical distribution function are also prescribed,
while the quantile transform only deals with the construction of random variables with a
prescribed one-dimensional distribution. To overcome this difficulty we shall construct
the (standardized) empirical distribution function Zn(t) by means of a fixed Brownian
bridge B(t) subsequently for newer and newer points t in such a way that the random
variable Zn(t) has that conditional distribution which the values of the previously con-
structed random variables Zn(s) prescribe. We do this subsequently, and in the l-th step
we define the process Zn(t) in the diadic points t = k2−l, k = 0, 1, . . . , 2l. In the present
problem the conditional distributions we have to work with can be well handled. The
construction gives a good approximation because in the l-th step we define the values
of the process in all points tk,l = k2−l, 1 ≤ k ≤ 2l, which is a relatively dense subset
of the interval [0, 1]. If the supremum of the process

√
n(Zn(t) − B(t)) in the already

constructed points increases in each step relatively little, then this method provides a
good approximation. By working out the details we can show that roughly speaking
the above supremum increases only with a constant in each step. In such a way we
get a construction for which the supremum of the difference

√
n(Zn(t) − B(t)) is less

than const. log n with probability almost one. It is worth mentioning that this result
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is sharp. The difference
√
n(Zn(t) − B(t)) is greater than const. log n with (another)

appropriate positive constant for an arbitrary construction. The proof of this statement
is considerably simpler than the proof of the Approximation Theorem, and we shall
discuss it in another series of problems.

To apply the quantile transform method in our problem we need a sharp limit
theorem for the conditional distribution function of the random variables Zn(t2)−Zn(t1)
under appropriate conditions. Moreover, to get sharp results it is not sufficient to have
a good limit theorem in the usual way. We need such large deviation type results which
also describe the goodness of approximation in the case of non-typical values or non-
typical conditions. We formulate a classical result of the large deviation theory in the
special case we need it. Then we formulate two problems whose solutions supply a good
bound on the goodness of the approximation of the quantile transformation in the case
we need it.

We shall apply the following notations. Let ϕ(x) = 1√
2π

e−x2/2 denote the standard

normal density and Φ(x) =
∫ x

−∞ ϕ(x) dx the standard normal distribution function. We
shall need the following result.

Theorem. Let Fn(x) be the standardization of the binomial distribution B
(

n, 1
2

)

with

parameters n and p = 1
2 , i.e. let Fn(x) = P

(

2
η1 + · · ·+ ηn − n

2√
n

< x

)

, where η1, . . . , ηn

are independent and identically distributed random variables, P (ηj = 1) = P (ηj =
0) = 1

2 , j = 1, . . . , n. Then there exist universal (independent of n) constants K > 0
and A > 0 in such a way that the distribution function Fn(x) satisfies the following
inequalities in the interval |x| ≤ A

√
n:

(1− Φ(x)) exp

{

−K(x3 + 1)√
n

}

≤ 1− Fn(x) ≤ (1− Φ(x)) exp

{

K(x3 + 1)√
n

}

Φ(−x) exp

{

−K(x3 + 1)√
n

}

≤ Fn(−x) ≤ Φ(−x) exp

{

K(x3 + 1)√
n

}

,

if 0 ≤ x ≤ A
√
n.

(The statement of this theorem actually holds for all constants A < 1
2 and appropriate

K = K(A), but we shall not need this sharper result.)

Let us remark that the above theorem is the special case of a more general result.
A B(n, 1

2 ) distributed random variable, as we have remarked in the formulation of this
theorem, can be represented as the sum of n independent B(1, 1

2 ) distributed random
variables. It follows from the general theory of the large deviations that the estimation
formulated in the theorem also holds for normalized sums of independent identically
distributed random variables if the summands have moment generating function, i.e. if
the distribution function F (x) of the summands satisfies the condition

∫

etxF ( dx) < ∞
if |t| < a with some appropriate constant a > 0. This result and its proof can also be
found in problem 22 of the series of problem The Theory of Large Deviation I. in my
homepage. (At present it exists only in Hungarian.)
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1. Problems

1.) There exist such constants C1 > 0 and C2 > 0 for which

C1(x+ 2) <
ϕ(x)

1− Φ(x)
< C2(x+ 2), if x ≥ −1

C1(x+ 2) <
ϕ(−x)

Φ(−x)
< C2(x+ 2), if x ≥ −1.

b.) There exist some constants C1 > 0 and C2 > 0 such that for all x > 0 and
|h| < x+ 1

e−C1h(x+2) <
1− Φ(x+ h)

1− Φ(x)
< e−C2h(x+2), if x ≥ 0, and h > 0,

eC2h(x+2) <
Φ(−x+ h)

Φ(−x)
< eC1h(x+2), if x ≥ 0 and h > 0,

and (considering the cases h > 0 and h < 0 separately)

eC1|h|(x+2) <
1− Φ(x+ h)

1− Φ(x)
< eC2|h|(x+2), if x ≥ 0, and h < 0,

e−C2|h|(x+2) <
Φ(−x+ h)

Φ(−x)
< e−C1|h|(x+2), if x ≥ 0 and h < 0.

Let η be a random variable with standard normal distribution and F (x) an arbi-
trary distribution function. It is known (see e.g. problem 7 in the series of problems
The relation between the closeness of probability measures and random variables that
the random variable ξ = F−1(Φ(η)) has distribution function F (x), where the inverse
function F−1(x) is defined as F−1(x) = sup{u : F (u) < x}, in the general case. (This
is the quantile transform.) In the next problem we give an estimate about the differ-
ence of the random variables η and the above constructed ξ if the distribution function
F (x) = Fn(x) of the random variable ξ is the normalization of the binomial distribu-
tion with parameters n and p = 1

2 , or a little bit more generally we consider such a

distribution function where we divide by a number

√
m

2
instead of the square root of

the variance

√
n

2
, and the numbers m and n are close to each other.

2.) Let Fm,n(x) be the distribution function of a random variable

ξm,n =
2√
m

(

ξ̄n − n

2

)

,

which is a linear transform of a binomial B(n, 1
2 ) distributed random variable ξ̄n.

That is, we define ξ̄n in the following way: Let χk, k = 1, . . . , n, P (χk = 0) =
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Approximation of the empirical distribution function

P (χk = 1) = 1
2 , be independent and identically distributed random variables, and

put ξ̄n =
n
∑

k=1

χk. We shall consider the case when |n−m| ≤ Bn with a sufficiently

small number B > 0. Let us prove with the help of the above formulated large
deviation Theorem that the distribution function Fn,m(x) satisfies the estimate

1− Fm,n(x) = (1− Φ(x)) exp







O





x3 + |n−m|√
n

(x2 + x) + 1
√
n











Fm,n(−x) = Φ(−x) exp







O





x3 + |n−m|√
n

(x2 + x) + 1
√
n











if 0 ≤ x ≤ A
√
n and |n − m| < Bn with sufficiently small constants A > 0 and

B > 0. The O(·) in the above formula is uniform in the variables n, m and x.

Let η be a random variable with standard normal distribution, and define an Fm,n

distributed random variable ξm,n = F−1
m,n(Φ(η)). Prove with the help of the previous

estimate that there exist constants A > 0 and K > 0 and a threshold n0 = n0(B)
in such a way that for all numbers n > n0

|ξm,n − η| < K
1 + η2 + (m−n)2

n√
n

on the set {|η| ≤ A
√
n}.

We give a short informal description of the construction which satisfies the Approx-
imation Theorem. Let us fix the Brownian bridge B(t). We construct the empirical
distribution function Pn(t) and its standardization Zn(t) =

√
n(Pn(t)− t), 0 ≤ t ≤ 1, in

a recursive way. After the l-th step the random variables Zn

(

k

2l

)

, k = 0, 1, . . . , 2l, are

already defined, and in the l+1-th step we construct the random variables Zn

(

2k + 1

2l+1

)

,

k = 0, 1, . . . , 2l − 1. In the definition of these random variables we have to handle the
conditional joint distribution of these random variables under the condition that the pre-

viously constructed random variables Zn

(

k

2l

)

, k = 0, 1, . . . , 2l, take prescribed values.

It is more convenient to work with the differences

Zn

(

2k + 1

2l+1

)

− Zn

(

k

2l

)

or Zn

(

k + 1

2l

)

− Zn

(

2k + 1

2l+1

)

instead of the random variables Zn

(

2k + 1

2l+1

)

. We have to describe the conditional joint

distribution of these differences under the condition that the values of the random vari-

ables Zn

(

k

2l

)

, k = 0, 1, . . . , 2l, are prescribed. Besides, we investigate the analogous
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problem about the Brownian distribution. We describe the conditional joint distribu-

tion of the random vector whose elements are the differences B

(

2k + 1

2l+1

)

−B

(

k

2l

)

or

B

(

k + 1

2l

)

−B

(

2k + 1

2l+1

)

under the condition that the values of the random variables

B

(

k

2l

)

, k = 1, . . . , 2l, are prescribed. We shall see that because of the Markov prop-

erty of the processes Zn(t) and B(t) the coordinates of the above random vectors are
conditionally independent under the conditions we have imposed. We shall construct
the above differences of the standardized empirical distribution function by means of a
(conditional) quantile transform of the appropriate differences of the Brownian bridge.
The word conditional refers to the fact that we shall work with conditional distribu-
tions. As a detailed analysis will later show we can guarantee in such a way that the
process we shall define has the right multi-dimensional distributions. The content of the
expression “conditional quantile transform” will be clearer when the details are worked
out.

We shall see that by applying the above sketched argument we have to work with
such conditional distributions which can be well approximated by means of the Theorem
formulated at the beginning of this text. In particular, the result of problem 2 will be
useful. We shall apply the (conditional) quantile transform directly not to the differences
of the processes Zn(t) and B(t) mentioned in the previous paragraph, but we take
out from this differences their conditional expectation under the condition that the
already defined random variables have their right value. In such a way we shall apply
the (conditional) quantile transform between two (conditional) distribution functions
whose expected values agree, but whose variances may differ. This is the reason why we
considered in problem 2 the approximation of a not necessarily appropriately normalized
binomially distributed random variable by a standard normal random variable.

The conditional expectations appearing in this procedure are simple, hence we can
get a good bound on the supremum of the absolute value of the random variables

Zn

(

k + 1

2l

)

−B

(

k + 1

2l

)

, k = 0, 1, . . . , 2l,

if we apply the above construction. The bound obtained in such a way is not sufficient
in itself to prove the Approximation Theorem. But it is such an expression which can
be bounded well by means of classical methods of the Probability Theory, and by doing
this we get the desired result.

The crucial part of the proof of the Approximation Theorem will consist of working
out the details of the above procedure. To carry it out we introduce some notations.

Let a standardized empirical process Zn(t) or a Brownian bridge B(t) be given.
We shall define some random vectors by means of “successive halving” of the parameter
t, 0 ≤ t ≤ 1, of these processes together with an appropriate normalization. In the
subsequent problems 3 and 4 we formulate the most important properties of these
random vectors. These properties will suggest the construction of a process Zn(t) which
satisfies the Approximation Theorem.
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Put

Uk,l = 2(l+1)/2

[

B

(

k

2l

)

−B

(

k − 1

2l

)]

, k = 1, 2, . . . , 2l, l = 0, 1, 2, . . .
(1a)

Vk,l(n) = 2(l+1)/2

[

Zn

(

k

2l

)

− Zn

(

k − 1

2l

)]

, k = 1, 2, . . . , 2l, l = 0, 1, 2, . . . ,
(1b)

i.e. we consider an appropriate normalization of the differences of the processes B(t)
and Zn(t) between the diadic points k2−l, k = 0, 1, . . . , 2l. Let us also introduce the
σ-algebras

Fl = B
{

Uk,l, 1 ≤ k ≤ 2l
}

, l = 1, 2, . . .

and

Gl = Gl(n) = B
{

Vk,l(n), 1 ≤ k ≤ 2l
}

, l = 1, 2, . . . (2)

Furthermore, we define the random vectors

Ul = {Uk,l, k = 1, . . . , 2l}, l = 1, 2, . . .

Vl(n) = {Vk,l(n), k = 1, . . . , 2l}, l = 1, 2, . . .
(3)

and

Ūl+1 = {Ū1,l+1, . . . , Ū2l+1,l+1}, V̄l+1(n) = {V̄1,l+1(n), . . . , V̄2l+1,l+1(n)},

where

Ūk,l+1 = Uk,l+1 − E(Uk,l+1|Fl), V̄k,l+1(n) = Vk,l+1(n)− E(Vk,l+1(n)|Gl(n))
(4)

1 ≤ k ≤ 2l+1,

and l = 0, 1, 2, . . . .

In the above definitions we could have chosen a different normalization instead of
the normalization 2(l+1)/2. This normalization is natural, because as the subsequent
problems show the conditional expectation of the random variables Ūk,l and V̄k,l(n) is
zero and their conditional variance is almost one under the conditions we shall consider.

3.) Let us apply the previous notations. Let us first observe that the σ-algebra Gl(n)
consists of the following atoms B(m1, . . . ,m2l):

B(m1, . . . ,m2l) =

{

ω : Vk,l(n)(ω) =
2(l+1)/2

√
n

[mk − n2−l], k = 1, . . . , 2l
}

,
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where the numbers mk, 1 ≤ k ≤ 2l, are non-negative, and
2l
∑

k=1

mk = n. (The num-

ber mk agrees with the number of those points in the sample ζ1, . . . , ζn determing
the process Zn(t) which fall into the interval [(k − 1)2−l, k2−l].) The relation

E (V2k−1,l+1(n)|Gl(n)) = E (V2k,l+1(n)|Gl(n)) =
1√
2
Vk,l(n), k = 1, . . . , 2l

holds. Hence

V̄2k−1,l+1(n) = −V̄2k,l+1(n) = V2k−1,l+1(n)−
1√
2
Vk,l(n), k = 1, . . . , 2l.

Let us consider the conditional distribution of the random vector V̄l+1(n) defined
in formula (4) with respect to the σ-algebra Gl(n). On the atom B(m1, . . . ,m2l)
of the σ-algebra Gl(n) this conditional distribution agrees with the distribution of
the random vector

X = {Xk, k = 1, . . . , 2l+1} = {Xk(m1, . . . ,m2l), k = 1, . . . , 2l+1}

where X2k−1 = −X2k, k = 1, 2, . . . , 2l, and the random variables X2k−1, k =
1, . . . , 2l, are independent. Furthermore, the distribution of the random variable

X2k−1 agrees with the distribution of the random variable

(

2l+2

n

)1/2

(X̄2k−1 −

EX̄2k−1), where X̄2k−1 has binomial distribution B(mk,
1
2 ) with parameters mk

and 1
2 , i.e.

P (X̄2k−1 = j) =

(

mk

j

)

2−mk , j = 0, 1, . . . ,mk .

4.) Let us apply the previous notations. The identity

E(U2k−1,l+1|Fl) = E(U2k,l+1|Fl) =
1√
2
Uk,l k = 1, . . . , 2l,

holds. Hence Ū2k−1,l+1 = −Ū2k,l+1 = U2k−1,l+1 −
1√
2
Uk,l for all k = 1, . . . , 2l.

The random vector Ūl+1 whose elements are defined in formula (4) is independent of
the σ-algebra Fl. Its distribution agrees with the distribution of the random vector
Y1, Y2, . . . , Y2l+1 , where Y2k−1 = −Y2k, k = 1, . . . , 2l, and Y2k−1, k = 1, . . . , 2l, are
independent random variables with standard normal distribution.

It is worth mentioning that the conditional distribution of the random variables
Ūk,l+1 (and in particular its conditional variance) with respect to the σ-algebra Fl does
not depend on this condition. These random variables have such a property, because in
this problem jointly Gaussian random variables are considered, and by some standard
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results of the probability theory the joint conditional distribution of certain coordinates
of a Gaussian random vector with respect to the remaining coordinates is Gaussian
with such a covariance matrix which does not depend on the value of the random
variables appearing in the condition. The conditional distribution and variance of the
random variables considered in Problem 3 depend on the values of the random variables
appearing in the condition, but this dependence is weak. This remark will not be applied
in the subsequent discussion, but it may help to understand the ideas behind the proof.

Now we give the precise construction of the standardized empirical distribution
function Zn(t), 0 ≤ t ≤ 1. Put Zn(0) = Zn(1) = 0, and let us define the random

variables Zn

(

k

2l

)

, k = 0, 1, . . . , 2l, by recursion with respect to the parameter l. If

the l-th step of the construction is already done, i.e. the random variables Zn

(

k

2l

)

,

k = 0, 1, . . . , 2l, are already constructed, then let us define the quantities

mk = mk(l) =
√
n

(

Zn

(

k

2l

)

− Zn

(

k − 1

2l

))

+
n

2l
, k = 1, . . . , 2l. (5a)

The definition of the quantity mk = mk(l) has the following content. It tells us that
among the independent, in the interval [0, 1] uniformly distributed random variables
ζ1, . . . , ζn which determine the standardized empirical distribution function Zn(t) how
many random variables take their values in the interval [(k − 1)2−l, k2−l]. We shall
exploit that for prescribed numbersmk = mk(l), 1 ≤ k ≤ 2l, the number of points falling
in the interval [(2k−2)2−l−1, (2k−1)2−l−1] is a binomially distributed random variable
with parameters mk and 1

2 . Furthermore, these random variables are conditionally
independent for different indices k, under the condition that the values mk, 1 ≤ k ≤ 2l,
are prescribed. In the construction we define these random variables, or because of some
technical reasons their appropriate linear transformation, as the quantile transform of
some random variables which are natural linear transforms of the Brownian bridge
B(t). With the help of these random variables we can express the random variables

Zn

(

2k − 1

2l+1

)

, k = 1, . . . , l, and thus to carry out the l + 1-th step of the recursion.

Now we describe the construction by means of explicit formulas. Let F̄m(x) denote
the binomial B(m, 1

2 ) distribution function with parameters m and 1
2 , and put

Fmk,l(x) = Fmk,l,n(x) = F̄mk

( √
nx

2(l+2)/2
+

mk

2

)

(5a′)

with the number mk = mk(l) defined in formula (5a). This means in particular that
the distribution function Fmk,l(x) is the “almost standardization” of the distribution
function F̄mk

(x). Indeed, Fmk,l(x) is the distribution function of such a transformation
of a B(mk,

1
2 ) distributed random variable in which we take from this random variable

its expected value mk

2 , but divide by
√
n

2·2l/2 instead of the square root of the variance
1
2

√
mk. Put

V̄2k−1,l+1(n) = F−1
mk,l

(

Φ(Ū2k−1,l+1)
)

, k = 1, . . . , 2l, (5b)
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where F−1(x) = sup{u : F (u) < x}, the number mk = mk(l) and distribution function
Fmk,l(x) are defined in formulas (5a) and (5a′), and the random variable Ū2k−1,l+1) is
defined in formulas (1)–(4) by means of the Brownian bridge we want to approximate by
a standardized empirical function. This means that the random variable V̄2k−1,l+1(n)
is the quantile transform of the random variable Ū2k−1,l+1 which is a functional of the
originally fixed Brownian bridge B(t), 0 ≤ t ≤ 1, and has standard normal distribution.
We have defined the distribution function Fmk,l(x) in the above quantile transform in
such a way as the properties of the distributions of the random variables V̄2k−1,l+1(n)
defined in formulas (1)—(4) suggest.

Let us also define the random variables

V2k−1,l+1(n) = V̄2k−1,l+1(n) +
Vk,l(n)√

2
(5c)

( = V̄2k−1,l+1(n) + E (V2k−1,l+1(n)|Gl(n)) , ) k = 1, . . . , 2l,

and

Zn

(

2k − 1

2(l+1)

)

= Zn

(

2k − 2

2(l+1)

)

+ 2−(l+2)/2V2k−1,l+1(n), k = 1, . . . , 2l. (5d)

These definitions follow the following line of argument. First we construct the random
variables V̄2k−1,l+1(n) by means of quantile transform. Then we define the remaining
random variables with the help of these random variables V̄2k−1,l+1(n) by “inverting”
formulas (1)—(4). In this “inversion” we also apply the results of problem 3. This
principle also suggest the following formulas. Put

V2k,l+1(n) =
√
2Vk,l(n)− V2k−1,l+1(n) (5e)

and

V̄2k,l+1(n) = −V̄2k−1,l+1(n), (5f)

because formulas (1)—(4) and the results of problem 3 suggest such a definition. In the
subsequent problems we complete the construction of the sequence of random variables
ζ1, . . . , ζn which should satisfy should Approximation Theorem, and show that they are
independent random variables with uniform distribution in the interval [0, 1].

5a.) Let us fix an integer L > 0, and let us construct for all constants l = 0, 1, . . . , L− 1
the random variables Zn(k2

−(l+1)), Vk,l+1(n), V̄k,l+1(n), 1 ≤ k ≤ 2(l+1), through
formulas (5a)–(5f) by induction with respect to the parameter l. (We define
Zn(0) ≡ Zn(1) ≡ 0, V0,1(n) ≡ 0 and m0 = n which relations are needed to
start this construction for l = 0). The distribution of the random vector Zn(k2

−L),
1 ≤ k ≤ 2L, defined in such a way agrees with the joint distribution of the values
of a normalized empirical distribution function in the coordinate points t = k2−L,
k = 1, . . . , 2L. The random vectors Vk,l(n) and V̄k,l(n) constructed in such a way

10
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and the process Zn(t) (more precisely its restriction to the points a k2−L which
we have constructed through this procedure) satisfy the properties (1)—(4). More
precisely they satisfy formula (1b) for l ≤ L and that part of formula (4) which
contains the random variables V and V̄ with indices l ≤ L − 1. Furthermore, the
relation Gl(n) ⊂ Fl holds for all numbers l ≤ L.

5b.) Let us consider the random variables Zn(k2
−L), 0 ≤ k ≤ 2L, defined in the previous

problem, (Zn(0) ≡ 0), and put mk =
√
n
(

Zn(k2
−L)− Zn((k − 1)2−L)

)

+ n2−L,

1 ≤ k ≤ 2L. For all numbers k = 1, . . . , 2L let us construct a sequence ζ
(k)
1 , . . . , ζ

(k)
mk

of independent and in the interval [(k − 1)2−L, k2−L] uniformly distributed ran-
dom variables consisting of mk terms. For different numbers k let these sequences

ζ
(k)
1 , . . . , ζ

(k)
mk be independent of each other.

Let us consider the union of these random sequences, and put the elements of this
unified sequence in an increasing order. The random sequence 0 ≤ ζ∗1 ≤ ζ∗2 ≤ · · · ≤
ζ∗n obtained in such a way is an ordered sample made from n independent and
in the interval [0, 1] uniformly distributed random variables, i.e. its distribution
agrees with the distribution of a sequence which we obtain by putting the elements
of a sequence ζ1, . . . , ζn of independent random variables with uniform distribution
on the interval [0, 1] into increasing order. If we choose one of the permutations
(π(1), . . . , π(n)) of the set {1, . . . , n} randomly and independently of the random
sequence 0 ≤ ζ∗1 ≤ ζ∗2 ≤ · · · ≤ ζ∗n, and in such a way that all possible permutations
of the set {1, . . . , n} are chosen with the same probability 1

n! , then the coordinates
of the random vectors (ζ1, . . . , ζn) = (ζ∗π(1), . . . , ζ

∗
π(n)) are independent and in the

interval [0, 1] uniformly distributed random variables.

Let us construct the standardized empirical distribution function Zn(t) with the
help of the above constructed sequence (ζ1, . . . , ζn) of independent and in the inter-
val [0, 1] uniformly distributed random variables. The values of this standardized
empirical distribution functions in the points t = k2−L, 0 ≤ k ≤ 2L, equal the
previously defined random variables Zn(k2

−L), 1 ≤ k ≤ 2L.

We want to show that the originally given Brownian bridge B(t) and standardized
empirical distribution function Zn(t) made from the sequence of independent and in
the interval [0, 1] uniformly distributed random variables ζ1, . . . , ζn constructed in prob-
lems 5a and 5b satisfy the Approximation Theorem if the number L = L(n) of halving
in problems 5a and 5b is sufficiently large. For instance L = L(n) = n is an appropriate
choice. Furthermore, we assume that n ≥ n0 with a sufficiently large fix number n0. In
order to prove the Approximation Theorem we shall estimate the probabilities

P

(

sup
1≤k≤2l

√
n|Zn(k2

−l)−B(k2−l)| > x

2

)

(6a)

P

(

√
n sup

(k−1)2−l≤t≤k2−l

∣

∣

∣

∣

Zn(t)− Zn

(

k − 1

2l

)∣

∣

∣

∣

>
x

4

)

(6b)

11
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and

P

(

√
n sup

(k−1)2−l≤t≤k2−l

∣

∣

∣

∣

B(t)−B

(

k − 1

2l

)∣

∣

∣

∣

>
x

4

)

(6c)

for all numbers x > C0 log n, with appropriate constants C0 > 0, l = l(x) and all
numbers 1 ≤ k ≤ 2l. We shall deduce the Approximation Theorem from a good bound
on the above probability together with an appropriate choice of the parameter l = l(x)
in them.

The hardest and most important task is to estimate the probability in formula (6a).
Let us also remark that from the above expressions only formula (6a) depends on the
construction, i.e. on the joint distribution of the processes Zn(t) and B(t). To give a
good estimate on it first we formulate the following problem 6, whose solution follows
from the result of problem 2 and the structure of the above described construction of
the process Zn(t).

6.) Let Uk,l, Vk,l(n) Ūk,l and V̄k,l(n) be the random variables defined by means of
formulas (1)—(4) through a Brownian bridge B(t) and the previously constructed
empirical process Zn(t). Let us consider such a number l for which l ≤ L, where L
is the number appearing in the construction of the standardized empirical number
Zn(t), “the number of halving”. Let us show that there exist some constants K > 0
and A > 0 such that the inequalities

2−(l+2)/2
∣

∣Ū2k−1,l+1 − V̄2k−1,l+1(n)
∣

∣ = 2−(l+2)/2
∣

∣Ū2k,l+1 − V̄2k,l+1(n)
∣

∣

<
K√
n

(

Ū2
2k−1,l+1 + V 2

k,l(n) + 1
)

=
K√
n

(

Ū2
2k,l+1 + V 2

k,l(n) + 1
)

,

(7a)

and

max
(

2−(l+2)/2 |U2k−1,l+1 − V2k−1,l+1(n)| , 2−(l+2)/2 |U2k,l+1 − V2k,l+1(n)|
)

<
K√
n

(

Ū2
2k−1,l+1 + V 2

k,l(n) + 1
)

+
2−(l+1)/2

2
|Uk,l − Vk,l(n)|

=
K√
n

(

Ū2
2k,l+1 + V 2

k,l(n) + 1
)

+
2−(l+1)/2

2
|Uk,l − Vk,l(n)|

(7b)

hold for all 1 ≤ k ≤ 2l if |Ū2k−1,l+1| < A
√
n2−l/2 and |Vk,l(n)| < A

√
n2−l/2.

The result of problem 6 gives a good estimate on the goodness of the quantile trans-
form approximation applied in our construction. Let us remark that the distribution of
the term (Ū2

2k,l+1 + V 2
k,l(n) + 1) at the right hand side of the expressions investigated

in problem 6 can be well bounded, and its distribution is exponentially decreasing at

12
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infinity. The estimates given in problem 6 are more useful for us than a sharp estimate
on the distribution of the expression at the left-hand side of these expressions. The
reason for it is that the differences of the form Zn(k2

−l) − B(k2−l) which we want to
study can be expressed as appropriate linear combinations of such expressions whose
absolute values are bounded in problem 6. We get a better bound on these linear com-
binations and as a consequence on the distribution of the expression bounded in the
Approximation Theorem if we exploit not only the smallness of the terms in these linear
combinations but also the cancellations among them.

For the sake of further investigations we define the order of a diadic rational number.
We say that the diadic order of the number t = k2−l, 0 ≤ t ≤ 1, is l, if the number
k in the above presentation is odd. Let us consider a number t = k2−l whose diadic
order is l. We claim that there exists a sequence of intervals Ij , 0 ≤ j ≤ l, in such
a way that I0 = [0, 1], I0 ⊃ I1 ⊃ · · · ⊃ Il ∋ t, and Ij = [uj , vj ] = [uj(t), vj(t)] =
[kj(t)2

−j , (kj(t) + 1)2−j ], where kj(t) is an integer, i.e. Ij is an interval of length 2−j ,
and its endpoints are diadic rational numbers whose diadic order is not greater than j.

Indeed, put I0 = [0, 1], and let I1 be those interval between the intervals [0, 1
2 ] and

[ 12 , 1] which contains the point t. If the interval Ij = [uj , uj + 2−j ] is already defined
for some j < l, then let Ij+1 be that interval [uj , uj + 2−j−1] between the intervals
[uj +2−j−1, uj +2−j ] which contains the point t. For j+1 < l this definition is unique.
For j + 1 = l both interval could be chosen. For the sake of a definite definition in this
case we define the interval Il as Il = [t, t+ 2−l].

First we show that the random variables Zn(t) and B(t) can be expressed as an
appropriate linear combination of the random variables Vk,j(n) and Uk,j corresponding
to the above constructed intervals Ij = Ij(t).

7.) Let t = k2−l be a diadic rational number with diadic order l. Let us consider the
above defined intervals Ij = Ij(t) = [uj , vj ], 0 ≤ j ≤ l, and define the quantities
ε(j) = ε(j, t), 1 ≤ j ≤ l, by the formula ε(j) = 0, if uj−1 = uj , and ε(j) = 1,
if uj > uj−1, 1 ≤ j ≤ l. Let us introduce the notation kj = uj2

j , 0 ≤ j ≤ l.
Furthermore, let Uk,l, Vk,l(n) and Ūk,l, V̄k,l(n) be the random variables defined in
formula (1)—(4). Then

Zn(t) = Zn

(

k2−l
)

=
l
∑

j=1

ε(j)2−(j+1)/2
(√

2Vkj−1+1,j−1(n)− Vkj+1,j(n)
)

B(t) = B
(

k2−l
)

=
l
∑

j=1

ε(j)2−(j+1)/2
(√

2Ukj−1+1,j−1 − Ukj+1,j

)

.

(8a)

Furthermore,

2−(j+1)/2
∣

∣Vkj+1,j(n)− Ukj+1,j

∣

∣

≤ K√
n

(

j−1
∑

s=0

2−s
(

Ū2
kj−s+1,j−s + V 2

kj−s−1+1,j−s−1(n) + 1
)

)

,
(8b)
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and √
n|Zn(t)−B(t)| =

√
n
∣

∣Zn(k2
−l)−B(k(2−l)

∣

∣

≤ 4K





l
∑

j=1

(

Ū2
kj+1,j + V 2

kj−1+1,j−1(n) + 1
)





(8c)

on the set

B = B(t) = B(k2−l)

=
l
⋂

j=1

({

ω : |Ū2kj−1+1,j(ω)| <
A
√
n

2j/2

}

∩
{

ω : |Vkj−1+1,j−1(n)(ω)| <
A
√
n

2j/2

})

,

where the constants K > 0 and A > 0 agree with those introduced in problem 6.

We shall show that the probability in formula (6a) will be bounded in the following
way.

P

(

sup
1≤k≤2n

√
n
∣

∣Zn

(

k2−l
)

−B
(

k2−l
)∣

∣ >
x

2

)

< e−Dx (9)

with an appropriate number D > 0, if C0 log n ≤ x ≤ C−1n and 2−l ≥ Cxn−1,

where C0 > 0 and C > 0 are sufficiently large positive numbers n ≥ n0, and n0 =
n0(C0, C) is an appropriate threshold index.

The restriction x > C0 log n in the estimate (9) makes no problem in the proof of
the Approximation Theorem because in this result only the case x ≥ const. log n has
to be considered. Neither the condition x ≤ C−1n causes a big problem, because the
case x ≥ C−1n can be simply handled in the proof of the Approximation Theorem. The
inequality 2−l ≤ Cxn−1 imposed for the number l = l(x) tells us how dense subset can
be taken in the estimate (9). It will turn out that this subset is sufficiently dense for
our purposes, and the Approximation Theorem will follow from the estimate (9) and a
good bound on the expressions in formulas (6b) and (6c).

Formula (9) will be deduced from formula (8c) and the results of the subsequent
problems 8–12. These problems contain the conditions imposed in formula (9).

8.) The joint distribution of the random variables Ū2kj−1+1,j , 1 ≤ j ≤ l appearing in
inequality (8c) and the joint distribution of the random variables Ū1,j , 1 ≤ j ≤ l,
agree. Similarly, the joint distribution of the random variables Vkj−1+1,j−1(n), 1 ≤
j ≤ l, and V1,j−1(n), 1 ≤ j ≤ l, 1 ≤ j ≤ l, agree. Furthermore, the random variables
Ū1,j , 1 ≤ j ≤ l are independent, and they have standard normal distribution.

Let the inequalities C0 log n ≤ x ≤ C−1n and 2−l ≥ C x
n hold with some sufficiently

large constants C0 > 0 and C > 0. Then the probability of the set B introduced in
problem 7 satisfies the inequality 1− P (B) ≤ e−D1x with an appropriate constant
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D1 = D1(C) > 0. If the above considered constant C > 0 is sufficiently large and
n ≥ n0, where n0 is an appropriate threshold, then

P



18K
l
∑

j=1

Ū2
1,j > x



 ≤ e−D2x

with an appropriate number D2 > 0. (In this formula the same constant K appears
as in the problems 6 and 7.)

We remark that the last estimate (if we are not interested in the choice of the
constants in them) is sharp. Indeed, even a single term of this sum, being the square of
a random variable with standard normal distribution, takes a value larger than x > 0
with probability larger than e−const. x. This means that disregarding the constant in the
exponent we can get as good an estimate for the probability that this sum consisting
of l terms is greater than x, as for the probability of the event that a single term of the
sum is larger than this bound. Such an estimate holds if the number of terms are chosen
so that the expected value of the sum is smaller than αx with some number 0 < α < 1.

To prove formula (9) we shall show that

P



18K
l
∑

j=1

Vkj−1+1,j−1(n)
2 > x



 = P



18K
l
∑

j=1

V1,j−1(n)
2 > x





= P



18K

l
∑

j=1

2jZn

(

1

2j−1

)2

> x



 ≤ e−D3x

(10)

with some appropriate constant D3 > 0, if C0 log n ≤ x ≤ C−1n and 2−l ≥ Cxn−1

with appropriate constants C0 > 0 and C > 0. (The first two identities in formula (10)
follow from the result of problem 8 and the definition of the random variables appearing
in formula (10).) First we consider the following problem.

9.) Let us deduce formula (9) from the results of problems 7 and 8 and the estimate
in formula (10).

Let us remark that formula (10) is similar to the last estimate of problem 8. Fur-
thermore, the standardized empirical process Zn(t) behaves similarly to the Brownian
bridge B(t). It is not difficult to prove such an analog of formula (10) where the ran-
dom variables Vkj−1+1,j−1(n) are replaced by the random variables Ukj−1+1,j−1. This
suggests that estimate (10) should also hold. The main technical difficulty in its proof
arises because the standardized empirical distribution function Zn(t) is not a process
with independent increment. Hence the most powerful methods of probability theory
which are mainly appropriate for the investigation of processes with independent in-
crements do not supply a simply way to prove formula (10). We shall overcome this
difficulty by applying a classical method, the so-called Poissonian approximation.
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First we describe the Poissonian approximation we shall apply and explain how
it helps to simplify the proof of formula (10). Let ζk, k = 1, 2, . . . , be a sequence of
independent and in the interval [0, 1] uniformly distributed random variables, and let κn

be a Poisson distributed random variable with parameter n, i.e. let P (κn = j) =
nj

j!
e−n,

j = 0, 1, 2, . . . , which is independent of the sequence ζk, k = 1, 2, . . . . Define the
stochastic processes

Zn(t) =
1√
n

(

n
∑

k=1

I({ζk ≤ t})− nt

)

(11a)

Xn(t) =
1√
n

(

κn
∑

k=1

I({ζk ≤ t})− nt

)

(11b)

and

Yn(t) =
1√
n

κn
∑

k=n

I({ζk ≤ t}), 0 ≤ t ≤ 1, (11c)

where I(A) denotes the indicator set of the set A, and in the case κn < n the sum which

defines the random process Yn(t) is meant as
κn
∑

k=n

= −
n
∑

k=κn

. Then Zn(t), 0 ≤ t ≤ 1, is

a standardized empirical distribution function, and Zn(t) = Xn(t)− Yn(t). Hence it is
not difficult to show that

P



18K
l
∑

j=1

2jZn

(

1

2j−1

)2

> x



 ≤ P



72K
l
∑

j=1

2jXn

(

1

2j−1

)2

> x





+ P



72K

l
∑

j=1

2jYn

(

1

2j−1

)2

> x



 .

(12)

The proof of the inequality (12) will be part of the problems 10 and 11. We shall be
able to bound the second term at the right-hand side of inequality (12), because the
sum defining the random variable Yn(·) contains relatively few, |κn − n| terms. Hence
it can be bounded with the help of relatively weak estimations. This will be done in
problems 10 and 11.

The estimation of the first term at the right-hand side of inequality is relatively
simple, because Xn(t) is a standardized Poisson process with parameter n, i.e. for
arbitrary constants 0 ≤ t0 < t1 < · · · < tk ≤ 1 the random variables Xn(tj)−Xn(tj−1),
1 ≤ j ≤ k, are independent, and the random variable

√
n (Xn(tj)−Xn(tj−1)) + n(tj −

tj−1) is Poisson distributed with parameter n(tj − tj−1). It is a well known result of
probability theory that if the above defined process Xn(t) is considered, then the process√
nXn(t) + nt, 0 ≤ t ≤ 1, is a Poisson process with parameter n. (The proof of this
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result is also contained in the solution of problem 2 in the series of problems Poisson
processes on my homepage, but it exists now only in Hungarian.)

10.) Let us prove formula (12). Let us also show that if κn is a Poisson distributed
random variables with parameter n, then for all numbers y such that 0 ≤ y ≤ B1

√
n

with some constant B1 > 0 there exists a constant B2 = B2(B1) > 0 such that

P (|κn − n| ≥ y) ≤ e−B2y
2/n.

Let us fix some positive real number x > 0 and positive integer l. Let ζk, k =
1, 2, . . . , be a sequence of independent and in the interval [0, 1] uniformly distributed
random variables, and let us define the following stochastic processes Ȳn,m(t) and
random variables ξk:

Ȳn,m(t) =
1√
n

m
∑

k=1

I({ζk ≤ t}), m = 0, 1, 2, . . . ,

ξk = ξk,l =
l
∑

j=1

2j/2I

(

ζk <
1

2j−1

)

, k = 1, 2, . . . .

Then for arbitrary an constant B > 0 the following relation holds:

P



72K

l
∑

j=1

2jYn

(

1

2j−1

)2

> x



 ≤ P
(

|κn − n| > B
√
nx
)

+ P





√
72K

l
∑

j=1

2j/2Ȳn,B
√
nx

(

1

2j−1

)

>
√
x



 (13)

= P
(

|κn − n| > B
√
nx
)

+ P





√
72K√
n

B
√
nx

∑

k=1

ξk >
√
x



 .

The random variables ξk = ξk,l, k = 1, 2, . . . , defined in this problem are indepen-
dent and identically distributed.

We want to give an in the infinity exponentially decreasing bound for the second
term at the right-hand side of formula (12). To do this it is enough to give a good bound
on the expression at the right-hand side of formula (13). To do this we have to bound
the probability of such an event that the sum of certain independent random variables
is greater than a given number. The probability theory has standard methods for the
investigation of such problems, and they can be applied also in the present case.

If we want to give a good bound on the probability that a random variable S takes
a value greater than A = A(x) with some number A depending on x, more explicitly if
we want to give an upper bound of the form e−const. x for the probability of this event,
then the following argument is often useful. The inequality P (S > A) = P

(

x
AS > x

)

≤
e−xE exp{ x

AS} holds. If we can show that E exp{ x
AS} ≤ eαx with some constant α < 1,

17
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then we get the desired estimate. In the next problem we want to show that this method
also works in the case we are interested in.

11.) Let us apply the notations introduced in the previous problem. Let us consider
such real constant x > 0 and positive integer l > 0 which satisfy the inequalities
C0 log n < x < C−1n and 2−l > Cxn−1 with some fixed constants C > 0 and
C1 > 0. Let us show that in this case there exists a constant K̄ = K̄(C) > 0 such
that for all sufficiently large n

E exp

{√
x√
n
ξk

}

≤ 1 +
K̄
√
x√
n

.

Let us prove with the help of the above estimate and the result of problem 10 (by
choosing the constant B > 0 in it sufficiently small), that for such constants x and
l which satisfy the above conditions the inequality

P



72K
l
∑

j=1

2jYn

(

1

2j−1

)2

> x



 < e−D4x (14)

holds with a sufficiently small constant D4 > 0 for all sufficiently large n.

We also want to give a good bound on the distribution of the first term at the right-
hand side of formula (12). The standardized Poisson process appearing here is a process
with independent increments. But the terms in the sum we have to investigate, the

random variablesXn

(

2−j−1
)2

are not independent, since these terms are the increments
of the process Xn(t) in the overlapping intervals [0, 2−j−1]. But it is relatively simple
to overcome this difficulty, if we write the random variable Xn

(

2−j−1
)

as the sum of
the increment of the process Xn(t) on appropriate disjoint intervals, then we bound the
square of the sums got in this way by the Cauchy–Schwarz inequality and sum up these
inequalities. In such a way we can write that

2jXn

(

1

2j−1

)2

= 2j

(

l
∑

k=j

2−(k−j)/4 · 2(k−j)/4

[

Xn

(

1

2k−1

)

−Xn

(

1

2k

)]

+ 2−(l−j)/4 · 2(l−j)/4Xn

(

1

2l

))2

(15)

≤ 2jB





l
∑

k=j

2(k−j)/2

[

Xn

(

1

2k−1

)

−Xn

(

1

2k

)]2

+ 2(l−j)/2X2
n

(

1

2l

)





for all numbers j = 1, . . . , l with the constant B = Bj =
l
∑

k=j

2−(k−j)/2 + 2−(l−j)/2 < 5.

We want to show with the help of the inequality (15) that the estimation of the
first term in formula (12) can be reduced to the estimation of sums of appropriate
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linear combination of squares of independent standardized Poisson distributed random
variables. The problem which arises in such a way is very similar to the last estimate
in problem 8, and it can be solved similarly. However, a new difficulty appears when
handling this problem, because the square of a standardized Poisson distributed random
variable — unlike the square of a normally distributed random variable — has no expo-
nential moments. This difficulty can be overcome by a natural truncation of the terms
in the sum under consideration. The contribution of the terms with too large values
have only negligible contribution to the sum, and the truncated random variables have
finite exponential moments which can be well bounded. Let us also remark that here we
did not really exploited that we work with Poissonian distributed random variables. In
the case when the approximation of partial sums of independent random variables with
Brownian motion is investigated, then a similar problem discussed appears, but in that
problem sums of independent random variables play the role of the Poisson process.
It can be solved in the same way because sums of independent random variables with
exponential moments have a similarly good Gaussian approximation as a Poissonian
random variable with a large parameter.

12.) Let us show that

P



72K
l
∑

j=1

2jXn

(

1

2j−1

)2

> x





≤ P

(

1500K

(

l
∑

k=1

2k

n
(ηk − Eηk)

2 +
2l

n
(ηl+1 − Eηl+1)

2

)

> x

)

,

(16)

where ηk, k = 1, . . . , l+1, are independent random variables, ηk has Poissonian dis-
tribution with parameter λk = λk,n = n2−k, if 1 ≤ k ≤ l, and ηl+1 has Poissonian
distribution with parameter λl+1 = λl+1,n = λl.

Let us define the truncation η̄k = η̄k(n) of the random variables ηk, 1 ≤ k ≤ l + 1
in the following way:

η̄k =

{

ηk − Eηk if |ηk − Eηj | < n2−k

0 if |ηk − Eηk| ≥ n2−k
k = 1, . . . , l + 1.

Then the following inequalities hold: P (|ηk − Eηk| > u) ≤ 2 exp

{

− u2

8n2−k

}

, if

u < n2−k, in particular P (|ηk − Eηk| ≥ n2−k) ≤ 2 exp
{

− n

2(k+3)

}

. Furthermore,

E exp

{

2k−4

n
η̄2k

}

≤ B with appropriate constant B > 0 (independent of the pa-

rameter n) for all 1 ≤ k ≤ l + 1.

Let us consider a real number x > 0 and an integer l > 0 which satisfy the inequal-
ities C0 log n < x < C−1n and 2−l > Cxn−1 with appropriate constants C > 0 and
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C0 > 0, and let the relation n ≥ n0 hold, where n0 = n0(C,C0) is an appropriate
threshold. Let us show in this case that

P



72K

l
∑

j=1

2jXn

(

1

2j−1

)2

> x



 ≤ e−D5x (17)

with an appropriate constant D5 > 0. Let us show that formulas (10) and (9)
follow from the already proved inequalities.

To carry out the proof of the Approximation Theorem we still need a good estimate
on the probabilities in formulas (6b) and (6c). First we formulate a Statement which
we shall prove and which supplies great help in bounding the probabilities in formulas
(6b) and (6c).

Statement: Let B(t), 0 ≤ t ≤ 1, be a Brownian bridge, and Zn(t), 0 ≤ t ≤ 1, a
standardized empirical distribution function made from n independent and in the interval
[0, 1] uniformly distributed random variables. Let us fix a real number 0 ≤ y ≤ n.
Then for all real numbers L > 0 there exist such positive constant α = α(L) > 0 and
threshold index n0 = n0(L) for which the processes B(t) and Zn(t) satisfy the following
inequalities:

P



 sup
0≤t<L

y
n

√
n|B(t)| > y



 ≤ 2e−αy, (18a)

P



 sup
0≤t<L

y
n

√
n|Zn(t)| > y



 ≤ 2e−αy, (18b)

if n ≥ n0. The constant α > 0 and the threshold index n0 can be given as the function
of the number L i.e. the threshold index n0 can be given independently of the number y,
and the exponent α > 0 depends neither on the number y nor the threshold index n0.

We did not try to determine the optimal constants in formulas (18a) and (18b),
since we do not need it. The determination of the optimal constant is sufficiently simpler
in formula (18a) since the Brownian bridge is a Gaussian process, and the investigation
of such processes is considerably simpler. The heuristic content of (18b) is that the
process Zn(t) for large indices n behaves similarly to a Brownian bridge, hence it satisfies
similar estimates. The next lemma which supplies a bound on the distribution of the
maximum of a process with independent increment plays an important role in the proof
of the Statement. We shall give the proof of this lemma in an Appendix.

Lemma. Let ξ1, . . . , ξn be independent random variables, for which Eξk ≥ 0, Eesξk =

eBk(s) with some fixed s > 0 and numbers Bk(s), k = 1, . . . , n. Put Sk =
k
∑

j=0

ξj,
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k = 1, . . . , n. Sk =
k
∑

j=0

ξj, k = 1, . . . , n. Then

P

(

sup
1≤k≤n

Sk > x

)

≤ exp

{

−sx+
n
∑

k=1

Bk(s)

}

for all x > 0.

Let X(t), a ≤ t ≤ b, be a stochastic process with independent increments in an
interval [a, b] i.e. let us assume that the random variables X(t1)−X(a), X(t2)−X(t1),
. . . , X(b) −X(tk) are independent for all numbers k and a ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ b.
Let us also assume that the trajectories of the process X(t) are continuous or more
generally so called cadlag (continue à droite, limite à gauche), i.e. continuous from the
right functions which have a left-side limit in all points a ≤ t < b. Let us further assume
that the function m(t) = EX(t), a ≤ t ≤ b, is monotone increasing. Then the inequality

P

(

sup
a≤t≤b

X(t)−X(a) > x

)

≤ e−sxEes(X(b)−X(a))

holds for all numbers s > 0. (This formula is meant in such a way that the right-hand
side of the inequality is infinity in the case when the expectation Ees(X(b)−X(a)) does
not exist.)

Remark: The condition Eξk ≥ 0 or the monotonicity of the function m(t) is required,
because this guarantees that the partial sums Sk, k = 1, 2, . . . , n, or respectively the
process X(t), a ≤ t ≤ b, has a positive trend.

The probability theory has several results which state that the maximum of the
partial sum random variables with non-negative expectation is not much greater than
the sum of all random variables. The previous Lemma is also such a result. It states
that a natural bound on the sum of all random variables also supplies a bound for the
maximum of all partial sums.

The previous Lemma cannot be applied directly for the proof of the Statement, since
neither the Brownian bridge nor a standardized empirical process are processes with
independent increment. But we can prove the Statement with the help of the following
observation. If W (t), 0 ≤ t ≤ 1, is a Wiener process, that is it is such a Gaussian process
for which EW (t) = 0, and EW (s)W (t) = min(s, t) for all 0 ≤ s, t ≤ 1, then W (t) is
a process with independent process (and we may also assume that its trajectories are
continuous function), and the stochastic process B(t) = W (t) − tW (t) is a Brownian
bridge. The other result of the Statement, the estimate (18b) can be proved by means
of a Poissonian approximation defined with the help of formulas (11a)—(11c).

13.) Let us prove that modification of inequality (18a) in which the Brownian bridge
B(t) is replaced by a Wiener process W (t). Let us also prove that modification
of the inequality (18b) in which the process Zn(t) is replaced by a standardized
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Péter Major

Poisson process Xn(t) with parameter n. (We have defined a standardized Poisson
process with parameter n in formula (11b).)

14.) Let us prove inequality (18) by means of the result of the previous result and the
representation of a Brownian bridge B(t) in the form B(t) = W (t)− tW (1), where
W (t) is a Wiener process.

Let us consider the process Yn(t), 0 ≤ t ≤ 1, defined in formula (11c). Let us show
that this process satisfies the inequality

P





√
n sup

0≤t≤L
y
n

|Yn(t)| ≥ y



 ≤ 2e−αy

for all L ≥ 0 n > n0 with an appropriate threshold index n0 and appropriate
number α = α(L) > 0. Let us prove with the help of this inequality and the result
of the previous problem the inequality (18b).

It is not difficult to prove the Approximation Theorem with the help of the above
result. Given some number x such that C0 log n < x < 2C−1n with some appropriate

constant C > 1 let us choose a constant l = l(x) in such a way that C
x

n
≤ 2−l < 2C

x

n
.

Then the previous results enable us both to give a good bound on the probability

P

(

sup
1≤k≤2l

√
n|Zn(k2

−l)−B(k2−l)| ≥ x

2

)

and to estimate the fluctuation of the pro-

cesses
√
nB(t) and

√
nZn(t) in the intervals (k−1)2−l ≤ t < k2−l, 1 ≤ k ≤ 2l, assuming

that the constant C > 0 (independently of n) is chosen sufficiently large. In the case
x > C−1n the proof of the statement of the Approximation Theorem is considerably
simpler. In this case the rough estimate

√
n|Zn(t)−B(t)| ≤ √

n(|Zn(t)|+ |B(t)|) is also
sufficient for our goals.

15.) Prove the Approximation Theorem with the help of the previous results.
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Some comments about the main result discussed in this paper

The main result of this work is contained in the paper of János Komlós, Péter Major and
Gábor Tusnády An approximation of partial sums of independent RV’s and the sample
DF. I. in the journal Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete
32 (1975), pp. 111–131. This article does not work out all details of the proof. It also
contains an analogous result about the approximation of partial sums of independent
random variables by a Wiener process. The two results are based on the same ideas
and the above mentioned paper works out only the approximation of the partial sums
or independent random variables in detail.

The main difference between the discussion of the above mentioned paper and of
this work is that here we also worked out those details which are very natural to expect,
but whose precise proof is a little bit inconvenient. Such difficulties arise because we
have to work with “almost” but not completely independent random variables. Besides,
I thought that a detailed discussion of certain classical methods like for instance the
Poissonian approximation may be interesting and instructive in itself. So I tried to
explain the ideas behind some technical steps even if it made the discussion considerably
longer.

In a subsequent series of problems I shall also discuss the approximation of partial
sums of independent random variables. In that work I shall not work out all details.
Instead of it I shall try to explain the basic problems in that subject. Furthermore I try
to explain with the help of some examples which details must be investigated especially
carefully.

The proof of the Approximation Theorem is also contained in some works which
appeared after the paper of Komlós, Major and Tusnády. Those who are interested
more in this subject can study the works of Gábor Tusnády, Jean Bretagnolle, and
Pierre Massart. These papers also investigate the problem how small constants can be
chosen in the Approximation Theorem. Here we have not dealt with this problem.

It is worth mentioning that in some papers the construction satisfying the Approx-
imation Theorem and the prof of the result is based on an expansion with respect to
Haar functions. Although in my discussion the Haar functions did not appear, the two
discussions do not differ essentially. One can say that in these two approaches the same
construction is explained in a different language. I briefly write down the argument of
the construction made on the basis of expansion with respect to Haar functions.

Let ϕ1(t), ϕ2(t), . . . , be an arbitrary system of complete orthogonal functions on
the space L2([0, 1], λ), where λ denotes the Lebesgue measure, and let η1, η2, . . . , be
a sequence of independent random variables with standard normal distribution. By a
result of probability theory the stochastic process

W (t) =

∞
∑

l=1

ηl

∫ t

0

ϕl(s) ds, 0 ≤ t ≤ 1

is a Wiener process. Indeed, the above defined process is a Gaussian process (the infinite
sum in this expression is convergent with probability one for all numbers 0 ≤ t ≤ 1,
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EW (t) = 0, and the covariance function of the process is

EW (s)W (t) =
∞
∑

l=1

∫ s

0

ϕl(u) du

∫ t

0

ϕl(u) du = min(s, t) for all numbers 0 ≤ s, t ≤ 1.

The last identity is a consequence of the Parseval formula by which

min(s, t) =

∫ 1

0

I[0,s]I[0,t](u) du =
∞
∑

l=1

albl,

where I[a,b](·) is the indicator function of the interval [a, b], and al =
∫ 1

0
I[0,s](u)ϕl(u) du,

bl =
∫ 1

0
I[0,t](u)ϕl(u) du. In a complete proof we also should show that the trajectories

of the above defined process are continuous. But we shall apply this representation
only in a special case, and we shall not need the statement about the continuity of the
trajectories. (On the other hand, in the special case we shall consider the proof of the
continuity of the trajectories is relatively simple.)

Let us recall the definition of Haar functions. Let us define the functions χk,l(u),
0 ≤ l < ∞, 1 ≤ k ≤ 2l, on the interval [0, 1] by the formulas χ0,1(u) ≡ 1, χk,l(u) = 2l/2,
if (k−1)2−l ≤ u < (2k−1)2−l, χk,l(u) = −2l/2, if (2k−1)2−l ≤ u < k2−l and χk,l(u) = 0
otherwise, 0 ≤ l < ∞, 1 ≤ k ≤ 2k. These functions χk,l are called the Haar functions. It
is not difficult to show that the Haar functions constitute a complete orthogonal system
in the space L2([0, 1], λ). Hence by the previous result on the construction of Wiener
processes

W (t) =
∞
∑

l=0

2l
∑

k=1

ηk,l

∫ t

0

χk,l(s) ds, 0 ≤ t ≤ 1,

where the random variables ηk,l are independent with standard normal distribution.

Furthermore, B(t) = Wt)− tW (1)) = W (t)−
∫ t

0
χ[0,1](u) duW (1) is a Brownian bridge,

and W (1) = η1,0, since in the above representation of the random variable W (1) the
coefficient of all other random variables ηk,l is zero, and the coefficient of the variable
η1,0 is one. Hence the stochastic process

B(t) =
∞
∑

l=1

2l
∑

k=1

ηk,l

∫ t

0

χk,l(s) ds, 0 ≤ t ≤ 1,

is a Brownian bridge. Let us also observe that because the special form of the Haar
functions

ηk,l =

∫

χk,l(s)B(s) ds

= 2l/2
(

[B(k2−l)−B((2k − 1)2−l−1)]− [B(2k − 1)2−l−1)−B((k − 1)2−l)]
)

,

and this means that the random variable ηk,l agrees with the random variable Ūk,l

introduced in our construction.
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On the other hand it can be proved by means of induction with respect the pa-
rameter l that if we define the random variables V̄k,l(n) by means of a standardized
empirical distribution Zn(t) through formulas (1b) and (4) (also applying the results of
problem 3 which enables a simple calculation of the conditional expectation in formula
(4)) that a new process Z̄n(t) defined by formula

Z̄n(t) =

∞
∑

l=1

2l
∑

k=1

V̄k,l(n)

∫ t

0

χk,l(s) ds, 0 ≤ t ≤ 1,

and the process Zn(t) satisfy the relation Z̄n(k2
−l) = Zn(k2

−l) for all numbers l =
1, 2, . . . , 1 ≤ k ≤ 2l. Hence Z̄n(t) ≡ Zn(t) for all parameters 0 ≤ t ≤ 1. If we can
give the (joint) construction of a Brownian bridge B(t) and a standardized empirical
distribution function in such a way that in their above representation the Fourier co-
efficients Ūk,l and V̄k,l(n) are close to each other, then we get a construction which
satisfies the Approximation Theorem. Actually this is the construction we made in this
paper explained in a different language. The details can be worked out similarly to the
argument of the present series of problems.
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Péter Major

2. Solution of the problems

1.) The following inequality is a well-known result of probability theory, and it can be
simply proved by means of integration by parts. (Otherwise it is also contained in
problem 7 of the series of problems Random variables with normal distribution. At
present it exists only in Hungarian.)

(

1

x
− 1

x3

)

ϕ(x) < 1− Φ(x) <
1

x
ϕ(x), for all x > 0.

It follows from these inequalities that C1(x + 2) <
ϕ(x)

1− Φ(x)
< C2(x + 2) if x ≥ 2

with some constants C1 > 0 and C2 > 0. Furthermore, since both functions
ϕ(x) and 1 − Φ(x) are separated from zero and infinity if x is in a finite domain,
the above inequality holds for all x > −1. By the identities ϕ(−x) = ϕ(x) and
Φ(−x) = 1 − Φ(x) the second inequality in part a) of problem 1 is equivalent to
the first one.

b.)

log
1− Φ(x+ h)

1− Φ(x)
= h

d

dx
log (1− Φ(x))

∣

∣

∣

∣

x=u

= −h
ϕ(u)

1− Φ(u)
,

where u is an appropriate number in the interval [x, x+ h]. Hence in the case
|h| < |x|+ 1

C1(x+ 2) <
ϕ(u)

1− Φ(u)
< C2(x+ 2), if x > −1

by the already proven part of the problem. By substituting this relation to
the previous identity we get the first identity of the problem in the case h > 0
(and x > −1). The second identity follows from this one by the relation
Φ(−u) = 1 − Φ(u). The case h < 0 can be similarly handled or it can be
reduced to the case h > 0.

2. First we prove the asymptotic relation for the distribution function Fm,n(x).

By the (large deviation) Theorem formulated at the beginning of this series of
problems and the result of problem 1

1− Fm,n(x) =

(

1− Φ

(
√

n

m
x

))

exp

{

O

(

x3 + 1√
n

)}

= (1− Φ(x)) exp

{

O

(∣

∣

∣

∣

√

n

m
− 1

∣

∣

∣

∣

(x2 + 2x) +
x3 + 1√

n

)}

= (1− Φ(x)) exp







O





x3 + |n−m|√
n

(x2 + x) + 1
√
n










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if 0 ≤ x ≤ Ā
√
nx, because

∣

∣

∣

∣

√

n

m
− 1

∣

∣

∣

∣

(x2 + 2x) ≤ const.
|n−m|

n
(x2 + 2x) if the

conditions of problem 2 hold. The other inequality can be proved similarly.

We prove with the help of the already proved inequality that there exists such a
constant K > 0 for which

1− Fm,n(x+ h(x)) ≤ 1− Φ(x) ≤ 1− Fm,n(x− h(x)),

with h(x) = hm,n(x) = K
x2 + |n−m|√

n
(|x|+ 1) + 1
√
n

,
(2.1)

if 0 ≤ x ≤ Ā
√
n with some appropriate Ā > 0. Indeed, in this case

log
1− Fm,n(x+ h(x))

1− Φ(x)
= log

1− Fm,n(x+ h(x))

1− Φ(x+ h(x))
+ log

1− Φ(x+ h(x))

1− Φ(x)

≤ K1√
n

(

(x+ h(x))3 +
|n−m|√

n

(

(x+ h(x))2 + x+ h(x)
)

+ 1

)

− C1h(x)(x+ 2)

with appropriate constants K1 > 0 and C1 > 0 if the inequalities |x+h(x)| < A
√
n

and |h(x)| ≤ x + 1 hold, since if these conditions are satisfied then the results of
problem 1 and the already proven part of problem 2 are applicable. In this formula
the constant K1 is the constant which can be written in the O(·) expression of the
already proved part of problem 2, and the C1 is the same constant which appears
in part b) of problem 1. We claim that one can choose some constants Ā > 0,
B > 0 and K > 0 in such a way that under the conditions x < Ā

√
n, |n−m| < Bn,

n ≥ n0, where n0 is an appropriate threshold index, the following inequalities hold:
|x+ hm,n(x)| < A

√
n, |h(x)| ≤ x+ 1, and

K1√
n

(

(x+ h(x))3 +
|n−m|√

n

(

(x+ h(x))2 + x+ h(x)
)

+ 1

)

− C1h(x)(x+ 2) ≤ 0.

These inequalities and the previous estimates imply that 1 − Fm,n(x + h(x)) ≤
1− Φ(x) i.e. the left-hand side of formula (2.1) holds.

Let K =
100K1

C1
. If we choose the constants Ā > 0 and B > 0 (depending on

the number K) sufficiently small, then the inequalities |x + hm,n(x)| < A
√
n and

|h(x)| ≤ x+ 1 hold. In this case

K1√
n

(

(x+ h(x))3 +
|n−m|√

n

(

(x+ h(x))2 + x+ h(x)
)

+ 1

)

≤ K1√
n

(

(2x+ 1)3 +
|n−m|√

n

(

(2x+ 1)2 + 2x+ 1
)

+ 1

)

≤ 100K1√
n

(

x3 +
|n−m|√

n
(x2 + 1) + 1

)
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≤ 100K1√
n

(x+ 2)

(

x2 +
|n−m|√

n
(x+ 1) + 1

)

=
100K1

K
(x+ 2)h(x)

≤ C1(x+ 2)h(x).

This inequality implies the left-hand side of formula (2.1). The right-hand side of
this inequality can be proved similarly. Formula (2.1) implies that

Fm,n(x− h(x)) ≤ Φ(x) ≤ Fm,n(x+ h(x)), if 0 ≤ x ≤ Ā
√
n, and |n−m| < Bn.

This inequality also holds if the condition 0 ≤ x ≤ Ā
√
n is replaced by the condition

0 ≥ x ≥ −Ā
√
n, and it can be proved similarly. Thus we get that

x− hm,n(x) ≤ F−1
n,m(Φ(x)) ≤ x+ hm,n(x), if |x| ≤ Ā

√
n and |n−m| ≤ Bn,

and

|F−1
m,n(Φ((η))− η| ≤ hm,n(η) = K

η2 + |n−m|√
n

(|η|+ 1) + 1
√
n

≤ K̄
η2 + (n−m)2

n + 1√
n

,

with an appropriate constant K̄ > 0 if |η| ≤ Ā
√
n and |n−m| ≤ Bn. (In the last

estimation we have exploited that
|n−m|√

n
(|η|+ 1) ≤ 1

2

(

(n−m)2

n
+ η2 + 1

)

.) In

such a way he have solved problem 2 (with the notation Ā instead of A in the last
relation).

Remark: Actually we have proved the following slightly stronger estimate:

|F−1
m,n(Φ(η))− η| ≤ K

η2 + |n−m|√
n

(|η|+ 1) + 1
√
n

on the set {|η| < A
√
n}.

But the estimate formulated in problem 2 will be more convenient for us.

3.) The random variables Vk,l(n), k = 1, . . . , 2l, generate the same σ-algebra as the

random variables mk =

√
n

2(l+1)/2
Vk,l(n) +

n

2l
, k = 1, . . . , 2l. Let us consider that

sequence ζ1, . . . , ζn of independent and on the interval [0, 1] uniformly distributed
random variables which defines the standardized empirical function Zn(t), 0 ≤
t ≤ 1. Then the value of the random variable mk equals the number of those
elements of the sequence ζ1, . . . , ζn which fall into the interval [(k − 1)2−l, k2−l].
This relation holds, since mk = n[Pn(k2

−l) − Pn((k − 1)2−l)], where Pn(t) is the
empirical distribution function defined at the beginning of this series of problems.

Let us fix the values of the random variables mk, 1 ≤ k ≤ 2l, i.e. the atom
B(m1, . . . ,m2l) of the σ-algebra Gl(n). The random variables of the values Yk

with respect to the σ-algebra Gl(n) and the conditional distribution of the random
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variable Yk on the atom B(m1, . . . ,m2l) is the binomial distribution B(mk,
1
2 ) with

parameters mk and 1
2 . This implies that

V2k−1,l+1(n) =
2(l+2)/2

√
n

Yk −
√
n

2l/2
,

E (V2k−1,l+1(n)|Gl(n)) =
2(l+2)/2

√
n

E(Yk|Gl(n))−
√
n

2l/2
=

2(l+2)/2

√
n

mk

2
−

√
n

2l/2

=
1√
2
Vk,l(n)

and

V̄2k−1,l+1(n) =
2(l+2)/2

√
n

Yk − 2(l+2)/2

√
n

mk

2

on the atom B(m1, . . . ,m2l) of the σ-algebra Gl(n). Furthermore,

V̄2k−1,l+1(n) + V̄2k,l+1(n) = Vk,l(n)− E(Vk,l(n)|Gl(n)) = Vk,l(n)− Vk,l(n) = 0,

and

E (V2k,l+1(n)|Gl(n)) =
√
2E (Vk,l(n)|Gl(n))− E (V2k−1,l+1(n)|Gl(n))

=

(√
2− 1√

2

)

Vk,l(n) =
1√
2
Vk,l(n).

The above relations imply the statement of the problem (with the choice Yk =
X2k−1).

4.) As in this problem normally distributed random variables are considered, its state-
ments can be proved by the investigation of the covariance function. The calcula-
tion needed for the proof can be simplified by using the representation B(t) =
W (t) − tW (1) of a Brownian bridge, where W (t), 0 ≤ t ≤ 1, EW (t) = 0,
EW (s)W (t) = min(s, t) is a Wiener process. Simple calculation shows that

E

(

U2k−1,l+1 −
1√
2
Uk,l

)

Uj,l = E

(

U2k,l+1 −
1√
2
Uk,l

)

Uj,l = 0.

From this relation and the joint Gaussian distribution of the random variables
under consideration imply that the random vector

{

U2k−1,l+1 −
1√
2
Uk,l, U2k,l+1 −

1√
2
Uk,l, k = 1, . . . , 2l

}

is independent of the σ-algebra Fl, and its coordinates are Gaussian random vari-
ables with expectation zero.
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Hence E

(

U2k−1,l+1 −
1√
2
Uk,l

∣

∣

∣

∣

Fl

)

= 0, and E(U2k−1,l+1|Fl) =
1√
2
E(Uk,l|Fl) =

1√
2
Uk,l. Similarly, E(U2k,l+1|Fl) =

1√
2
Uk,l, 1 ≤ k ≤ 2l. Hence, Ū2k−1,l+1 =

U2k−1,l+1 −
1√
2
Uk,l, Ū2k,l+1 = U2k,l+1 −

1√
2
Uk,l, k = 1, . . . , 2l.

Simple calculation shows that Ū2k−1,l+1 = 1√
2
(U2k−1,l+1−U2k,l+1) = −Ū2k,l+1 and

EŪ2j−1,l+1Ū2k−1,l+1 = δj,k, 1 ≤ k ≤ 2l, where δj,k = 0 if j 6= k and δj,k = 1 if j = k.
This means that the random variables Ū2k−1,l+1, k = 1, . . . , 2l, are independent of
the σ-algebra Fl and they have standard normal distribution. Besides, the identity
Ū2k−1,l+1 = −Ū2k,l+1 holds. In such a way we have solved problem 4.

5a.) We prove the statement of problem 5a by induction with respect to the parameter
L. For L = 0 the statements of problem 5a hold. Let us assume that we have
already proved them for L = l. Then we want to prove them for L = l + 1. First
we show that the random variables Zn(k2

−(l+1)), 1 ≤ k ≤ 2l+1, we construct have
the right joint distributions. The proof we give may be a little complicated, but
there is a simple idea behind it. We compare the random variables we have to
handle with analogous random variables constructed by means of a standardized
empirical distribution functions. Then we check that the definition of the random
variables given in formulas (5a)–(5f) guarantee enough similarities to prove the
desired results.

Let us define the random variables Mk =

√
n

2(l+1)/2
Vk,l(n) +

n

2l
, k = 1, . . . , 2l. The

random variables V̄2k−1,l+1(n) defined in formula (5b) are transforms of the random
variables Ū2k−1,l+1 which are by the results of problem 4 independent random vari-
ables with standard normal distribution. Furthermore, they are also independent of
the σ-algebra Gl(n), since they are independent of the σ-algebra Fl ⊃ Gl(n). These
facts imply that the random variables V̄2k−1,l+1 are conditionally independent with
respect to the random variables Mk, 1 ≤ k ≤ 2l, which generate the σ-algebra
Gl(n). Besides, the conditional distribution of the random variables V̄2k−1,l+1 with
respect to the conditionMk = mk, 1 ≤ k ≤ 2l, is the distribution functions Fmk,l(x)
defined in formulas (5a) and (5a′).

Let us fix a standardized empirical distribution function Zn(t), and consider the
random variables V·,·, V̄·,· and σ-algebra G· defined from this process by formulas
(1)—(4), where the subscript marks “·” in these formulas denote some indices.
Let us also define the random variables M̄k similarly to the random variables Mk

defined in the previous paragraph with the difference that now we replace the ran-
dom variable Vk,l(n) considered there by the random variable Vk,l(n) determined
by that standardized empirical process Zn(t) which is considered in this para-
graph. Our goal is to show by a comparison of the random variables defined in
this paragraph from a standardized empirical function with the random variables
defined in problem 5a that the latter variables have the right distributions. To
do this let us first observe that because of the results of problem 3 the random
vector V̄2k−1,l+1(n), 1 ≤ k ≤ 2l, defined in this paragraph has the same condi-
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tional distribution with respect to the conditions M̄k = mk, 1 ≤ k ≤ 2l, i.e. on
the atom B(m1, . . . ,m2l) of the σ-algebra Gl(n) as the random variables V̄2k−1,l(n)
constructed in formula (5b) with respect to the conditions Mk = mk, 1 ≤ k ≤ 2l.
Furthermore, the random variables considered in this paragraph satisfy the relation
E(V2k−1,l+1(n)|Gl(n)) =

1√
2
Vk,l(n) by the results of problem 3. Hence a compar-

ison of formulas (1)—(4) with formulas (5c) and (5d) implies the following state-
ment: Take the conditional distribution of the random vector Zn((2k− 1)2−(l+1)),
1 ≤ k ≤ 2l, considered in problem 5a under the condition that the previously
constructed random variables Zn(k2

−l), 1 ≤ k ≤ 2l have prescribed values. This
conditional distribution agrees with the analogous conditional distribution which
we get by replacing the values of the random variables Zn((2k − 1)2−(l+1)) and
Zn(k2

−l), 1 ≤ k ≤ 2l, by the values of a standardized empirical process Zn(t),
0 ≤ t ≤ 1, in the corresponding points.

Let us make the following observation. The joint distribution of the random vari-
ables Zn(k2

−l), 1 ≤ k ≤ 2l, together with the conditional distribution of the
random vector Zn((2k − 1)2−(l+1)), 1 ≤ k ≤ 2l, with respect to the condition that
the values of the random variables Zn(k2

−l), 1 ≤ k ≤ 2l, take their prescribed
values determine the joint distribution of the random variables Zn(k2

−(l+1)), 1 ≤
k ≤ 2l+1. Hence the results about the conditional distribution of the random
vector Zn((2k − 1)2−(l+1)), 1 ≤ k ≤ 2l, and the induction hypothesis imply that
the distribution of the random vector Zn(k2

−(l+1)), 1 ≤ k ≤ 2l+1, constructed
in this problem 5a agrees with the joint distribution of a standardized empirical
distribution function Zn(t) in the points t = k2−(l+1), 1 ≤ k ≤ 2+1.

Now we show that the above defined random variables Zn(k2
−(l+1)), Vk,l+1(n)

and V̄k,l+1(n) satisfy formulas (1)—(4). The random variables defined in formula
(5b) satisfy the identity E(V̄2k−1,l(n)|Gl(n)) = 0. To see this let us consider the
conditional distribution of the random variable V̄2k−1,l(n) with respect to the σ-
algebra Gl(n) on that atom, where

mk =

√
n

2(l+1)/2
Vk,l(n) +

n

2l
, k = 1, . . . , 2l.

This conditional distribution function is the distribution function Fmk,l(x) defined
in (5b), hence the conditional expectation of a random variable with such a condi-
tional distribution equals zero. This relation together with formula (5c) imply that
E(V2k−1,l+1(n)|Gl(n)) =

1√
2
Vk,l(n), and

V̄2k−1,l+1(n) = V2k−1,l+1(n)− E(V2k−1,l+1(n)|Gl(n)).

By formula (5d)

V2k−1,l+1(n) = 2(l+2)/2

(

Zn

(

2k − 1

2l+1

)

− Zn

(

2k − 2

2l+1

))

.

The above identities contain the statements of formulas (1)—(4) to be proved for
L = l + 1 if only the odd indices k are considered. To prove the corresponding
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identities for even indices k let us first observe that it follows from the last identity,
formula (5e) and formula (1b) already proved for index l that

V2k,l+1(n) = 2(l+2)/2

(

Zn

(

k

2l

)

− Zn

(

k − 1

2l

))

− 2(l+2)/2

(

Zn

(

2k − 1

2l+1

)

− Zn

(

2k − 2

2l+1

))

= 2(l+2)/2

(

Zn

(

2k

2l+1

)

− Zn

(

2k − 1

2l+1

))

.

By applying again formula (5e), and the relation already proved for the random
variable V2k−1,l+1(n) we get that

E(V2k,l+1(n)|Gl(n)) =
√
2Vk,l(n)− E(V2k−1,l+1(n)|Gl(n))

=
√
2Vk,l(n)−

1√
2
Vk,l(n) =

1√
2
Vk,l(n),

and

V2k,l+1(n) =
√
2Vk,l(n)− V̄2k−1,l+1(n)−

1√
2
Vk,l(n) =

1√
2
Vk,l(n)− V̄2k−1,l+1(n).

It follows from these formulas and relation (5f) that also the identity V̄2k,l+1(n) =
−V̄2k−1,l+1(n) = V2k,l+1(n) − E(V2k,l+1(n)|Gl(n)) holds. In such a way we have
proved formulas (1)—(4) also in l + 1-th step.

Let us finally observe that also the relation Gl+1(n) ⊂ Fl+1 holds, since the random
variables Vk,l+1(n) generating the σ-algebra Gl+1(n) are measurable functions of the
Fl+1 measurable random variables Uk,l+1.

5b.) It follows immediately from the construction of the random variables ζj , 1 ≤ j ≤ n,
given in problem 5b that the values of the standardized empirical distribution
function made from it agree with the random variables Zn(k2

−L) constructed in
problems 5a and 5b for all numbers 1 ≤ k ≤ 2L. We still have to show that they
constitute a sequence of independent random variables with uniform distribution
in the interval [0, 1].

To show this first we prove the following statement. If ζ̄1, . . . , ζ̄n is a sequence
of independent and in the interval [0, 1] uniformly distributed random variables,
ζ̄∗1 ≤ · · · ≤ ζ̄∗n is the ordered sample made from this random variables, and Mk

denotes the number of those points of the sequence ζ̄∗j , 1 ≤ j ≤ n, which fall

into the interval [(k − 1)2−L, k2−L], 1 ≤ k ≤ 2L, then P (M1 = m1, . . . ,M2L =

m2L) =
n!

m1! · · ·m2L !
2−Ln, if mk ≥ 0 for all indices 1 ≤ k ≤ 2L, and

2L
∑

k=1

mk = n.

Furthermore, the conditional distribution of the random sequence ζ̄∗1 ≤ · · · ≤ ζ̄∗n
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under the condition that {M1 = m1, . . . ,M2L = m2L} agrees with the distribution
of the union of such independent sequences of random variables

ξm0+···+mk−1+1, ξm0+···+mk−1+2, . . . , ξm0+···+mk
, 1 ≤ k ≤ 2L, m0 = 0,

independent of each other, for which

ξm0+···+mk−1+1, ξm0+···+mk−1+2, . . . , ξm0+···+mk

is an ordered sample made from mk on the interval [(k − 1)2−l, k2−L] uniformly
distributed and independent random variables. Indeed, it is easy to check the
identity

P (M1 = m1, . . . ,M2L = m2L) =
n!

m1! · · ·m2L !
2−Ln

On the other hand, if we prescribe for all random variables ζ̄j , 1 ≤ j ≤ n, which
interval [m(j)2−L, (m(j) + 1)2−L] they fall into, and we do this in such a way
that the number of points ζ̄j falling into the interval [(k − 1)2−L, k2−L] equals
mk, 1 ≤ k ≤ 2L, then the random variables ζ̄j , 1 ≤ j ≤ n, are conditionally
independent under this condition, and ζ̄j is uniformly distributed in the interval
[m(j)2−L, (m(j)+1)2−L]. It follows from this relation that the conditional distribu-
tion of the ordered sample a ζ̄∗1 ≤ · · · ≤ ζ̄∗n under such a condition, hence also under
the union of such conditions, i.e. under the condition M1 = m1, . . . ,M2L = m2L

equals the above described conditional distribution.

Let us consider the random sequence ζ∗1 ≤ · · · ≤ ζ∗n constructed in problem 5b
and define the random variables M ′

k, where M ′
k equals the number of points of

the sequence [(k − 1)2−L, k2−L] which fall into the interval [(k − 1)2−L, k2−L].

Then P (M ′
1 = m1, . . . ,M

′
2L = m2L) =

n!

m1! · · ·m2L !
2−Ln, if mk ≥ 0 for all indices

1 ≤ k ≤ 2L, and
2L
∑

k=1

mk = n. Furthermore, the conditional distribution of the

random sequence ζ∗1 ≤ · · · ≤ ζ∗n under the condition {M ′
1 = m1, . . . ,M

′
2L = m2L}

agrees with the distribution of the union of such sequences

ξm0+···+mk−1+1, ξm0+···+mk−1+2, . . . , ξm0+···+mk
, 1 ≤ k ≤ 2L, m0 = 0,

which are independent of each and

ξm0+···+mk−1+1, ξm0+···+mk−1+2, . . . , ξm0+···+mk

is an ordered sample of mk independent and in the interval [(k − 1)2−l, k2−L]
uniformly distributed random variables. Since the distribution of the sequence
M ′

1, . . . ,M
′
2L together with the conditional distribution of the random sequence

ζ∗1 ≤ · · · ≤ ζ∗n with respect to the condition {M ′
1 = m1, . . . ,M

′
2L = m2L} determines

the joint distribution of the random sequence ζ∗1 ≤ · · · ≤ ζ∗n the previous relations
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imply that the joint distribution of the sequences ζ̄∗1 ≤ · · · ≤ ζ̄∗n and ζ∗1 ≤ · · · ≤
ζ∗n agree. This means that ζ∗1 ≤ · · · ≤ ζ∗n is the ordered sample made from n
independent and on the interval [0, 1] uniformly distributed random variables.

Let us finally make the following observation. Let ζ̄1, . . . , ζ̄n be a sequence of inde-
pendent and in the interval [0, 1] uniformly distributed random variables, and de-
fine a random permutation of the set {1, . . . , n} by means of this sequence though
the following relation. ζ̄j = ζ̄∗π(j), j = 1, . . . , n, where ζ̄∗1 ≤ · · · ≤ ζ̄∗n is the or-

dered sample ζ̄∗1 ≤ · · · ≤ ζ̄∗n made from this sequence. Then the random vectors
(π(1), . . . , π(n)), and (ζ̄∗1 , . . . , ζ̄

∗
n) are independent, and the vector (π(1), . . . , π(n))

is uniformly distributed on the permutations of the set {1, . . . , n}. From this fact
and the observation that we have to handle an ordered sample ζ∗1 ≤ · · · ≤ ζ∗n made
from independent and in the interval [0, 1] uniformly distributed random variables
together with a uniformly distributed permutation (π(1), . . . , π(n)) follows that
the sequence (ζ1, . . . , ζn) = (ζ∗π(1), . . . , ζ

∗
π(n)) constructed in problem 5b consists of

independent and in the interval [0, 1] uniformly distributed random variables.

6.) The main statement of problem 6 is a consequence of the result of problem 2. In
order not to denote different quantities with the same letter we apply the result of
problem 2 with the notation m̄ and n̄ instead of the letters m and n.

Let us apply the result of the second problem with the choice m̄ =
n

2l
, n̄ = mk =

√
n

2(l+1)/2
Vk,l(n) +

n

2l
and η = Ū2k−1,l+1. Then |n̄ − m̄| =

√
n

2(l+1)/2
|Vk,l(n)| =

√
m̄√
2
|Vk,l(n)|. Simple calculation shows that the conditions |n̄ − m̄| < Bn̄ and

|η| < A
√
n̄ of problem 2 hold under the conditions of problem 6 if the constant

A > 0 appearing at the end of its formulation is chosen sufficiently small. On
the other hand, V̄2k−1,l+1(n) − Ū2k−1,l+1 = F−1

mk,l
(Φ(η)) − η by formula (5b) with

the function Fmk,l(x) defined in (5a′) which agrees with the function Fn̄,m̄(x) in
problem 2. Besides, the appropriate term in the estimate of problem 2 satisfies

the relation
(n̄− m̄)2

n̄
=

Vk,l(n)
2

2

m̄

n̄
= const.Vk,l(n)

2. Hence the first part of

relation (7a) follows from the result of problem 2. Its second part is a simple conse-
quence of the relation Ū2k−1,l+1 = −Ū2k−1,l+1. The inequality (7b) is a consequence
of formula (7a), since

|U2k−1,l+1 − V2k−1,l+1(n)| ≤ |Ū2k−1,l+1 − V̄2k−1,l+1(n)|+
|Uk,l − Vk,l(n)|√

2
,

and

|U2k,l+1 − V2k,l+1(n)| ≤ |Ū2k−1,l+1 − V̄2k−1,l+1(n)|+
|Uk,l − Vk,l(n)|√

2
.

These relations hold, since V2k−1,l(n) = V̄2k−1,l(n) +
Vk,l(n)√

2
, U2k−1,l = Ū2k−1,l +

Uk,l√
2

by the identities E(V2k−1,l(n)|Gl(n)) =
Vk,l(n)√

2
and E(U2k−1,l(n)|Fl) =

Uk,l√
2
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proved in problems 3 and 4. Besides, a similar relation holds also for the random
variables V2k,l(n) and U2k,l.

7.) By the definition of the random variables Vk,l and numbers ε(j) and k(j) the
identity

ε(j)2−(j+1)/2
(√

2Vkj−1+1,j−1(n)− Vkj+1,j(n)
)

= ε(j)
(

Zn(kj2
−j)− Zn(kj−12

−(j−1)
)

holds for all numbers 1 ≤ j ≤ l. Indeed, either ε(j) = 0 when the above identity
is obvious or ε(j) = 1 when kj = 2kj−1 + 1 and the identity follows from the
definition of the random variables Vk,l(n). By summing up these identities and
exploiting the relations Zn(kl2

−l) = Zn(t) and Zn(k0) = Zn(0) = 0 we get the first
line of formula (8a) about the representation of the random variable Zn(t). The
analogous formula about the expression B(t) can be proved similarly.

In the proof of relation (8b) we apply formula (7b) with the choice l = j − s − 1
and k = kj−s−1 + 1. If uj−s−1 = kj−s−12

−j−s−1 = uj−s = kj−s2
−j−s, then

kj−s + 1 = 2(kj−s−1 + 1) − 1, and we consider the first term at left-hand side
term together with the first expression at the right-hand side of this inequality. If
uj−s−1 = kj−s−12

−j−s−1 < uj−s = kj−s2
−j−s, then kj−s + 1 = 2(kj−s−1 + 1). In

this case we consider the second term at the left-hand side together with the second
expression at the right-hand side of this inequality. With such a choice we get that

2−s · 2−(j−s+1)/2|Ukj−s+1,j−s − Vkj−s+1,j−s(n)|

< 2−s · K√
n
(Ū2

kj−s+1,j−s + V 2
kj−s−1+1,j−s−1(n) + 1)

+ 2−(s+1) · 2 · 2
−(j−(s+1)+1)/2

2
|Ukj−(s+1)+1,j−(s+1) − Vkj−(s+1)+1,j−(s+1)(n)|

for all pairs 1 ≤ j ≤ l and 0 ≤ s ≤ j − 1. We get inequality (8b) by summing
up these inequalities for all numbers 0 ≤ s ≤ j − 1. To see this we have to
observe that after this summation for all indices 1 ≤ j − s ≤ j − 1 the terms
|Ukj−s+1,j−s − Vkj−s+1,j−s(n)| appear with the same coefficient on the two sides
of these sums. Besides, we have to check that if ω ∈ B, where B is the set
defined in problem 7, then the previous inequalities hold, i.e. the random variables
Ūkj−s+1,j−s(ω) and Vkj−s+1,j−s(ω) satisfy the conditions of problem 6.

The random variable Zn(k2
−l)−B(k2−l) can be expressed by means of formula (8a)

formula as a linear combination of the expressions Vkj+1,j(n) − Ukj+1,j . All these
terms can be bounded by means of formula (8b). By applying these estimations
we get the formula

|Zn(k2
−l)−B(k2−l)| ≤ 2

l
∑

j=1

2−(j+1)/2|Vkj+1,j(n)− Ukj+1,j |
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≤ 2K√
n

l
∑

j=1

j−1
∑

s=0

2−s
(

Ū2
kj−s+1,j−s + V 2

kj−s−1+1,j−s−1(n) + 1
)

=
2K√
n

l
∑

j=1

j
∑

s=1

2−(j−s)
(

Ū2
ks+1,s + V 2

ks−1+1,s−1(n) + 1
)

=
2K√
n

l
∑

s=1

(

Ū2
ks+1,s + V 2

ks−1+1,s−1(n) + 1
)

l
∑

j=s

2−(j−s).

Formula (8c) follows from this relation.

8.) By the results of problem 4 Ūk,j , 1 ≤ j ≤ l, 1 ≤ k ≤ 2j , are independent random
variables with standard normal distribution. This implies the statement of the
problem about the joint distribution of the random variables Ūkj+1,j , 1 ≤ j ≤
l. The analogous statement about the joint distribution of the random variables
Vkj−1+1,j−1(n), 1 ≤ j ≤ l, follows from the statement formulated below by means
of induction with respect to the parameter j.

We claim that the conditional distribution of the random variable Vkj−1+1,j−1(n)

with respect to the conditions Ms =
√
n

2(s+1)/2Vks+1,s− n
2s = ms, 1 ≤ s ≤ j−2, agrees

with the conditional distribution of the random variable V1,j−1(n), with respect to

the conditions M̄s =
√
n

2(s+1)/2V1,s− n
2s = ms, 1 ≤ s ≤ j−2, where m1, . . . ,ms−2, are

arbitrary non-negative integers. This statement can be rewritten in an equivalent
form by expressing the conditional distributions of the random variables Mj−1 =√

n
2j/2

Vkj−1+1 − n
2j−1 and M̄j−1 =

√
n

2j/2
V1,j−1 − n

2(j−1) with respect to the conditions

Ms = ms and M̄s = ms, 1 ≤ s ≤ j − 1 respectively instead of working with the
random variables Vkj−1+1,j−1(n) and V1,j−1(n). This modified statement follows
from the observation that the conditional distribution both of Mj−1 and M̄j−1 with
respect to the appropriate conditions is the binomial distribution B(mj−2,

1
2 ) with

parameters mj−2 and 1
2 .

The inequality 1−P (B) ≤ e−D1x will be proved by means of the following estima-
tions. For arbitrary numbers 1 ≤ j ≤ l

P

(

|Vkj−1+1,j−1(n)| >
A
√
n

2j/2

)

= P

(

2j/2√
n

∣

∣

∣

∣

∣

n
∑

k=1

(χk − Eχk)

∣

∣

∣

∣

∣

>
A
√
n

2j/2

)

= P

(∣

∣

∣

∣

∣

n
∑

k=1

(χk − Eχk)

∣

∣

∣

∣

∣

>
An

2j

)

,

where χk, 1 ≤ k ≤ n, are independent random variables, and P (χk = 1) = 1 −
P (χk = 0) = 2−(j−1). This relation implies that

Eet(χk−Eχk) =

(

1− 1

2j−1
+

et

2j−1

)

e−t/2j−1

,
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and from here Eet(χk−Eχk) ≤ exp

{

et − 1

2j−1
− t

2j−1

}

≤ exp

{

10t2

2j

}

if |t| < 1. In the

latter estimations we exploited that the inequalities t+ 1 ≤ et and et − 1− t < 5t2

hold if |t| ≤ 1. By the previous estimates E

(

exp

{

t
n
∑

k=1

(χk − Eχk)

∣

∣

∣

∣

}

≤ e10t
2n2−j

if |t| < 1, and

P

(

Vkj−1+1,j−1(n) >
A
√
n

2j/2

)

= P

(

exp

{

t

n
∑

k=1

(χk − Eχk)

}

> eAnt/2j

)

≤ en2
−j(10t2−At) ≤ e−D̄2l−jx for all numbers 1 ≤ j ≤ l.

(2.2a)

with an appropriate constant D̄ > 0 if j ≤ l. In the last inequality we have exploited
that 10t2 −At < −D′ with an appropriate constant D′ > 0, if the number t > 0 is
chosen sufficiently small, and −n2−j = −2l−j2−ln ≤ −Cx2l−j under the conditions
of problem 8.

As Ūkj−1+1,j−1 is a random variable with standard normal distribution, hence sim-
ple calculation yields that

P

(

|Ukj−1+1,j−1(ω)| <
A
√
n

2j/2

)

≤ e−A2n2j−1 ≤ e−D′′2l−jx

for all numbers 1 ≤ j ≤ l.

(2.2b)

The estimate (2.2a) remains valid if the random variable Vkj−1+1,j−1(n) is replaced
by −Vkj−1+1,j−1(n). If we sum up the inequalities (2.2a) theirs analogs formu-
lated above and the inequality (2.2b) for all numbers 1 ≤ j ≤ n, then we get the
inequalities 1− P (B) ≤ e−D1x.

To prove the last estimate of problem 8 let us consider the square of a normally
distributed random variable, and let us calculate the moment generating function
of the normalization of the random variables formulated in such a way. If η is a
random variable with standard normal distribution, then

Eet(η
2−Eη2) = Eet(η

2−1) =
e−t

√
2π

∫

etx
2−x2/2 dx =

e−t

√
1− 2t

, if t <
1

2
.

It follows from here that logEet(η
2−Eη2) = −t − 1

2 log(1 − 2t) < t2, if 0 < t ≤
1
4 . (The deeper reason for the validity of such an estimate is that the moment
generating function of a random variable with expectation zero behaves in a small
neighbourhood of the zero as econst. t

2

.) Hence

P



18K

l
∑

j=1

Ū2
1,j−1 > x



 = P



exp







1

4

l
∑

j=1

(Ū2
1,j−1 − EŪ2

1,j−1)







> ex/72K





≤ el/16−x/72K ≤ e−x/144K = e−D2x,
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as we formulated in the problem, under the condition l ≤ x
9K . This inequality

holds, since under the conditions of problem 8 l ≤ logC + log n− log x ≤ 2 log n ≤
2x

C0
≤ x

9K
if the constant C0 is chosen sufficiently large in these conditions, and

n ≥ n0 with an appropriate index n0.

9.) Inequality (8c) holds for all t = k2−l, k = 1, . . . , 2l, on the set B0 =
2l
⋂

k=1

B(k2−l),

where the set B(t) was defined after formula (8c). On the basis of the results

of problem 8 the inequality 1 − P (B0) ≤ 2le−D1x ≤ n

Cx
e−D1x ≤ ne−D1x ≤

ex/C0−D1x ≤ e−D1x/2 holds if the constant C0 and the threshold index n0 are
chosen sufficiently large in the condition x ≥ C0 log n of problem 9.

Hence inequality (8c) and the first part of problem 8 imply that

P

(

sup
1≤k≤2l

√
n|Zn(k(2

−l)−B(k2−l)| > x

2

)

≤ e−D1x/2 + 2lP



4K
l
∑

j=1

(

Ū2
1,j + V 2

1,j−1(n) + 1
)

≥ x

2





≤ e−D1x/2 + 2lP



18K

l
∑

j=1

Ū2
1,j−1 > x



+ 2lP



18K

l
∑

j=1

V 2
1,j−1 > x



 .

In the last inequality we exploited that 4K
l
∑

j=1

1 = 4Kl ≤ x

18
, because l ≤

log n ≤ x

C0
≤ x

72K
, if in the condition of relation (9) the constant C0 > 0

and threshold index n0 for which n ≥ n0 are chosen sufficiently large. Hence
on the basis of formula (10), the last inequality of problem 8 and the previous
estimate the left-hand side of the expression (9) can be bounded from above by the
eD1x/2 + 2l

(

e−D2x + e−D3x
)

. As 2l ≤ n ≤ emin(D2,D3)x/2, if the constant C0 > 0
and threshold index n0 are appropriately chosen in formula (9), this implies the
statement of problem 9.

10.) As Zn(t) = Xn(t)− Yn(t), Zn(t)
2 ≤ 2Xn(t)

2 + 2Yn(t)
2, and

P



18
l
∑

j=1

2jZ2
n

(

1

2j−1

)

> x





≤ P



36

l
∑

j=1

2j
(

X2
n

(

1

2j−1

)

+ Y 2
n

(

1

2j−1

))

> x





≤ P



72K
l
∑

j=1

2jXn

(

1

2j−1

)2

> x



+ P



72K
l
∑

j=1

2jYn

(

1

2j−1

)2

> x



 .
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This is formula (12).

If κn is a Poisson distributed random variable with parameter n, then the moment
generating function of the random variable κn − n is

Eet(κn−n) = e−tn
∞
∑

k=0

nk

k!
e−n+tk = en(e

t−1−t).

This implies because of the inequality n(et− t−1) ≤ t2, under the condition |t| ≤ 1

that Eet(κn−n) ≤ ent
2

, if |t| ≤ 1. Hence P (κn − n > y) ≤ ent
2−ty ≤ e−y2/4n

with the choice t = y
2n , if y ≤ 2n. Similarly, P (κn − n < −y) ≤ e−y2/4n. The

slightly more general statement formulated about κn − n also holds. Indeed, if the
condition |y| ≤ 2n is replaced by the condition |y| ≤ B1n, then the previous relation
remains valid if the exponent −y2/4n is replaced by the exponent −B2y

2/n with
an appropriate constant B2 > 0.

To prove formula (13) let us observe that the random variables Yn(t) in (11c) are
non-negative, hence

P



72K
l
∑

j=1

2jYn

(

1

2j−1

)2

> x



 ≤ P











√
72K

l
∑

j=1

2j/2Yn

(

1

2j−1

)





2

> x






.

Then taking the conditional probability at the left-hand side of the next formula
with respect to the condition κn − n = m, −∞ < m < ∞, and using the definition
of the random variables Ȳn,m introduced before formula (13) we get the following
relation (2.3).

P





√
72K

l
∑

j=1

2j/2
∣

∣

∣

∣

Yn

(

1

2j−1

)∣

∣

∣

∣

>
√
x





=

∞
∑

m=−∞
P





√
72K

l
∑

j=1

2j/2Ȳn,|m|

(

1

2j−1

)

>
√
x



P (κn − n = m)

≤ P





√
72K

l
∑

j=1

2j/2Ȳn,B
√
nx

(

1

2j−1

)

>
√
x



P (|κn − n| ≤ B
√
nx)

+ P (|κn − n| > B
√
nx).

(2.3)

The last relation of formula (2.3) can be seen with the help of the observation that
the first probability in the second line of formula (2.3) is a monotone increasing
function of the parameter |m| = |κn − n|. By fixing the number M = B

√
nx, and

by replacing the parameter m by M in the case |m| ≤ M and applying the trivial
upper bound 1 for this probability we get the last inequality in formula (2.3).
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The inequality in formula (13) is a simple consequence of relation (2.3) and the
formula before it. Finally the identity formulated at the end of formula (13) follows
from a simple calculation if we put the definition of the random variable Ȳn,B

√
nx

in the expression at the second line of formula (13), change the order of summation
in the double sum obtained in such a way and put together the terms depending
on the variable ζk, 1 ≤ k ≤ B

√
nx, in the form of a single random variable ξk.

The random variables ξk = ξk,l are functions of the independent random variables
ζk. It follows from this fact and the explicit form of the definition of the random
variables ξk that they are independent and identically distributed.

11.) If the conditions of the problem are satisfied, then 2l/2 ≤
√

n

Cx
, and

√
x√
n
ξk ≤

√
x√
n

2(l+1)/2

√
2− 1

≤
√
x√
n

√

n

Cx

√
2√

2− 1
=

√
2

(
√
2− 1)

√
C
. Hence exp

{√
x√
n
ξk

}

≤ 1 +

C̄

√
x√
n
ξk with an appropriate number C̄ = C̄(C) > 0, and E exp

{√
x√
n
ξk

}

≤

1 + C̄

√
x√
n
Eξk ≤ 1 + K̄

√
x√
n

with an appropriate number K̄ = K̄(C), as we have

claimed, since Eξk =
l
∑

j=1

2−j/2−1 ≤
√
2 + 1.

This implies that

P





√
72K√
n

B
√
nx

∑

k=1

ξk >
√
x



 = P



exp







√
x√
n

B
√
nx

∑

k=1

ξk







> exp

{

x√
72K

}





≤
(

1 + K̄

√
x√
n

)B
√
nx

exp

{

− x√
72K

}

≤ eBK̄x−x/
√
72K .

Let us choose the number B =
1

12K̄
√
K

in the last inequality. In such a way we

have proved that the probability considered in this relation is less than e−const. x. On
the other hand, by the first statement of problem 10 the inequality P (|κn−Eκn| >
B
√
nx) < e−const. x also holds. These estimates together with relation (13) imply

formula (14).

12.) By summing up the inequalities in formula (15) for j = 1, . . . , l (with the coefficient
B = 5) we get that

72K

l
∑

j=1

2jXn

(

1

2j−1

)2

≤ 360K

l
∑

j=1

2j
( l
∑

k=j

2(k−j)/2

[

Xn

(

1

2k−1

)

−Xn

(

1

2k

)]2

+ 2(l−j)/2X2
n

(

1

2l

))
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Approximation of the empirical distribution function

= 360K
l
∑

k=1

2k
[

Xn

(

1

2k−1

)

−Xn

(

1

2k

)]2 k
∑

j=1

2(j−k)/2

+ 360K
l
∑

j=1

2(l+j)/2X2
n

(

1

2l

)

≤ 1500K

(

l
∑

k=1

2k
[

Xn

(

1

2k−1

)

−Xn

(

1

2k

)]2

+ 2lX2
n

(

1

2l

)

)

.

The random variables 2k
(

Xn

(

1
2k−1

)

−Xn

(

1
2k

))

, 1 ≤ k ≤ l, and 2lXn

(

1
2l

)

are
independent, and their joint distribution agrees with the joint distribution of the

random variables
ηk − Eηk√

n
, 1 ≤ k ≤ l+1, where ηk, 1 ≤ k ≤ l+1, are those Pois-

sonian random variables which appear in formula (16). Hence the last inequality
implies formula (16).

The inequality P (|ηk − Eηk| > u) ≤ 2 exp 2

{

− u2

8n2−k

}

was already proved in

problem 10 in the case u < n2−k. Indeed, the estimate proved for a Poissonian
random variable κn with parameter n holds for all real (not necessary integer)
parameter n > 0. (In these inequalities we have not tried to give estimates with
optimal constants. Further we have formulated them in such a way that the case
k = l + 1 has not to be considered separately.) In particular, with the choice

u = n2−k we get the estimate P (|ηk −Eηk| ≥ n2−k) ≤ 2 exp
{

− n

2(k+3)

}

. To prove

the inequality E exp
{

n2−(k+4)η̄2k
}

≤ B let us introduce the distribution functions
Fk(y) = Fn,k(y) = P (|η̄k| < y), 1 ≤ k ≤ l+1, and let us observe that by the results

already proved 1− Fk(y) ≤ 2e−2ky2/8n. Hence we get by integrating by parts that

E exp

{

2k−4

n
η̄2k

}

=

2−kn
∫

0

e2
ky2/16nFk( dy)

=

2−kn
∫

0

(1− Fk(y)) de
2ky2/16n −

[

(1− Fk(y))e
2ky2/16n

]2−kn

0

=

2−kn
∫

0

(1− Fk(y))
2ky

8n
e2

ky2/16n dy + 1− (1− Fk(2
−kn))e2

−kn/16

≤ 2

2−kn
∫

0

2ky

8n
e−2ky2/16n dy + 1− e−2−kn/16

= 2

2−k/2n1/2/4
∫

0

2ye−y2

dy + 1− e−2−kn/16 ≤ B,
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as we have claimed.

In the proof of formula (17) we use formula (16), the truncation of the random
variables ηk−Eηk introduced before, the definition of the random variables η̄k and
the already proved inequalities for the random variables ηk − Eηk. We get with
their help that

P



72K
l
∑

j=1

2jXn

(

1

2j−1

)2

> x



 ≤ P

(

1500K

(

l
∑

k=1

2k

n
η̄2k +

2l

n
η̄2l+1

)

> x

)

+
l+1
∑

k=1

P
(

|ηk − Eηk| > 2−kn
)

≤ P

(

exp

{

l
∑

k=1

2(k−4)

n
η̄2k +

2(l−4)

n
η̄2l+1

}

> exp
{ x

24000K

}

)

+ 2
l+1
∑

k=1

e−n2−(k+3) ≤ eBl−x/24000K + const. e−n2−(l+4)

.

If x > C0 log n with a sufficiently large constant C0 > 0, then Bl − x

24000K
≤

− x

30000K
and n2−(l+4) ≥ const.x, since Bl ≤ B log n+ const. ≤ B

C0
x+ const. ≤

x

120000
under these conditions with a sufficiently large constant C0, and since

n2−l ≥ Cx, hence n2−(l+4) ≥ const.x. These inequalities imply formula (17).

Inequality (10) is a simple consequence of formulas (12), (14) (17), and relation
(9) holds because of the result of problem 9 from relation (10) and the results of
problems 7 and 8.

13.) Both a Wiener processW (t) and a standardized Poisson processXn(t) are processes
with independent increments, and the identities EW (t) = 0 and EXn(t) = 0 hold
for all numbers 0 ≤ t ≤ 1. Furthermore, the trajectories of a Wiener process
are continuous and the trajectories of a standardized Poisson process are cadlag
(continuous from the right with left-hand side limits) functions. Hence the Lemma
formulated in this work can be applied both for the processes ±B(t) and ±Xn(t).

Since W (t), t ≥ 0, is a normally distributed random variable with expectation zero

and variance t, hence Ee±sW (t) = ets
2/2, and by the last inequality of the Lemma

P



 sup
0≤t<L

y
n

±
√
nW (t) > y



 ≤ exp
{

ns2L
y

2n
− sy

}

with arbitrary number s > 0. With the choice s = 1
L this inequality yields the

analog of inequality (18a) for the Wiener process with parameter α = 1
2L .
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Approximation of the empirical distribution function

The proof of the analog of inequality (18b) for a standardized Poisson process is
similar. The random variable

√
nXn(t) is a Poisson distributed random variable

with parameter
√
ntminus its expected value. Hence, as it was shown for instance in

the solution of problem 10, Ee±s
√
nXn(t) ≤ es

2t, if 0 ≤ s ≤ 1. Hence an application
of the lemma yields with the choice s = 1

2L that

P



 sup
0≤t<L

y
n

±
√
nXn(t) > y



 ≤ es
2Ly−sy = e−y/4L,

if L ≥ 1
2 , and s ≤ 1 as a consequence. If L ≤ 1

2 , then exploiting that the prob-
ability at the left-hand side of formula (18) is a monotone increasing function of
the parameter L we get that the estimate (18b) holds in this case with the same
coefficient as in the case L = 1

2 . (Actually the inequality could be improved in this
case, but we shall not need such an improvement.)

14.) The proof of formula (18a) can be obtained from the result of problem 13 by means
of the representation of a Brownian bridge through aWiener process in the following
way:

P



 sup
0≤t<L

y
n

√
n|B(t)| > y



 ≤ P



 sup
0≤t<L

y
n

√
n|W (t)| > y

2





+ P
(√

nL
y

n
|W (1)| ≥ y

2

)

≤ 2e−αy + P

(

|W (1)| ≥
√
n

2L

)

≤ 2e−αy + 2e−n/8L2

.

Formula (18a) follows from this inequality because of the condition 0 < y ≤ n.

Formula (18b) can be proved similarly with the help of the Poisson approximation
defined in formulas (11a)—(11c) on the basis of the result of problem 13. This
yields that

P



 sup
0≤t<L

y
n

√
n|Zn(t)| > y



 ≤ 2e−αy + P



 sup
0≤t<L

y
n

√
n|Yn(t)| >

y

2



 , (2.4)

where the series of random variables Yn(t) are defined in formula (11c). The second
term at the right-hand side of formula (2.4) can be bounded similarly to the method
applied in problem 11. Let us consider the conditional distribution of the process
Yn(t) under the condition κn = m, m = 0,±1,±2, . . . . Then we get similarly to
the proof of formula (2.3) that

P



 sup
0≤t<L

y
n

√
n|Yn(t)| >

y

2



 ≤ P



 sup
0≤t<L

y
n

√
n|Ȳn,B

√
ny(t)| >

y

2





+ P (|κn − n| > B
√
ny) ,

(2.5)
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where the process Ȳn,m(t) was defined before the formulation of problem 10, before
formula (13), and κn is the Poisson distributed random variable with parameter n
which appears in the definition of the process Yn(t) given in formula (11), and
B > 0 is an arbitrary positive number. The right-hand side of formula (2.5) can
be well estimated by means of the calculation

P



 sup
0≤t<L

y
n

√
n|Ȳn,B

√
ny(t)| >

y

2



 = P

(√
nȲn,B

√
ny

(

Ly

n

)

≥ y

2

)

= P





B
√
ny

∑

j=1

χj >
y

2



 ≤ (Eeχ1)
B
√
ny

e−y/2,

where χ1, χ2, . . . , are independent, identically distributed random variables with

distribution P (χ1 = 1) = 1− P (χ1 = 0) = L
y

n
. Hence we get, because of the con-

dition y ≤ n that Eeχ1 = 1+
Ly

n
(e−1) ≤ exp

{

(e− 1)
Ly

n

}

≤ exp

{

L(e− 1)

√

y

n

}

.

Let us apply the previous estimates with the choice of parameter B =
1

6L
together

with the estimate on the distribution function κn − n given in problem 10. They
yield the inequalities

P



 sup
0≤t<L

y
n

√
n|Ȳn,B

√
ny(t)| >

y

2



 ≤ (Eeχ1)
√
ny/6L

e−y/2 ≤ e(e−1)y/6−y/2 ≤ e−y/6,

and P

(

|κn − n| > 1

6L

√
yn

)

≤ e−const. y. These estimates yield a bound on the

expression in formula (2.5) with the choice B =
1

6L
which implies that the expres-

sion in formula (2.4) is less than 2e−αy with an appropriate constant α > 0. In
such a way we have solved problem 14.

15.) Let us choose such numbers C0 > 0, C > 0 and D > 0 and threshold index n0

for which relation (9) holds if the real number x > 0 and integer l > 0 satisfy the
conditions C0 log n ≤ x ≤ C−1n and 2−l ≥ Cxn−1, and n ≥ n0. First we show
the slightly weaker result by which the estimate of the Approximation Theorem
holds for all numbers x which satisfy the relation C0 log n ≤ x ≤ C−1n with these
numbers C and C0 if n ≥ n0.

Let us choose that positive integer l = l(x) for which 2Cxn−1 > 2−l ≥ Cxn−1 with
the constant C > 0 considered above. We show with the help of relations (18a)
and (18b) proved in problem 14 that

P

(

sup
1≤k≤2l

sup
(k−1)2−l≤t<k2−l

√
n

∣

∣

∣

∣

B(t)−B

(

(k − 1)

2l

)∣

∣

∣

∣

>
x

4

)

≤ e−αx,

P

(

sup
1≤k≤2l

sup
(k−1)2−l≤t<k2−l

√
n

∣

∣

∣

∣

Zn(t)− Zn

(

(k − 1)

2l

)∣

∣

∣

∣

>
x

4

)

≤ e−αx

(2.6)
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with an appropriate constant α > 0 and the previously defined integer l = l(x)
if x ≥ C0 log n with an appropriate constant C0 > 0. To prove relation (2.6) let
us observe that formulas (18a) and (18b) remain valid if at their left-hand side

the domain 0 ≤ t ≤ L
y

n
where supremum is taken is replaced by another domain

u ≤ t ≤ u + L
y

n
such that 0 ≤ u ≤ 1 − y

n
. Indeed, the probability of the event

obtained after such a replacement agrees with the original probability. We show
with the help of this modified version of formulas (18a) and (18b) with the choice

of parameters y =
x

4
, L =

8

C
and u = (k − 1)2−l, 1 ≤ k ≤ 2l that the probabilities

at the left-hand side of the expression (2.6) are less than 2l+1e−αx. To show this
it is enough to check that the inner supremum in those expressions were taken on

intervals of length 2−l ≤ 2
x

Cn
= L

x

4n
and the outside supremum is taken over 2l

terms. Let us finally observe that 2l+1 ≤ 2n

Cx
≤ n ≤ eαx/2, if x ≥ C0 log n, i.e. if

n ≤ ex/C0 with a sufficiently large number C0. This argument implies formula (2.6)
(with parameter α/2 > 0 instead of parameter α > 0.)

The above mentioned weakened form of the Approximation Theorem is a simple
consequence of formulas (9) and (2.6). Indeed, given a number 0 ≤ t ≤ 1, let us
consider the integer k = k(t), 1 ≤ k ≤ 2l for which (k − 1)2−l ≤ t < k2−l. Then
we get by formulas (9) and (2.6) that in the case x ≤ C0 log n the inequality

√
n |Zn(t)−B(t)| ≤

√
n
∣

∣Zn

(

(k − 1)2−l
)

−B
(

(k − 1)2l
)∣

∣

+
√
n
∣

∣B(t)−B
(

(k − 1)2−l
)∣

∣+
√
n
∣

∣Zn(t)− Zn

(

(k − 1)2−l
)∣

∣ ≤ x

holds simultaneously for all numbers 0 ≤ t ≤ 1 except on a set of probability
e−Dx + 2e−αx. Hence the approximation theorem holds for C0 log n < x ≤ C−1n.
The estimate of the Approximation Theorem is a trivial statement in the case
x ≤ C0 log n if the constant C1 in it is chosen sufficiently large.

In the case x ≥ C−1n we can show with the help of formulas (18a) and (18b) that

P

(√
n sup

0≤t≤1
|Zn(t)−B(t)| > x

)

≤ P

(√
n sup

0≤t≤1
|B(t))| > x

2

)

+ P

(√
n sup

0≤t≤1
|Zn(t))| >

x

2

)

≤ e−Cx2/n ≤ e−C̄x

(2.7)

with appropriate constants C > 0 and C̄ > 0. Let us remark that the condition
0 ≤ x

2 ≤ n appears in formulas (18a) and (18b), hence we need some special
considerations in the proof. The first term in the second line of formula (2.7) can
be estimated similarly to the expression in formula (18a) for all numbers x > C−1n
which expression yields an estimate on the supremum of a Brownian bridge. (In
the proof of this estimate we applied the representation of a Brownian bridge by
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a Wiener process, and the condition x ≤ n was not needed there. Now we wrote
a sharp upper bound for the probability we wanted to estimate, only the constant
C > 0 appearing there is not calculated explicitly.) The Poisson approximation
applied in the proof of formula (18b) does not yield a good estimate in the case
x ≫ n, but in the case x

2 > n we do not need this approximation. In this case the
trivial identity

P

(√
n sup

0≤t≤1
|Zn(t))| > n

)

= 0

is applicable. Hence formula (2.7) holds, and the Approximation Theorem holds
for all x ≥ C−1n.

Although the special investigation of the case n ≤ n0 has no great importance, we
remark that the Approximation Theory holds in this case, too. Too see this it is
enough to observe that since the parameter n is bounded, hence the second, and as
a consequence the first line of inequality (2.7) is less than C1e

−C2x for all numbers
x ≥ 0 with some appropriate constants C1 > 0 and C2 > 0.
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Appendix

Proof of the Lemma:

Let us define the following random variable (stopping rule) τ which tells us the smallest

index k for which an element of the sequence of partial sums Sk =
k
∑

j=1

ξk, k = 1, . . . , n,

is larger than a number x > 0:

τ = τ(x, n) =







min{k : Sk > x} if sup
1≤k≤n

Sk > x

n if sup
1≤k≤n

Sk ≤ x
.

As P

(

sup
1≤k≤n

Sk > x

)

= P (Sτ > x), it is natural to prove the first inequality of the

Lemma by giving a good estimate on the exponential moments EesSτ of the random
variable Sτ .

It follows from standard results of the martingale theory that for arbitrary real
number s ≥ 0 EesSτ ≤ EesSn . To prove this it is useful to show that for all numbers
s ≥ 0 the sequence (esSk ,Fk), k = 1, . . . , n, where Fk = σ(ξ1, . . . , ξk) is the σ-algebra
generated by the random variables ξ1, . . . , ξk, is a supermartingale i.e. E

(

esSk+1 |Fk

)

≥
esSk with probability one. It is not difficult to see this inequality by using the properties
of conditional expectations, the identity esSk+1 = esSkesξk+1 and the independence of
the random variable ξk+1 of the σ-algebra Fk. This implies that E

(

esSk+1 |Fk

)

=
esSkEesξk+1 ≥ esSk , since Eesξk+1 ≥ eEsξk+1 ≥ 1 by the Jensen inequality and the
condition Eξk+1 ≥ 0.

A simple but fundamental result of the martingale theory states that if the series
(esSk ,Fk), k = 1, . . . , n, is a supermartingale and the stopping rule τ satisfies the
inequality τ ≤ n with probability one, then EesSτ ≤ EesSn . It is not difficult to prove
the above inequality, but since the argument of the proof is essentially different from
the method of this work we omit it. It may be worth mentioning that this inequality
has the following heuristic content: In an advantageous game the further we play the
greater our expected gain will be.

It follows from the (only partly proved) estimate on the exponential moment that

P

(

sup
1≤k≤n

Sk > x

)

= P (Sτ > x) = P
(

esSτ > esx
)

≤ EesSτ e−sx

≤ EesSne−sx = exp

{

−sx+
n
∑

k=1

Bk(s)

}

,

and this is the first statement of the Lemma.

To prove the second statement of the lemma let us introduce for all numbers n =
1, 2, . . . the numbers tk,n = a + (b − a)k2−n, 0 ≤ k ≤ 2n and the random variables
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ξk,n = X(tk,n) − X(tk−1,n), 1 ≤ k ≤ 2n, Then for a fixed number n the random
variables ξk,n, 1 ≤ k ≤ 2n, are independent, since the process X(t) has independent

increments and X(tk,n) − X(a) =
k
∑

j=1

ξj,n, 1 ≤ k ≤ n. Furthermore, Eξk,n ≥ 0 for

1 ≤ k ≤ n, and since the trajectories of the stochastic process X(t) are continuous
or cadlag (continuous from the right with left-hand side limit) functions, hence for all
numbers x > 0

{

ω : sup
a≤t≤b

(X(t, ω)−X(a, ω)) > x

}

=

∞
⋃

n=1

{

ω : sup
1≤k≤2n

(X(tk,n, ω)−X(a, ω)) > x

}

.

Besides, the sets in the union at the right-hand side of the last relation constitute a
series of sets monotone increasing by the parameter n. From this fact and the already
proven part of the Lemma

P

(

sup
a≤t≤b

(X(t)−X(a)) > x

)

= lim
n→∞

P

(

sup
1≤k≤2n

(X(tk,n)−X(a)) > x

)

≤ lim
n→∞

e−sx
2n
∏

k=1

Eesξk,n = e−sxEes(X(b)−X(a)),

and this is the second statement of the Lemma.
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