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ON THE NUMBER OF ANTIPODAL OR 
STRICTLY ANTIPODAL PAIRS OF POINTS 

IN FINITE SUBSETS OF R d, II. 

E. MAKAI, Jr. (Budapest) 1 and H. MARTINI (Dresden) 

A b s t r a c t  

The paper is a continuation of [MM], namely containing several statements 
related to the concept of antipodal and strictly antipodal p~rs of points in a subset 
X of R d, which has cardinality n. The points zi, z i E X are called antipodal if each 
of them is eontsJned in one of two different parallel supporting hyperplanes of the 
convex hull of X. If such hyperplanes contain no further point of X, then zi, zj are 
even strictly antipodal. We shall prove some lower bounds on the number of strictly 
antipodal pairs for given d and n. Furthermore, this concept leads us to a statement 
on the quotient of the lengths of longest and shortest edges of special d-simpliees, 
and finally a generalization (concerning strictly antipodal segments) is proved. 

w 1. I n t r o d u c t i o n  

'For basic notat ion and usual abbreviations the reader is referred to [G2]. 
Let X = { z l , . . . ,  zn)  C R d (zi ~ z / f o r  i ~ j ) ,  and let e denote its convex 

hull. We always suppose that  X is not contained in a hyperplane of R d. The points 
zi,  zj E X are called antipodal (strictly antipodaO, if  there are different parallel 
supporting hyperplanes H ' ,  H "  of P with zi E H', zj ~ H" (with {zi} = P N H ' ,  
{zj} = P N H") .  These concepts are due to V. Klee (cf. [G2], p. 420) and to B. 
Gri inbaum (see [G1]), respectively. 

We denote by a(X) (sa(X)) the number of antipodal (strictly antipodal) pairs 
z~, zj of X.  When investigating a(X) (sa(X)), we may and will suppose that  each 
zi is a boundary point (a vertex) of the polytope P .  By [G1], sa(X) is half the 
vertex number of the difference body P + ( - P )  of P .  
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Lower estimates for sa(X), and for a(X) (supposing X = vertP), in terms of 
IX[ and for given d, have been given by [N] and [SN1], respectively (cf. also [SN2]). 
In particular, for d = 3, IN] determined the number c(n) : min{sa(X)[[X[ = n} 
for every n, namely 

c(4) = c(5) =c(7) = c(9) = 6, 
(1) 

c(n) = [ 2  ] otherwise. 

Partially based on results of [SN1], [N] derived for d > 3, with ca(n) = 
min(sa(X) l IXI ---- n}, 

(21) cd(d+ 1) -- d(d+ 1) 
2 ' 

(22) cd(n)>_3(d--1), d + 2 < n < 2 d - 2 ,  

(23) ed(2d-- 1) = 3 ( d -  1), 

(24,) cd(n) = 2d, n odd with 2d + 1 < n < 4 d -  1, 

(25) cd(n) = [2  ] otherwise. 

Upper estimates for a(X), sa(X), or for a(X) supposing X = vert P ,  have 
been given by [G1] and [MM]. For a more detailed overview on these results cf. e.g. 
[MM], w167 1, 2. 

We recall that a centrally symmetric convex polytope Q is irreducible, if it 
is not of the form �89 + ( - P ) ) ,  where P is a convex polytope that is no translate 
of Q. Then (1) implies that a centrally symmetric convex polyhedron Q in R s, of 
< 10 vertices is irreducible, at least w.r.t, convex polyhedra P with an odd number 
of vertices. About the concept of irreducibility of. also the very recent paper [Y], 
which shows e.g. that for d > 3 each centrosymmetric convex polytope in R d, with 
< 4d vertices, is irreducible (that implies (1) and (24)). 

w 2. R e s u l t s  

The aim of our paper is first to give alternative proofs to (1) and (25). Other 
results from [N], namely (21), (22) and (2s), were also independently rediscovered by 
the authors, before learning of [N], and presented at the Oberwolfach conference on 
Combinatorial Convexity and Algebraic Geometry in 1989 (see the corresponding 
research report 35/1989). But since here the authors used quite the same methods 
as [N] (only in other terms), namely induction over d with starting point d = 2 and 
n = 3, we will not repeat these proofs. Second, we will prove a proposition, used in 
the first part of our paper [MM], but not proved there. It is actually independent 
of antipodality, and is a variant of K. Schiitte's theorem (cf. [Sch]) on the minimal 
quotient of the maximal and minimal distances among d + 1 points in R d-l ,  see 
also [DW]. (Actually, Schfitte's theorem is the case ~ = ~r of our proposition, which 
is however for d > 3 not covered by our proposition.) 
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PROPOSITION 1. Let in R d, d >_ 2, a simplez a l . . .  ad-lblb2 have two facets 
( a l . . . a d - l b l  and a l . . . ad - lb2 ,  say), enclosing an angle >_ ~, where l i d  >_ cos~b >_ 
- l i d  2 - 3d + 1 (the lower inequality holding for d >_ 3). Then the quotient of the 
lengths of the longest and shortest edges is 

2 - 2cos~ 

-> 1+ 

Equality holds if  and only if  the angle of the mentioned two facets is ~, both facets 
are right pyramids over a regular ( d -  2)-simplez as base (namely over a l . . . ad -1 ) ,  
and 

2 - 2cos~ 
ailai2 = bib2 = aibj . 1 + ~_~(1 - cos~) '  

for each i, il, i2 <_ d - 1, j <_ 2. 
Third we will prove a proposition dealing with a variant of antipodedity. Let 

S t = {si t , . . . ,s t , )  be a finite set of k-simplices in R d. We call S t (strictly) k- 
antipodal if for any i # j there are different parallel supporting hyperplanes H' ,  H 't 
of the convex hull P of the union of the simplices belonging to S k , such that s~ C 
H , sj t H 'i (reap. s~ = PNH' ,  s~ = PNH") .  One can conjecture that, analogously 
to the Danzer-Griinbaum theorem holding for the case k = 0 (cf. [DG]), a k- 
antipodal set of k-simplices has at most 2 d-t  elements, which is attained for 2 d- t  
k-simplices on 2 d-t  parallel k-faces of a cube. (Formerly, also I. B~r~ny and V. 
Soltan have formulated this conjecture.) 

For the strictly antipodal case we have the following 

P R O P O S I T I O N  2. I f  S 1 = { s l , . . . , s  1)  iS a strictly antipodal set of n 1- 
simplices in R 8, which are pairwise skew, then n < 3. This bound is sharp. 

All these results have been announced in [MM]. 

w 3. P roo f s  to  some lower b o u n d s  on sa(X)  

1. Obviously, (21)  is trivial, since then P has to be a d-simplex having d(d+l) 2 
edges, each connecting a strictly antipodal pair from vert P.  The case when cd(n) = 
-~ (n even) is also clear. Namely, every vertex of P belongs to at least one strictly 
antipodal pair. On the other hand, a vertex pair x, y forms precisely one strictly 
antipodal pair (i.e. neither z nor y belongs to another such pair) if and only if 
the edge systems around x and y consist of only pairwise parallel and oppositely 
directed edges (directed starting from z, reap. y). For seeing this, one uses the 
concept of half the vertex number of the difference body P + ( - P ) ,  which is equal 
to sa(X)  with X as vertex set of P (cf. [G1] and w 1). More precisely, since faces of 
convex bodies in parallel supporting hyperplanes at the same sides of these bodies 
behave additively under Minkowski addition, for a pair H, ~r of different parallel 
supporting hyperplanes of P with H N P an edge and/~r N P not containing an edge 
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parallel to H n P, P + (-P) has translates of H A P as edges (and not as parts 
of edges) in both supporting hyperplanes parallel to H. Thus, Cd(n) = -~ (n even) 
characterizes all convex polytopes having pairwise parallel and oppositely directed 
edge systems as described above. (Central symmetry is sufficient, but in general 
not necessary.) 

Further on, we shall repeatedly use that concept, whereas [N] considered outer 
normal cones of vertices of the polytope P. 

On this base, we will construct suitable convex d-polytopes P yielding the 
sharp lower bound for odd n _> 4 d -  1: Choose two ( d -  1)-simplices S1,S2 in 
different parallel hyperplanes such that their convex hull co (S1, $2) is centrally 
symmetric. Consider now the polytope Q having the same set of facet hyperplanes 
as the polytope co (Si), except the afline hulls aff(Si), i = 1, 2. Intersect Q by two 
different parallel hyperplanes Hi, H~ with co (S1, $2) C co (Hi, H2) and HiAint Q 
@ (i = 1, 2). If H1 contains no vertex and H2 contains precisely one vertex of 
co (S1, $2), then co (HI, H2)A Q is a convex d-polytope with exactly 4 d -  1 vertices. 
This polytope has 2 d -  2 vertex pairs with pairwise parallel and oppositely directed 
edges in each case, and additionally it has a triple of vertices yielding two strictly 
antipodal pairs, i.e., altogether there are 2d strictly antipodal vertex pairs. Now 
one can add an arbitrary number of vertex pairs zll, z2i ~ co (Hi, H2) close to the 
centroids of the facets F1, F2 of co (HI, H2) A Q lying on Hi, H2, so that {F1, zli} 
and {/'2, x21} are negative homothetic images of each other. The corresponding 
polytopes yield cd(n) = F~] for every odd vertex number n > 4d. Thus, we have 
(2s). 

2. For showing the complete solution in 3-space (i.e. (1)), by the arguments 
above we need only to consider the non-trivial cases n = 5, 7 ,  9.  

A. If n = 5, then we have only two combinatorial types of convex polyhedra. 
For P being a pyramid over a 4-gon, this 4-gon yields at least two vertex pairs of 
P + ( - P ) ,  and every edge containing the apex of P connects an additional strictly 
antipodal pair. On the other hand, the combinatorial type of a double pyramid P 
over a triangle T with apices Zl, z2 has {xl, z2} and any pair of vertices of T as 
strictly antipodal vertex pairs. Let us project P along a direction of general position 
in aft(T), not parallel to any side of T. Since P does not have parallel edges, the 
projection Q of P will be a convex quadrangle without parallel sides, hence some 
two of its sides connect strictly antipodal vertex pairs of Q. The two vertex pairs 
of P, projecting to these vertex pairs of Q, are two more strictly antipodal vertex 
pairs of P. 

B, For P with n = 7, we first show ]vert (P + ( -P) ) I  >- 12 if P has no parallel 
facets. Let f, fi, e, v(= 7) denote the number of facets, i-gonal facets, edges and 
vertices of P,  respectively. Euler's theorem gives 

T E s ' : E  )s, EEs, 
i~s i>s i>s j>_3 ~>_j 

Denote by f ,  $~, e', v' the analogous numbers for P + ( - P ) .  Since each i-gonal 
facet of P is parallel to two > i-gonal facets of P +( -P ) ,  we have ~ J~ >_ 2 ~.. fi, 

~>j i>j 
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implying 

j_>a i_>j j_>a ~_>j 

Therefore we may suppose P has a pair of facets F, F in different parallel 
supporting planes H, H. Furthermore, p shall denote the total number of vertices 
of P-F(-P) lying in those supporting planes of the difference body which are parallel 
to H. (This notion is useful for the following enumeration of subcases.) 

(a) For F a 4-gon and/~ a triangle, p >_ 8 is assured. If the three sides of ~' 
are oppositely parallel to three sides of F (F, $' considered in the same orientation, 
w.r.t, directly parallel normal vectors), and thus p - 8, then at least two vertex 
pairs in F or, otherwise, in ~' are strictly antipodal in P, i.e., P § ( - P )  has at least 
four additional vertices in aff(F -t- ( - F ) ) .  In each other case, we have p _> 10 and 
at least one strictly antipodal vertex pair in F or in ~'. 

(b) For F, F being triangles, p _> 6 is assured. One obtains p - 6 for F 
homothetic to ( - F ) ,  and p - 8 for F and ( - F )  having exactly two pairs of parallel 
and similarly oriented sides. (With p >_ 10, all other cases are trivial, since the 
vertex outside F U F belongs to a further strictly antipodal pair.) 

In the first case, if F is even congruent to ( - F ) ,  the vertex z ~ F t3 P lies 
opposite to at least one 2-face of P,  i.e. belongs to at least three strictly antipodal 
pairs of vertices. I f F  is a greater homothetic copy of ( - F ) ,  say, F = co (a, b, c}, $' --- 
co (~, b, ~}, with corresponding notation of vertices, then for each side of F,  say 
co (a, b}, either the third vertex c of F and the vertex z, or the vertices a and 
b form a strictly antipodal ~,ertex pair (depending on whether x lies in the closed 
outer or in the open inner half-space bounded by aft (a, b, ~}, and with corresponding 
supporting planes nearly parallel, in the respective cases, to the plane aft(a, b, ~} or 
a f f { a  + b - c, ~, z } ) .  

Clearly, for F and ( - F )  having precisely two pairs of parallel and similarly 
oriented sides we have only to exclude 

[vert (P + ( -P) ) [  - 10. 

Here P = co (F, $', (z}). Assuming Ivert (P + ( -P) ) [  = 10, P - t - ( - P )  has 8 
vertices in the planes of its quadrangular facets G -- F + ( - F )  and - G ,  and two 
additional vertices y , - y  between these facet planes. By a suitable choice of the 
coordinate system (which we denote by ~, 7, (), we may assume the vertices of F,  
reap. F are (0, 0, 1), (0, 1, 1), (a, 1, 1), reap. (0, 0, 0), (1, 0, 0), (1, b, 0), where a, b > 0, 
and ab ~ 1 (since F, -~ '  are no homothets). 

First suppose a, b ~ 1. Then the nine vectors from the vertices of F to 
the vertices of F are all different, thus are pairwise non-parallel (since each of 
them has ~-coordinate 1). Denoting Q = co (F, ~') C P, we have P + ( - P )  = 
co (Q + ( -Q) ,  (y , -y}) ,  since the latter convex hull contains all vertices of P- t - ( -P) .  
This convex hull is the union of Q -P ( - Q )  and of all the closed segments with one 
endpoint at ~y, other endpoint on bd (Q + (-Q)) ,  and disjoint to int (Q + ( -Q)) .  
For both y and - y  these other endpoints of the mentioned segments form the so 
called illuminated domain from -t-y (in the not strict sense), which is bounded by a 
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simple closed polygon +Y on bd (Q + ( -Q)) ,  consisting of some of its edges. The 
illuminated domains from y and from - y  are, apart from their boundaries, disjoint. 
The vertices of any of these simple closed polygons -t-J are vertices of P + ( - P )  
as well, and are different from y and -y .  Thus - by the position of the vertices of 
P + ( - P )  - they must lie on the planes of the facets G or - G ,  and + J  must have 
edges with one endpoint on G and other endpoint on - G .  Any such edge E is an 
edge of P + ( - P ) ,  hence is the Minkowski sum of two parallel edges, or an edge and 
a vertex of P (one taken with minus sign), lying in some opposite supporting planes 
of P.  The orthogonal projection of E to the ~-axis has length 2. Since any edge 
of P has a projection to the (-axis of length _< 1, with equality only for edges with 
one endpoint on _P, other endpoint on F,  therefore the above mentioned Minkowski 
summands of E are two different parallel edges of P,  both with one endpoint on $', 
other endpoint on F.  However, from above, all nine vectors from vertices of $" to 
vertices of F are pairwise non-parallel, a contradiction. Therefore a or b equals 1. 

Since a and b have symmetric roles, we may suppose a'-- 1. By ab ~ 1 then 
b ~ 1. Corresponding to the vertices of P+(-P) on its facets G and - G ,  P has four 
strictly antipodal vertex pairs, each pair consisting of a vertex of $' and a vertex 
of F.  Also the vertex z, which lies in the slab 0 <: ( < 1, belongs to at least one 
strictly antipodal vertex pair. Thus it suffices to show that either z belongs to at 
least two strictly antipodal vertex pairs of P,  or two vertices of F,  or of $' form a 
strictly antipodal vertex pair of P.  

Suppose first z lies in the open half-space ~ < 0, or in the open half-space 
> 1. Then z belongs to at least three strictly antipodal vertex pairs, namely 

together with any of the three vertices of Q lying on the plane ~ = 1, or ~ = 0, resp. 
If x lies on the plane ~ = 0 or ~ = 1, then P has parallel facets in these planes, one 
quadrangular, one triangular, which case has already been settled, under (a). Lastly 
let z lie in the open slab 0 < ~ < 1. Recall b ~ 1. If b < 1, then (0, 0, 1), (1, 1, 1) is 
a strictly antipodal vertex pair, belonging to F.  If b > 1, then (0, 0, 0), (1, b,0) is a 
strictly antipodal vertex pair, belonging to F.  Hence, the case n = 7 is finished. 

C. For n - 9, we have only to exclude 

(*) ]vert P[ + 1 = [vert (P  + ( -P) ) I .  

Remind that for a convex polytope Q in R d, if we translate the outer normal cones of 
its vertices so that the apices are translated to 0, and then intersect the translated 
copies with the unit sphere S d-t about 0, then we obtain a tiling of S d-t that 
(together with the intersections of all faces of all dimensions of these translated 
cones with S d-l)  is dually combinatorially isomorphic to the boundary complex of 
Q. Using this for Q = P and for Q = P + ( - P ) ,  and using the fact that the tiling 
associated to P + ( - P )  is a refinement (=subdivision) of the tiling associated to 
P,  we see the following. If P C R 3 is a convex polyhedron satisfying (*), then 
all edges containing one vertex of any strictly antipodal vertex pair are pairwise 
parallel and oppositely directed, with exactly one exception: P has precisely one 
edge co {z, y} such that to all edges meeting co {z, y) (except to co {z, y} itself) 
there are respectively parallel and oppositely directed edges forming the edge system 
around a third vertex z of P.  Then clearly {z, z) and {y, z) are strictly antipodal 
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pairs, and P q- ( - P )  has precisely one edge more than P, that edge being parallel 
to co {z, I/}. The number of facets of P,  and of P + ( - P )  (and in fact their sets of 
outer unit facet normals) coincide. Using further n = 9, le t / '1 , / '2  be the facets of 
P+(-P) adjacent to the edge E of P + ( - P ) ,  that corresponds to the edge co {z, y) 
of P. (We say that facets, edges or vertices of P + ( - P )  correspond to those of P,  
if they have the same outer normal cone.) Since the facets of P corresponding to 
-F1,  -F2  have one edge less than - / '1 ,  -F~ (because of - E ) ,  the angles o f - / ' 1 ,  
and similarly those of - / '2 ,  at the endpoints of - E  have a sum > 7r. In particular, 
-F1,  -F2  have >_ 4 vertices. 

P q- ( - P )  lies in the infinite prism Q bounded by the planes spanned by F1, 
/'2, - / '1 ,  -F~.  Since these four facets have altogether at most 10 vertices, /'1 and 
-F2 have at least one vertex in common. More exactly, there are the following 
possibilities: 1) F1 is a pentagon, -F2 a quadrangle (or conversely), and they have 
a common edge; 2) /'1, -F~ are quadrangles, and they have a common edge; 3) 
F1, - / '2  are quadrangles, they only have a common vertex, and this is adjacent by 
edges of/ '1,  -F2 to opposite vertices of E, - E  (in the polyhedron P + ( -P ) ) ;  4) 
/'1, - / '2  are quadrangles, they only have a common vertex, and this is adjacent by 
edges of/ '1,  - / '2  to non-opposite vertices of E, - E .  In cases 1), 3), 4) the facets 
/'1, F2, - / '1 ,  - / '2  comprise all vertices of P + ( - P ) ,  while in case 2) P + ( - P )  has 
still one opposite vertex pair, and this lies in the interior of Q. 

In any of these four cases the union of the facets F1, F2, -F1,  - / '2  splits the 
boundary of P q- ( - P )  into two regions, both bounded by a spatial 1) pentagon; 2) 
quadrangle; 3) hexagon; 4) hexagon, in the respective cases. These closed regions 
R, - R  in the boundary of P + ( - P )  consist either only of triangular facets, or not 
only of triangular facets. In the first of these cases let us consider the corresponding 
facets of P.  These are triangles with sides parallel to and similarly oriented as 
those of the corresponding facets of P + ( - P ) .  Since in both of the corresponding 
regions in the boundary of P (i.e. consisting of facets corresponding to those in R, 
-R) ,  say R ~, R", these triangles join by entire corresponding edges, therefore R ~, 
R" are positive homothets of R, - R .  Hence R ~, R H are negative homothets of each 
other. Consider now the edges (cases 1), 2)) resp. the vertices (cases 3), 4)) of 
P corresponding to those of P + ( - P )  lying on the edges of O not containing E, 
- g .  These edges are parallel, resp. these vertices are corresponding points at the 
homothety between R t and R". Therefore in any of the four cases the coefficient of 
homothety between R ~ and R" is -1 .  However this implies P is centrosymmetric, 
contradicting n -- 9. 

Now we turn to the case that R, - R  also contain facets with _> 4 sides. 
In case 1) (supposing, as we may, that / '1  is pentagonal, F2 is quadrangular) 

both R, - R  consist of a trapezoidal and a triangular facet, sharing a common 
edge. Then both R I, R" consist of a trapezoidal and a triangular facet sharing a 
common edge, with parallel and oppositely oriented respective sides. Further for 
the trapezoidal facets the longer bases - resp. the legs - have their endpoints on the 
facets corresponding to/ '2 and - / '2  - resp. to/ '1 and -F1 - thus have respectively 
equal lengths for both R ~ and R". This proves the negative homothety of R ~, R ~, 
with coefficient -1 ,  leading to a contradiction like above. 
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In case 2) both R, - R  consist of one quadrangular and two triangular facets, 
sharing a common trivalent vertex. Then however R', R" are negative homothets 
of each other. Namely their triangular and quadrangular facets have parallel and 
oppositely oriented respective edges, and because of the two triangular facets having 
a common edge, the sides of the quadrangular facets common to the two triangular 
facets have the same length ratio for both R' and R". This negative homothety 
property leads to a contradiction like above. 

In cases 3) and 4) R, - R  are bounded by spatial hexagons. Using the property 
that the sum of the angles of the facet -F1 ,  resp. -F2 ,  at the endpoints of - E  is 
> 7r, we see the following. In both of these two cases some three consecutive vertices 
of these spatial hexagons are the vertices of triangular facets of P + ( - P ) .  (In one 
of these hexagons in case 3) the middle one among these three vertices is the vertex 
corresponding to z or y, in case 4) the middle one lies in the intersection of the 
planes spanned by F1, -F2;  in the other hexagon it is the opposite vertex, in P + 
( - P ) . )  Deleting these above described triangles from the hexagonal regions R, - R ,  
both remaining pentagonal regions consist of a quadrangular and a triangular facet. 
These two facets are separated by a diagonal of the pentagonal region, adjacent 
to its vertex which is the opposite vertex, in the hexagonal region, to the above 
middle vertex. For the facets of the corresponding hexagonal regions R', resp. R" 
of P the edges are parallel to and similarly oriented as the respective edges for 
the facets of the regions R, resp. - R  of P + ( - P ) .  Hence we have parallelity 
and opposite orientation of the respective edges for R', R". Further for R' two 
neighbouring edges, say E~, EL, of its quadrangular facet have their endpoints on 
the parallel facets corresponding to F1, -Fz ,  resp. to F2, -F2 .  The same holds for 
the neighbouring edges E~', E~' of the quadrangular facet in R", where the outer 
normal cones of E~, E~', resp. of EL, E L' are opposite to each other. Therefore E~, 
E~', resp. EL, E L' have equal lengths. This implies the negative homothety of R', 
R", with coefficient -1 ,  yielding a contradiction like above. Thus c(9) > 5. 

The sharpness of (1) is shown by examples with c(n) = 6 and n = 5, 7, 9. The 
first case holds for a pyramid over a parallelogram, the second one for the convex 
hull of a regular octahedron co (T1, T2) (with T1, T2 being opposite facets) and a 
point q outside the octahedron and close to the centroid of T1. Cutting off that 
vertex q by a plane close to q, parallel to aft(T1) and having co (Tz,T2) in an open 
half-space, the resulting truncation has 9 vertices and 6 strictly antipodal vertex 
pairs. �9 

4. P r o o f  of  P r o p o s i t i o n  1 

For proving Proposition 1, we shall need a 

LEMMA. Let in R a, d >_ 2, on a hemisphere of the unit sphere d + 1 points Pi 
be given. Then we have (with i ~ j )  

max pipj ~ i 
: > 1 + - - .  

mln pipj - d -  1 
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Equality stands if and only if co { P l , . . .  ,Pal+l} iS a right pyramid with base a regular 
(d - 1)-simplez, inscribed in a great (d - 2)-sphere of the unit (d - 1)-sphere. 

PROOF. The statement is evident for d = 2. Supposing it holds for d -  1, 
we will prove it for d, where d _> 3. Some facet hyperplane of co {p l , . . .  ,Pd+l}, 
say a f t{p1 , . . . ,  Pal}, separates the centre o of the unit sphere from the simplex 
co {Pl , . . . ,Pd+l} .  We may suppose the circumcentre d of co {p l , . . . , pd}  lies in 
CO ( P l ,  �9 � 9  Pal}, otherwise induction gives 

m a - x ' p ' P J ~  d l _ 2 ~  1 maxpipj  > s,.~.a 
minpipj  - minpip~ >- 1+ > l + d 1" 

i j<d  " 

Let the circumradius of co {Pl,... ,Pal} be r'. By [Bd], Lemma 3, d E co {PI,... ,Pd} 
implies 

m<_~pipj _> r'~/2(1+ d_~l 1 ) 

(-edge length of a regular (d - 1)-simplex of circumradius r'). On the other hand, 
let P~+1 be the projection ofpd+t on aff{pl,...,pd}. For P~+x -- d we have with 
i<d 

PiPd+l -- V/pip'+12 JcP~+lPd+12 ~ r t v / ~ ,  

because of  

P~P~+I = p~d = r ~ and P~+lPd+~ --< r' 

(since the spherical cap cut from our sphere by a f f{p l , . . .  ,Pal} and containing Pd+l 
is at most  a hemisphere). 

For P~+I ~ d consider the closed half (d - 1)-plane H of aft{p1,. . . ,Pal} 
containing Pd+l, whose boundary contains d and is perpendicular to o~P~d+l. Since 
o I E co{p l , . . . , Pd} ,  some Pl E H (i _< d). Then 

PiPd+l = %/P,P'd+l 2 + P~+lPd+l ~ _< v/max{pP~+12to'P _< r ' , p  6 H}  + p'd+lPd+l 2 = 

= V/r ,= + o'P'd+l ~ + fd+lPd+l ~ _< r'V@ 

(since P'd+lPd+l attains its maximum among the above circumstances, if the de- 
scribed spherical cap is just  a hemisphere, when dp~+12-{ - p~d+lPd+l 2 -- rt2). Hence 
in both cases 

m~I~pipd+l <: rt V/'2. 

Prom the two estimates we have 

max pipj ~/1 maxplpj > ij<d 1 
minpipj -- n~<i~pipd+l >- d" d -  1" 

Obviously, equality holds e.g. for the case of the mentioned right pyramid. 
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Now we show that  this is the only case of equality. If o I ~ cO{pl , . . .  ,Pd}, 
then we have shown that  there is strict inequality. If o ~ E co{p1, . . . ,Pd} and we 
have equality, then 

maxpipj  = rl~/2(lu + 1 , ) 

and by the proof in [B/L] this is only possible if o I does not lie on any proper 
face of co {Pl, . . . ,Pal) ,  and then co {P l , . . . ,Pd )  is a regular ( d -  1)-simplex with 
circumcentre o ~. Then in case of P~+I = ~ we must have pld+lPd+l -" r I, which is 
the asserted case of equality. In case of p~+l ~ ~ for each Pi E H we have 

i 2 pip'd+1 -- max{pp~d+l[olp <_ rl,p E H )  -- ~/r 12 + dPd+l , 

thus each Pi E H lies on bd H (taken in af t{p1, . . .  ,Pd)), contradicting the fact that  
o I is the circumcentre of the regular (d - 1)-simplex co { P l , . . . ,  Pd}. �9 

PROOF OF THE PROPOSITION. The statement is evident for d = 2. Again 
we suppose that  it holds for d - 1 and will prove it for d, d >_ 3. Let o I denote 
the circumcentre of the (d - 2)-face a l . . . ad -1 .  If  o ~ does not belong to the face 
a l . . . ad -1 ,  then d > 3 and by the Lemma 

maximal edge length of co { a l , . . . ,  ad-1, bl , b2 ) > max  ail ai~ > 
minimal edge length of co { a l , . . . ,  ad-1, bl, b2) - minai la i  2 - 

_> l + d _  3. 

Further let b} denote the projection of bj on a f t{a1 , . . . ,  ad-1}. If b} does not belong 
to the face a l . . . a d - 1 ,  then co { a l , . . . ,  ad-l ,bj}  is a ( d -  1)-simplex, having two 
facets (one being co {ax , . . . ,  ad-1}) enclosing an angle > /~ > ~, where for d >_ 4 

1 
cos/~_> ( d - l )  2 - 3 ( d - 1 ) + 1 "  

Then by the induction hypothesis we have for this fixed j 

m a x { a l x a , , , a , b j } ~ 2 - 2 c o s / ~ ~ 2 ~ l  
�9 - d - S  "1 "-d-S  2 d  5" mln{aixai2,aibj) > 1-1-~-~(1 cos/~) > = 1 +  --  +~=-~ 

Since for d > 3 we have 1/(d - 3) > 1/(2d - 5), it is clear that  if either o I, or b~, 
or b~ does not belong to co { a l , . . .  ,ad-1),  then the quotient of the lengths of the 
longest and shortest edges is 

j 1 1 
> 1 + 2 d  5'  whichis  > l + ~ : - f ( 1 - c o s ~ ) '  by c o s ~ >  d 2 _ 3 d +  1. 

This shows the statement of the Proposition in any of these cases. 
o ~1 l.J Henceforward we may and will suppose o ,  vl, v2 E co { a l , . . . ,  ad-l~. In this 

case we will show 

max{maxai~ ai__.____2, bib2) / .  2 - 2 cos ~b 
- -  V d - 2  " minaibj  > 1 + ~-:T(1 - cos ~b) 
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The inclusion o' E co {al,..., ad-1} implies by [B~], Lemma 3, that maxasxas2 _~ 

r'~2(l+~-~),wherer'isthecircumradiusofco{al,...,ad_l}. Further bib2 _> 

b"~" where b~, b~ I uS, are the orthogonal projections of bl, b2 on a 2-plane orthogonal 
to atT{al, . . . ,  ad-1}. We have 

bllbll 1 , , ' 2  " -  

>_ 

Jb '  2b[bl b~b2 > xb12Jr , 2_  �9 .cos b2b2 

Vbi  b21 -4" b~2b~ - 2b~xbl �9 b~b2 . cos ~b, 

where a(_~ ~b) is the angle of the facets co {al , . . . ,  ad-1, bl}, co {a l , . . . ,  ad-1, b2}. 

On the other hand asbj = Casb~ 2 +b~q, and we assert that, for j fixed, 

m~naibj. = rain _ b~b~, i.e. < We may suppose 

b~ r d .  We have b~ E co{a l , . . . , a~ - l} ,  thus also b~ lies in the circumsphere of 
co {a l , . . . ,  ad-I} in aft{a1, . . . ,  ad-t}. Let H be a ( d -  3)-plane in aft{a1, . . . ,  ad-1} 
(where d - 3 > 0), passing through b~ and (for d > 3) orthogonal to o'b~. H cuts 
off from the circumsphere of aft {a i , . . . ,  a d-x} a closed smaller spherical segment, 
each point of which has a distance < r'  to b~. Hence if m[.maib~ > r' (actually 

if m~na~b~ > r'), then each as lies in the open larger spherical segment. Thus 

b~ ~ co {a l , . . . ,  ad-1}, a contradiction. 

By the results of the last two paragraphs we have 

max{maxas~ai~,blb2} > m a x { r ' ~ / 2 ( l  +;IL--~) ' v / h ~ + h ] - 2 h l h 2 c ~  

minasbj - m i n e r  '~ + h~ 

where hj b~bj Letting r '2 2 (1 + -~2) A, ~ 9 = �9 �9 = h l+h2-2h lh2cos~  = B, rl~+h~ = 
Cj, the square of the last quotient is max{A, B} /minCj .  Thus it suffices to prove 

(*) max{A, B} > 2 - 2 cos 
- -  d - 2  minC/ 1 + ~ ( 1  - cos 4)" 

The quantities A, B, Cj satisfy 
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For 0 >_ cos ~ we have 
d ' 2  d - 2  (-~-=-~ + I ) max{ A, B } > -~-=-~ A + B = 

--Cl+C2-2cos$~(C1 2~d~.-2~)A) (C2 2(d-1)'d-2 A~] 

_ d - 2  
> 2 m i n G i -  2cosr ( m i n C  i 2 ( d - 1 )  A)  > 

( d - 2  max{A,B}) which implies > 2minCj - 2cosr minCj 2 ( d -  1) 

[ d - 2  d - 2  \ 
+ 1 - c o s ,  max A,B  > 2cos,)minC  

This is equivalent to (*). 
For 0 _< cos r we have 

_ < ~ - - f A  + B + 2 cos r C2 d - 2 
. _ 1 ) A  , 

thus 
d - 2  

(2 - 2 cos r minCj < (e l  + C2)(1 - cos r < ~L-~-(1 - cos r + B < 

d - 2  
( ~ 1  + l - cos r �9 ~-=-~) max{A, B}, 

which implies (*). 
It is obvious that the inequality in the Proposition becomes an equality for 

the case asserted in the Proposition. We will show that this is the only case of 
equality. 

If either o', or b~, or b~ does not belong to co {a l , . . . ,  a~-l}, then, as shown 
above, we have strict inequality in the inequality of the Proposition. For o', b~, b~ E 
co{a l , . . . ,  a~-l}, in case if equality holds in the Proposition, then both for 0 > 
cosr and 0 < cosr from the chain of inequalities for A, B, C1, C2 we see that 
A = B = max{A, B}, C1 = C2 = min Cj. Then we must have 

maxai~ai2=bxb2=r'~2(l+d-~) = ~/h21+h22-2hlh2cosr 

Thus by [Bg] co {a l , . . . ,  ad-1} is a regular simplex with circumcentre o', and by 

blb2 > ,"~" r r _ . ~ 2 =  +h~-2hlh2cosa>__ h~+h~-2hlh2cosr 
in this chain of inequalities we have equalities, thus a = r Similarly we must have 

m)naibl = m'.maib2 = V/'~ + h~ v f~  + h~, 
$ $ 
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i.e. both for j = 1, 2 we must have 

m i n a ,  b ~ = r ' .  

For b~ = b~ = o' we have the asserted case of equality. If some b~ ~ o', then, as 
shown above, 

m i n  aib} >_ r I 

is impossible. Thus we cannot have n~naib~ = r', a contradiction. �9 

w 5. P r o o f  of  P ropos i t ion  2. 

Since the detailed proof is more lengthy, we only have included a sketchy proof, 
which will be, however, sufficient for reconstructing the details of the discussion. 

The sharpness of the estimation can be seen by the example consisting of the 
middle third segments belonging to three pairwise skew edges of the cube. Now we 
show that n < 3 holds under the hypotheses of Proposition 2.-Changing the nota- 
tions, let us suppose there are four such segments ZlZ~, yly2,  z lz~,  u lu2 .  We may 
suppose their endpoints are in as general position, as we want. Thus we may suppose 
no three of the directions of the lines ZlZ2, YIY~, ZlZ2, ulu2 are coplanar. Then the 
lines z l z 2 ,  yly2,  zlz~ are three mutually skew edge-lines of a parallelepiped. Thus 
in a suitable coordinate system z i  = (~i, 1 ,-1) ,  Yi = (-1,  ~i, 1), zi = (1, -1 , ( i ) .  By 
hypothesis, ulu2 lies in the intersection of three open parallel slabs, each containing 
on its two boundary planes two of the edges zlz2, YxY2, ZlZ2, i.e. in the open cube 
with vertices (+1, +1, +1). Similarly z lz2  lies in the open slab, whose boundary 
planes contain zxx2, resp. ylY2, i.e. on the open edge ( 1 , - 1 , - 1 ) ,  (1 , -1 ,  1) of this 
cube, and similarly for XlZ2 ,y ly~ ,  i.e. - 1  < ~,  ~i,~i < 1. Project now this cube 
along the line ulu2.  Then, by the general position of the points, the projection is a 
hexagon, for which the projections of the edges of the cube, containing zlz2, yly2, 
resp. ZlZ2, are either edges or certain segments in the hexagon. Thus we have to 
distinguish several cases, and in each of these we proceed as follows. 

The projection of ulu2 is an inner point of the hexagon. The slab bounded 
by the parallel planes passing through ulu~,  resp. zlz~,  projects to a strip, which 
we say is between the projections of zlz~ and ui. However, this strip must intersect 
the projections of the edges of the cube containing zlz2, resp. YlY2. This means 
the projection of ui has to lie in some subregion of the hexagon. By considering also 
XlX2, YlY2 rather than z lz2 ,  we will have three such subregions, which therefore must 
have a non-empty intersection. This rules out several of the cases, distinguished 
above. In the remaining cases the projection of ui lies in the non-empty intersection 
of these three subregions. Then the projection of the segment z lz2  must lie in the 
strip between the projections of ZlZ2 and ui, as well as in the strip between the 
projections of YlY2 and ui. Considering also xlz~, YlY2 rather than ZlZ2, we will 
have altogether three such situations, however, in any of the remaining cases, one 
of them is impossible. This shows that the number n of our 1-simplices s~ , . . . ,  sin 
is at most 3. �9 
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