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Abstract

K. Zindler [47] and P. C. Hammer and T. J. Smith [19] showed the following: Let
K be a convex body in the Euclidean plane such that any two boundary points p and
q of K, that divide the circumference of K into two arcs of equal length, are antipodal.
Then K is centrally symmetric. [19] announced the analogous result for any Minkowski
plane M2, with arc length measured in the respective Minkowski metric. This was recently
proved by Y. D. Chai – Y. I. Kim [7] and G. Averkov [4]. On the other hand, for Euclidean
d-space Rd, R. Schneider [38] proved that if K ⊂ Rd is a convex body, such that each
shadow boundary of K with respect to parallel illumination halves the Euclidean surface
area of K (for the definition of “halving” see in the paper), then K is centrally symmetric.
(This implies the result from [19] for R2.) We give a common generalization of the results
of Schneider [38] and Averkov [4]. Namely, let Md be a d-dimensional Minkowski space,
and K ⊂ Md be a convex body. If some Minkowskian surface area (e.g., Busemann’s or
Holmes–Thompson’s) of K is halved by each shadow boundary of K with respect to paral-
lel illumination, then K is centrally symmetric. Actually, we use little from the definition
of Minkowskian surface area(s). We may measure “surface area” via any even Borel func-
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tion ϕ : Sd−1 → R, for a convex body K with Euclidean surface area measure dSK(u),
with ϕ(u) being dSK(u)-almost everywhere non-0, by the formula B 7→ ∫

B
ϕ(u) dSK(u)

(supposing that ϕ is integrable with respect to dSK(u)), for B ⊂ Sd−1 a Borel set, rather
than the Euclidean surface area measure B 7→ ∫

B
dSK(u). The conclusion remains the

same, even if we suppose surface area halving only for parallel illumination from almost all
directions. Moreover, replacing the surface are a measure dSK(u) by the k-th area mea-
sure of K (k with 1 5 k 5 d− 2 an integer), the analogous result holds. We follow rather
closely the proof for Rd, which is due to Schneider [38].

1. Preliminaries

Let Rd denote the d-dimensional Euclidean space, with unit sphere Sd−1,
where d = 2. A convex body K ⊂ Rd is a compact, convex set with nonempty
interior. The volume of K will be denoted by V (K). A real normed linear
space of dimension d is called a Minkowski space and denoted by Md (i.e.,
Rd, endowed with some Minkowski metric), whose unit ball is a convex body
centred at the origin, and whose origin will be denoted by O. The geometry
of Minkowski spaces is intensively studied in [43].

Definition 1.1. Let K ⊂ Rd be a convex body, and p1, p2 be two points
of K. We say that p1, p2 are antipodal points of K, if there are different
parallel supporting hyperplanes H1, H2 of K, such that p1 ∈ H1, p2 ∈ H2

(of course, then p1, p2 ∈ bd K, the boundary of K).
Properties of pairs of antipodal points of finite sets (i.e., of their convex

hulls, but belonging to the finite sets) and of convex bodies are surveyed
in [31].

Definition 1.2. Let K ⊂ Rd be a convex body, and u ∈ Sd−1 be an
arbitrary direction. The shadow boundary of K with respect to parallel illu-
mination from direction u is the set (bdK) ∩ bd

(
π−1

u (πuK)
)
, where πu is

the orthogonal projection of Rd to the linear (d− 1)-dimensional subspace
orthogonal to u. Such a shadow boundary is sharp, if the restriction of πu to
the shadow boundary in question establishes a bijection between the shadow
boundary and rel bd (πuK), where the relative boundary rel bd is meant in
the linear (d− 1)-subspace orthogonal to u.

For various properties and applications of shadow boundaries of convex
bodies we refer to [29], [28], and [11].

Definition 1.3. Let M2 be a Minkowski plane with norm ‖ · ‖. The
Minkowski length ‖ds‖ of an arc element ds is defined as |ds|/|OP |, where
|ds| is the Euclidean arc length of the arc element ds, and ds and OP are
parallel and of the same orientation, |OP | is the Euclidean length of OP ,
and the Minkowski length ‖OP‖ of the segment OP is 1. The Minkowski
length of an arc on the boundary of a convex body is defined as

∫ ‖ds‖, the
domain of integration being the arc under consideration.
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Contrary to the two-dimensional situation, there is no unique definition
of Minkowskian surface area for d = 3.

Let d = 2, and K ⊂ Rd be a convex body. We write dSK(u), with
u ∈ Sd−1, for the surface area measure of K. This is a non-negative fi-
nite measure defined on the Borel sets of Sd−1, and its value at a Borel set
B ⊂ Sd−1 is the (d− 1)-dimensional Hausdorff measure of {x ∈ bd K | ∃u
which is an outer normal unit vector of K at x with u ∈ B}, see [40], The-
orem 4.2.5. Note that u ∈ Sd−1 is an outer normal unit vector of K at
x ∈ bdK if 〈x, u〉 = max

{〈y, u〉 | y ∈ K
}

.
In the monograph [43], p. 137, several requirements for the definition of

Minkowskian surface area are listed. A Minkowskian surface area measure
of a convex body K ⊂Md is a non-negative finite measure defined on the
Borel sets of Sd−1, whose value at a Borel set B ⊂ Sd−1 is given as

∫

B

dSK(u)/f(U ∩ u⊥),

where U is the unit ball of the Minkowski space Md, and u⊥ is the linear
(d− 1)-dimensional subspace of Rd orthogonal to u ∈ Sd−1 (Sd−1, orthogo-
nality and dSK(u) meant with respect to a fixed underlying Euclidean metric
on Md). Further, f is a positive continuous function defined for (d− 1)-
dimensional O-symmetric convex bodies L ⊂ Rd, where Vd−1(L)/f(L) is in-
variant under taking images of L under non-singular linear transformations
of Md, and Vd−1 denotes (d− 1)-dimensional volume. (Thus the Euclidean
(d− 1)-dimensional measure in translates of u⊥ normalized (i.e., divided)
by the magnitude f(U ∩ u⊥) is the Minkowskian surface area measure in
translates of u⊥.) In particular, f(U ∩ u⊥) is an even, positive continuous
function of u ∈ Sd−1. Still it is required that for Euclidean space f(U ∩ u⊥)
should be equal to κd−1, the Euclidean (d− 1)-volume of the Euclidean unit
(d− 1)-ball should be equal to 1, hence the Minkowskian surface area mea-
sure should be equal to the usual Euclidean surface area measure. More-
over, it is required that the set

{
f(U ∩ u⊥)u | u ∈ Sd−1

}
be the boundary

of some (O-symmetric) convex body M ⊂ Rd. Then the Minkowskian sur-
face area measure is the set function, defined on Borel sets B of Sd−1 by∫
B hM∗(u) dSK(u), where M∗ is the polar reciprocal of M with respect to

the Euclidean unit ball centred at O, and hM∗(u) is the support function
of M∗. (A suitable multiple of M∗ is usually called the isoperimetrix asso-
ciated to the function f , cf. [43], p. 149.)

In Chapters 5, 6, and 7 of his monograph [43] A. C. Thompson deals
with two Minkowskian surface area measures satisfying all postulates given
above. That of Busemann is defined by f(L) = Vd−1(L)/κd−1, and that of
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Holmes–Thompson is defined by f(L) = κ2
d−1/Vd−1(L∗), where L∗ is the po-

lar reciprocal of L in its linear hull, with respect to the intersection of the
Euclidean unit ball about O and the linear hull of L. Here κd−1 is the
Euclidean (d− 1)-volume of the Euclidean unit (d− 1)-ball.

Definition 1.4. Let K be a convex body in a d-dimensional Minkowski
space Md. Let u ∈ Sd−1 be a direction (Sd−1 meant again with respect to a
fixed underlying Euclidean metric onMd). We say that the shadow boundary
with respect to parallel illumination from direction u halves the Minkowskian
surface area of K, defined by some specific function f satisfying the re-
quirements prescribed above for these functions f , if for this u ∈ Sd−1 we
have ∫

S+
u

dSK(u)/f(U ∩ u⊥) =
∫

S−u

dSK(u)/f(U ∩ u⊥),

where S+
u :=

{
v ∈ Sd−1 | 〈u, v〉 = 0

}
and S−u :=

{
v ∈ Sn−1 | 〈u, v〉 5 0

}
.

K. Zindler [47], Satz 27, proved, under some regularity hypotheses, and
P. C. Hammer and T. J. Smith [19], Theorem 2.2, proved, in full generality,
the following

Theorem 1.1 ([47], Satz 27, [19], Theorem 2.2). Let K be a convex body
in the Euclidean plane. Then the following are equivalent.

1. K is centrally symmetric.
2. For any two points p, q ∈ bdK, such that the counterclockwise arcs pq,

qp of bdK have equal Euclidean lengths, we have that p and q are
antipodal points of K. ¤

In their proof, Hammer and Smith essentially used the Euclidean prop-
erty of the norm. However, without proof they announced the following
theorem.

Theorem 1.2 ([7], Theorem 2, [4], Theorem 4). Let M2 be a two-
dimensional Minkowski space, and K ⊂M2 be a convex body. Then the
following conditions are equivalent.

1. K is centrally symmetric.
2. For any two points p, q ∈ bdK, such that the counterclockwise arcs pq

and qp of bd K have equal Minkowski lengths, we have that p and q
are antipodal points of K.

3. For a dense set of points p ∈ bdK, and the point q ∈ bdK such that
the counterclockwise arcs pq and qp of bdK have equal Minkowski
lengths, we have that p and q are antipodal points of K. ¤

We remark that Y. D. Chai and Y. I. Kim [7], Theorem 2, proved our
Theorem 1.2 only in a special case. Then G. Averkov [4], Theorem 4, proved
Theorem 1.2 in full generality. (Still we remark that in [7], before their The-
orem 2, they write “analytic”, in their Theorem 2 they write “smooth”, but
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their proof shows that they have meant C2 and strictly positive Euclidean
curvature. Their other extra hypothesis is that K −K is some constant
times the unit ball of M2. Moreover, [7], Theorem 2, had in 2. a converse
implication. However, since the hypotheses of [7], Theorem 2, imply smooth-
ness and strict convexity of K, our implication and the converse implication
in 2. of our Theorem 1.2 are equivalent.)

On the other hand, R. Schneider extended Theorem 1.1 in another di-
rection, namely to Rd. In [38], as Satz 4.4, he proved the following

Theorem 1.3 ([38], Satz 4.4). Let K ⊂ Rd be a convex body. Suppose
that the shadow boundary of K, with respect to parallel illumination from
each direction u ∈ Sd−1, halves the Euclidean surface area of K (in the sense
of Definition 1.4, putting f = 1 there). Then K is centrally symmetric. ¤

Now we recall from [40], p. 203, the definitions of the curvature measures
and area measures of a convex body K ⊂ Rd. For this we introduce some
notations, following [40]. Let x ∈ Rd \K. Then there is a unique point of K

closest to x, which we denote by p(K,x). We write d(K,x) :=
∣∣x− p(K,x)

∣∣ ,
and u(K,x) :=

(
x−p(K,x)

)
/d(K,x), with | · | denoting again the Euclidean

norm.
For B ⊂ Rd a Borel set and % > 0 we consider the Lebesgue measure of

the set
{

x ∈ Rd | 0 < d(K, x) 5 %, p(K,x) ∈ B
}

; it is of the form

1
d

d−1∑

k=0

%d−k

(
d

k

)
Ck(K, B),

with Ck(K, ·), for 0 5 k 5 d− 1, being a finite non-negative Borel measure
on Rd (concentrated on bdK). It is called the k-th curvature measure of K.

For B ⊂ Sd−1 a Borel set we consider the Lebesgue measure of the set{
x ∈ Rd | 0 < d(K,x) 5 %, u(K, x) ∈ B

}
; it is of the form

1
d

d−1∑

k=0

%d−k

(
d

k

)
Sk(K,B),

with Sk(K, ·), for 0 5 k 5 d− 1, being a finite non-negative Borel measure
on Sd−1. It is called the k-th area measure of K. For k = d−1 this coincides
with the surface area measure of K, while for k = 0 it is, independent of K,
the Lebesgue measure on Sd−1, cf. [40], Theorem 4.2.5.

Concerning curvature measures, Schneider (for k = d− 1 see [38], Satz
4.2, for the general case we refer to [39], Theorem 9.6) proved, with H+

u :={
x ∈ Rd | 〈x, u〉 5 0

}
and H−

u :=
{

x ∈ Rd | 〈x, u〉 5 0
}

for u ∈ Sd−1, the
following
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Theorem 1.4 ([38], Satz 4.2, [39], Theorem 9.6). Let K ⊂ Rd be a con-
vex body with O ∈ intK, and let k be an integer with 0 5 k 5 d− 1. Suppose
that for each u ∈ Sd−1 we have

Ck(K, H+
u ) = Ck(K,H−

u ).

Then K is O-symmetric. ¤
The aim of the present paper is, on the one hand, to give a common gen-

eralization of Theorems 1.2 and 1.3, for d-dimensional Minkowski spaces. In
fact, we use little from the definition of Minkowskian surface area(s). We
may measure “surface area” via any even Borel function ϕ : Sd−1 → R, for a
convex body with Euclidean surface area measure dSK(u), with ϕ(u) being
dSK(u)-almost everywhere non-0, by the formula B 7→ ∫

B ϕ(u)dSK(u) (sup-
posing that ϕ is integrable with respect to dSK(u)), for B ⊂ Sd−1 a Borel
set.

On the other hand, observe that Theorems 1.3 and 1.4 of Schneider are
somewhat analogous (or, in some sense, dual) to each other. In Theorem 1.4
one cuts bdK into two parts by linear (d− 1)-subspaces, allowing k to vary
from 0 to d− 1. In Theorem 1.3 this “cutting by linear (d− 1)-subspaces”
is made for Sd−1, i.e., on the spherical image of bdK – at least for bdK
strictly convex – (i.e., one cuts bdK into two parts by shadow boundaries
with respect to parallel illumination). However, Theorem 1.3 is related to
the surface area measure dSK(u) of K, that is Sk(K, ·), for k = d− 1. Analo-
gously to Theorem 1.4, we will extend Theorem 1.3 to the cases 1 5 k 5 d−2.
Moreover, denoting Sk(K, ·) also by dSK,k(u), we may consider, rather than
dSK,k(u), more generally finite signed Borel measures B 7→ ∫

B ϕ(u)dSK,k(u),
where B ⊂ Sd−1 is a Borel set, ϕ : Sd−1 → R is an even Borel function, in-
tegrable with respect to dSK,k(u), and being dSK,k(u)-almost everywhere
non-0. The conclusion will remain the same.

Finally in this section we want to mention some similar characterizations
of centrally symmetric convex bodies in Euclidean space, namely [47], [42],
[19], [12], and [26], see also [7] and [38] mentioned before, and Section 4 of
the survey [21]. The results in these papers are related to our paper by the
chosen methods and/or by their geometric nature.

We stress only one characterization, that is a perfect analogue of Theo-
rem 1.1. K. Zindler [47], Satz 26, proved under some regularity hypotheses
and P. C. Hammer and T. J. Smith [19], Theorem 2.4, proved in full gener-
ality the following. A planar convex body K is centrally symmetric if and
only if for each chord pq of K, halving the area of K, we have that p and
q are antipodal points of K. Observe that the area, half-perimeter, and
total curvature of K are just the quermassintegrals of K. Thus there re-
mains one more analogous question. What can be said about K if the set of
perimeter-halving chords of K coincides with the set of area-halving chords
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of K. Clearly, central symmetry of K implies the italicized property. How-
ever, K. Zindler [47], Satz 25, gave an explicit example of a not centrally
symmetric K with the italicized property. Later H. Auerbach [3], § 6, deter-
mined the set of all planar convex bodies K with the italicized property. (In
fact, he stated this for the set of all so called “convex (Z)-curves”. However,
in pp. 122–123 he stated that the italicized property of K implies that the
boundary of K is a convex (Z)-curve, while in p. 134 he stated that if the
boundary of K is a convex (Z)-curve then K has the italicized property.)

2. Spherical harmonics

We recall that we work in d-dimensional Euclidean space Rd, d = 2.
Spherical harmonics are d-dimensional generalizations of the trigonometric
functions cos (nϕ), sin (nϕ) with ϕ ∈ [0, 2π] (or we can say ϕ ∈ S1). Stan-
dard references are [15], [20], [32], [41], [10], [45], Ch. IX, [46], [2], Ch. 9, and,
for d = 3 in more detail, [35]. Further references, with geometrical applica-
tions, are, e.g., [13], Kap. 2, [1], [33], Cor. 1.31, [44], [5], § 23, Anhang, [34],
§ 4, [36], [37], [38], [8], [12], [16], Appendix C, [26], and also the survey [17].
Also we refer to the books [40], pp. 428–432, and [18], which also contain
ample further bibliography. Some further papers in geometry or analysis,
related to the topic of our paper, are [14], [24], and [27].

A polynomial f : Rd → R is harmonic if
∑d

i=1 (∂/∂xi)
2f = 0. (This is

invariant under the choice of an orthonormal base.) For an integer n = 0 a
spherical harmonic (of degree n) in d dimensions is the restriction of a homo-
geneous harmonic polynomial f : Rd → R (of degree n) to Sd−1. (Since d will
be fixed, later we will not refer to the dimension.) The spherical harmonics of
degree n form a finite dimensional vector space of positive dimension. Choos-
ing from this vector space an orthonormal base

{
Yn,i | 1 5 i 5 N(d, n)

}

(orthonormality meant in the space L2(Sd−1), for the Lebesgue measure
on Sd−1), their union for each integer n = 0 is a complete orthonormal
system in L2(Sd−1). Thus each f ∈ L2(Sd−1) has a Fourier expansion∑∞

n=0 (
∑N(d,n)

i=1 cniYni). Here we will write
∑N(d,n)

i=1 cniYni = Yn(f). Thus
the Fourier expansion of f is

∑∞
n=0 Yn(f).

3. The new results for d-dimensional Minkowski spaces

Let us consider a d-dimensional Minkowski space Md, with underlying
Euclidean space Rd. We will considerably weaken the requirement on the
Minkowskian surface area measure. Rather than

∫
B dSK(u)/f(K ∩ u⊥), we
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will consider the signed Borel measure B 7→ ∫
B ϕ(u) dSK(u) – where B ⊂

Sd−1 is a Borel set – that satisfies the following two conditions.
a) ϕ : Sd−1 → R is an even Borel measurable function, with

∫

Sd−1

∣∣ϕ(u)
∣∣ dSK(u) < ∞,

i.e., the total variation of the above signed Borel measure being finite,
and

b) ϕ(u) 6= 0 for dSK(u)-almost every u ∈ Sd−1.
Furthermore, we will use the notations S+

u and S−u introduced in Defini-
tion 1.4, and du is the Lebesgue measure on Sd−1.

Theorem 3.1. Let K be a convex body in Rd, let dSK(u) be the Euclidean
surface area measure of K, and ϕ : Sd−1 → R be a function satisfying a) and
b) above. Then the following statements are equivalent.

A) The body K is centrally symmetric.
B) The equality

(1)
∫

S+
u

ϕ(u) dSK(u) =
∫

S−u

ϕ(u) dSK(u)

holds for every direction u ∈ Sd−1.
C) Equality (1) holds for du-almost every direction u ∈ Sd−1.
D) Equality (1) holds for du-almost every direction u ∈ Sd−1 among those

directions u, for which the shadow boundary of K with respect to par-
allel illumination from direction u is sharp.

Definition 3.1. The shadow boundary of the convex body K ⊂ Rd with
respect to parallel illumination from direction u ∈ Sd−1 halves the k-th area
measure dSK,k(u) of K, with k an integer satisfying 1 5 k 5 d− 2, if

∫

S+
u

dSK,k(u) =
∫

S−u

dSK,k(u).

Using this definition, we state

Theorem 3.2. Let k be an integer with 1 5 k 5 d− 2, and K ⊂ Rd be a
convex body. Suppose that the shadow boundary of K, with respect to paral-
lel illumination from each direction u ∈ Sd−1, halves the k-th area measure
of K. Then K is centrally symmetric.
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As Theorem 3.1 is a generalization of Theorem 1.3 of Schneider, we will
also generalize Theorem 3.2 in a similar way.

Theorem 3.3. Let k be an integer with 1 5 k 5 d− 2, and K ⊂ Rd be
a convex body. Suppose that the hypotheses a) and b) before Theorem 3.1
hold, for some ϕ : Sd−1 → R, with dSK,k(u) rather than dSK(u). Then the
statements A), B), C), D) of Theorem 3.1 remain equivalent, if dSK(u) is
everywhere replaced by dSK,k(u).

4. The proofs of our theorems

For the proofs we will need four statements: the Funk–Hecke theorem,
and three statements taken essentially from [38]. These four statements are
our next four lemmas.

We recall the Funk–Hecke theorem as stated in [41], Theorem 3. The
Gegenbauer polynomials Cn(t) (n = 0 is an integer) form a sequence of non-0
polynomials of n-th degree, satisfying the orthogonality relations

1∫

−1

Cn(t)Cm(t)(1− t2)(d−3)/2
dt = 0.

We have Cn(1) 6= 0 (cf. [41], (3), where also the value of Cn(1) is given;
however, we will not need its concrete value).

Lemma A (Funk–Hecke theorem, see [13], Kap. 2, [14], [15] and [20]).
Let F : [−1, 1] → R be Borel measurable, with

1∫

−1

∣∣F (t)
∣∣(1− t2)(d−3)/2

dt < ∞,

and let Hn be a spherical harmonic of degree n on Sd−1, where n = 0 is an
integer. Then Hn(u) is an eigenfunction of the integral transformation I
given by

(
I(H)

)
(u) :=

∫

Sd−1

F
(〈u, v〉)H(v) dv,
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where dv is the usual Lebesgue measure on Sd−1. Moreover, for each u ∈
Sd−1, the integral

∫
Sd−1 F

(〈u, v〉)Hn(v) dv equals

Vd−2(Sd−2)Cn(1)−1 ·
1∫

−1

F (t)Cn(t)(1− t2)(d−3)/2
dt ·Hn(u) =: λd,n(F )Hn(u).

Here Vd−2(Sd−2) is the usual (d− 2)-dimensional Lebesgue measure of Sd−2

(V0(S0) meant as 2). ¤
The formulation of the following lemma is slightly more general than in

[38] and [18], but the proof is essentially the same. (In [38] this was used for
F continuous with the exception of finitely many points, where the left and
right hand side limits existed. In [18] it was observed that the same proof
is valid for F being any bounded Borel function. Here we give a variant
using the largest feasible class of functions, for which still essentially the
same proof goes through.)

Lemma B ([38], Satz 3.1, cf. also [18], Lemma 3.4.4). Let µ be a fi-
nite signed Borel measure on Sd−1. Let F : [−1, 1] → R be a Borel func-
tion, such that the function (u, v) 7→ F

(〈u, v〉) is du×d|µ|(v)-integrable (i.e.,∫
Sd−1×Sd−1 |F (〈u, v〉)|(du×d|µ|(v)

)
<∞, where du is Lebesgue measure on

Sd−1 and |µ| is the total variation of µ), and let for du-almost every u ∈ Sd−1

∫

Sd−1

F
(〈u, v〉) dµ(v) = 0.

Further let n ∈ {0, 1, . . . }, and λd,n(F ) from Lemma A be not equal to 0.
Then for every spherical harmonic Hn of degree n we have

∫

Sd−1

Hn(u) dµ(u) = 0.

Proof. By Fubini’s theorem for du-almost every u ∈ Sd−1 the function
v 7→ F

(〈u, v〉) is dµ(v)-integrable (i.e., is d|µ|(v)-integrable). Hence for du-
almost every u the hypothesis

∫

Sd−1

F
(〈u, v〉) dµ(v) = 0
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makes sense. By hypothesis we may consider the integral

∫

Sd−1×Sd−1

F
(〈u, v〉)Hn(u)

(
du× dµ(v)

)
,

where n ∈ {0,1, . . .} and Hn(u) is any spherical harmonic on Sd−1 of order n.
This integral can be evaluated by Fubini’s theorem, by first integrating with
respect to u, and then with respect to v, or in the converse order. In the sec-
ond case, we obtain by hypothesis at the first integration for du-almost every
u ∈ Sd−1 the value 0, as the value of the first integral. Then, integrating it
with respect to du, we obtain the value 0, as the value of the double inte-
gral. Integration, first with respect to du, and then with respect to dµ(v),
and the Funk–Hecke theorem (Lemma A) give

0 =
∫

Sd−1

( ∫

Sd−1

F
(〈u, v〉)Hn(u) du

)
dµ(v) =

∫

Sd−1

λd,n(F )Hn(v) dµ(v).

By hypothesis λd,n(F ) 6= 0, which implies the claim of the lemma. ¤
Lemma C ([38], p. 58 (2.), cf. also [18], Lemma 3.4.6). In Lemma A, let

F : [−1, 1] → R be the characteristic function of [0, 1]. Then the eigenvalues
λd,n(F ) from Lemma A satisfy λd,n(F ) = 0 for n = 2 even, and λd,n(F ) 6= 0
for n = 0 and for n odd. ¤

For the function F in Lemma C the values of λd,n(F ) are given by [18],
Lemma 3.4.6; however, we will not need their concrete values here, only
whether they are 0 or not.

The formulation of Lemma D (like of Lemma B) is slightly more general
than in [38] and [18].

Lemma D ([38], Korollar 3.2, cf. also [18], Proposition 3.4.11). Let µ be
a finite signed Borel measure on Sd−1, such that µ(S+

u ) = 0 for du-almost
every u ∈ Sd−1, where du is the Lebesgue measure on Sd−1. Then µ is even
(i.e., for any Borel set B ⊂ Sd−1, we have µ(B) = µ(−B)).

Proof. The hypothesis can be written as
∫
Sd−1 F

(〈u, v〉) dµ(v) = 0 for
du-almost all u ∈ Sd−1, with F as defined in Lemma C. By Lemma B for
any n ∈ {0, 1, . . . } with λd,n(F ) 6= 0 we have for any spherical harmonic Hn

of degree n

(2)
∫

Sd−1

Hn(u) dµ(u) = 0.
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Thus, by Lemma C, (2) surely holds for all odd n ∈ {0, 1, . . . }.
To show that µ is even, let B ⊂ Sd−1 be a Borel set. We have to show that

µ(B)−µ(−B) = 0. However, the set function B 7→ ν(B) := µ(B)−µ(−B) is
an odd set function, i.e., ν(−B) = −ν(B) for all Borel sets B ⊂ Sd−1. Then
certainly

∫
Sd−1 f(u) dν(u) = 0 for all even functions, in particular, for any

even n, for any spherical harmonic Hn of degree n (Hn being homogeneous
of n-th degree, thus being an even function).

However, also for any odd n, and any spherical harmonic Hn of degree n
(that is again homogeneous of n-th degree, thus now is an odd function), we
have

∫

Sd−1

Hn(u) dν(u) =
∫

Sd−1

Hn(u) dµ(u)−
∫

Sd−1

Hn(u) dµ(−u)(3)

=
∫

Sd−1

Hn(u) dµ(u)−
∫

Sd−1

Hn(−u) dµ(u) = 2
∫

Sd−1

Hn(u) dµ(u) = 0

by (2) that is valid for any odd n; cf. the sentence following (2).
Thus, for any n ∈ {0, 1, . . . }, and any spherical harmonic Hn of degree n,

we have ∫

Sd−1

Hn(u) dν(u) = 0.

Then Lemma 3.2 from [38] (cf. also [18], Proposition 3.2.8) implies ν = 0,
i.e., for any Borel set B ⊂ Sd−1 we have µ(B)−µ(−B) = 0, i.e., µ is even. ¤

Proof of Theorem 3.1. Of course it is sufficient to prove D) ⇒ A) in
Theorem 3.1.

I) Although this is not necessary, first we will show D) ⇒ A) for K a
convex d-polytope, due to the extreme simplicity of the proof in this
case. Let K have facets Fi, with outer unit normals ui, and (d− 1)-
volumes Vd−1(Fi), i = 1, . . . , m.
The shadow boundary of K with respect to parallel illumination from
the direction u ∈ Sd−1 is sharp exactly when u ∈ Sd−1 \⋃m

i=1 u⊥i . If
u ∈ Sd−1 \⋃m

i=1 u⊥i , then the set of illuminated facets and the respec-
tive shadow boundary are locally constant. Since D) is satisfied for
almost all directions u in Sd−1 \⋃m

i=1 u⊥i , then certainly it is satis-
fied for a dense subset of this set. Hence, by local constantness of∑
〈u,ui〉>0 Vd−1(Fi)ϕ(ui), for each u ∈ Sd−1 \⋃m

i=1 u⊥i we have

∑

〈u,ui〉>0

Vd−1(Fi)ϕ(ui) =
1
2

m∑

i=1

Vd−1(Fi)ϕ(ui),
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so it is independent of u ∈ Sd−1 \⋃m
i=1 u⊥i .

For i, j ∈ {1, . . . ,m} we say that ui, uj are equivalent if uj = ±ui. Then
the equivalence classes have one or two elements. If an equivalence class
has two elements, say ui and uj , we may have Vd−1(Fi) = Vd−1(Fj), or
Vd−1(Fi) 6= Vd−1(Fj).
Let us choose a ui. Its equivalence class Ci is either {ui,−ui}, or {ui}.
In the first case Sd−1 ∩u⊥i = Sd−1 ∩ (−ui)

⊥. Let us choose v ∈ (Sd−1 ∩
u⊥i ) \⋃

uj∈{u1,...,um}\Ci
u⊥j . Then, for |ε| sufficiently small, vε = (v +

εui)/|v + εui| ∈ Sd−1 \⋃m
j=1 u⊥j . We have

0 = lim
0<ε→0

∑

〈vε,uj〉>0

Vd−1(Fj)ϕ(uj)− lim
0>ε→0

∑

〈vε,uj〉>0

Vd−1(Fj)ϕ(uj),

where the limits in question evidently exist. The last expression
equals Vd−1(Fi)ϕ(ui)− Vd−1(Fj)ϕ(uj), if |Ci| = 2, where uj = −ui,
or Vd−1(Fi)ϕ(ui), if |Ci| = 1, respectively. By hypothesis ϕ(ui) 6= 0,
so the second case cannot occur. In the first case 0 =

(
Vd−1(Fi)−

Vd−1(Fj)
)
ϕ(ui), so Vd−1(Fi) = Vd−1(Fj). Therefore all equivalence

classes have two elements, ui and uj = −ui, say, and Vd−1(Fi) =
Vd−1(Fj). Thus dSK(u) = dSK(−u), and dSK(u) or dSK(−u) is the
surface area measure of K, or −K, respectively. Hence −K is a trans-
late of K (cf. [40], Theorem 7.2.1), i.e., K is centrally symmetric.

II) Now let K ⊂ Rd be an arbitrary convex body. By [11] (see also [23]),
for du-almost every direction u ∈ Sd−1 (du is Lebesgue measure on
Sd−1), we have that the shadow boundary of K with respect to par-
allel illumination from the direction u is sharp. This shows that D)
implies C). Therefore it remains to show that C) implies A), which will
be done in the following.
We have that ϕ is an even Borel function, non-0 dSK(u)-almost every-
where. The set ϕ−1(0) ⊂ Sd−1 is O-symmetric; we change the value
of ϕ there to 1. The function thus obtained is an even Borel func-
tion, nowhere 0, and is dSK(u)-almost everywhere equal to ϕ. From
now on, we will for simplicity use the same notation ϕ for the function
obtained by this changing.
We have that dSK(u) is a finite non-negative measure on the Borel
sets of Sd−1. Let us denote this measure by µ. Then the set func-
tion ν, defined on the Borel sets B of Sd−1 by ν(B) =

∫
B ϕ(u) dµ(u),

is a finite signed measure on the Borel sets of Sd−1. It has total
variation |ν|, a finite non-negative Borel measure on Sd−1, given by
|ν|(B) =

∫
B

∣∣ϕ(u)
∣∣ dµ(u). Evidently |ν| is absolutely continuous with
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respect to µ, and, by ϕ(u) 6= 0 for each u ∈ Sd−1, we have that also
µ is absolutely continuous with respect to |ν|. Hence the Borel sets
B ⊂ Sd−1 with µ(B) = 0 coincide with the Borel sets B ⊂ Sd−1 with
|ν|(B) = 0.
By the absolute continuities of µ and |ν| with respect to each other,
there exists the Radon–Nikodým derivative dν/dµ, defined µ-almost
everywhere, belonging to L1(µ), and equal to ϕ, µ-almost every-
where, and the Radon–Nikodým derivative dµ/dν, defined |ν|-almost
everywhere (i.e., µ-almost everywhere), belonging to L1

( |ν|) . We
have µ-almost everywhere 1 = dµ/dµ = (dµ/dν)(dν/dµ) = (dµ/dν)ϕ,
see [9], p. 122, Exercise 1. Hence dµ/dν = ϕ−1 holds µ-almost ev-
erywhere. In other words, for each Borel set B ⊂ Sd−1, we have
µ(B) =

∫
B ϕ−1(u) dν(u).

By C) of our theorem we have for du-almost every u ∈ Sd−1 that
ν(S+

u ) = ν(S−u ). Let ν ′ be the finite signed Borel measure on Sd−1

defined by ν ′(B) = ν(−B). Then, by the equality in the last but
one sentence, we have ν(S+

u ) = ν ′(S+
u ), i.e., (ν − ν ′)(S+

u ) = 0, for du-
almost every u ∈ Sd−1. Observe that the finite signed Borel mea-
sure ν − ν ′ on Sd−1 is odd (i.e., for any Borel set B ⊂ Sd−1, we
have (ν − ν ′)(B) = −(ν − ν ′)(−B)). On the other hand, from the last
but one sentence and Lemma D we have that ν − ν ′ is even. Hence
ν − ν ′ = 0, i.e., ν(B) = ν ′(B) = ν(−B) for each Borel set B ⊂ Sd−1.
Thus ν is even. Since ϕ−1 is an even function, for any Borel set
B ⊂ Sd−1 we have

µ(B) =
∫

B

dµ

dν
(u)dν(u) =

∫

B

ϕ−1(u)dν(u) =
∫

−B

ϕ−1(u)dν(u) = µ(−B),

i.e., µ is an even measure. In other notation, we have dSK(u) =
dSK(−u). Here the left, or right hand side is the surface area measure
of K, or −K, respectively. From their equality we have that −K is a
translate of K (cf. [40], Theorem 7.2.1), i.e., K is centrally symmet-
ric. ¤

Proof of Theorems 3.2 and 3.3. We will prove Theorem 3.3, and
then Theorem 3.2 follows as a special case of it.

For Theorem 3.3 we proceed as in the proof of Theorem 3.1, Part II. We
get that dSK,k(u) is an even measure, or, in other notation, that dSK,k(u) =
dSK,k(−u). Here the left, or right hand side is the k-th area measure of K,
or −K, respectively. From their equality we have that −K is a translate
of K (cf. [40], Corollary 7.2.5), i.e., K is centrally symmetric. ¤
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5. Remarks

Remark 5.1. In Theorem 1.2 the hypothesis was roughly, that equal
Minkowskian complementary arc lengths imply equal angular rotation of
the counterclockwise tangent vectors, at both of the arcs, i.e., an angular
rotation π. Our Theorem 3.1 was the other way round: roughly, we consid-
ered two illuminated parts of the boundary, from opposite directions, and
required them to have equal Minkowskian measure. However, Theorem 3.1
implies Theorem 1.2. As we will see, for K smooth and strictly convex, this
will follow almost immediately. For the general case, by not difficult argu-
ments, we will show that maximal segments in bdK, or non-smooth points
of bdK with given cone of outer normals, occur in centrally symmetric pairs,
respectively. Moreover, the map assigning to p ∈ bd K the point o(p) such
that the counterclockwise arcs po(p), o(p)p have equal Minkowskian lengths,
respects these symmetries. Then the general case will follow easily.

In fact, we will show that a bit more general theorem than Theorem 1.2
follows from our Theorem 3.1. The concise sketch of the proof of Theo-
rem 1.2 from Theorem 3.1 in the preceding paragraph will be the guideline
for the proof of the more general Theorem 5.1. We will use the notations in-
troduced before Theorem 3.1, for d = 2. For ϕ : S1 → R we assume a) before
Theorem 3.1, and the following strengthening of b) before Theorem 3.1:

b′) ϕ(u) > 0 for dSK(u)-almost every u ∈ S1. We will write x for a vari-
able point on the boundary of a convex body K ⊂ R2, further n(x) for the
unit outer normal to K at x (provided it is uniquely determined), and ds for
the Euclidean arc element. We have that n(x) is uniquely determined, except
for an at most countably infinite set E ⊂ bdK. Moreover, n(x) is continuous
on (bdK) \E, hence, is a Borel function, on the Borel set (bdK) \E. When
writing

∫
B ϕ

(
n(x)

)
ds, for B ⊂ bdK a Borel set, we mean

∫
B\E ϕ

(
n(x)

)
ds,

which is well defined.
Theorem 5.1. Let K be a convex body in R2, let dSK(u) be the Eu-

clidean surface area measure of K, and ϕ : S1 → R be a function satisfying
a) before Theorem 3.1 and b′) before this theorem. Then the following con-
ditions are equivalent.

1. K is centrally symmetric.
2. For any two points p, q ∈ bdK, such that the integrals

∫
ϕ
(
n(x)

)
ds

taken on the closed counterclockwise arcs pq and qp of bdK are equal,
we have that p and q are antipodal points of K.

3. For a dense set of points p ∈ bdK, and the point q ∈ bdK such that
the integrals

∫
ϕ
(
n(x)

)
ds taken on the closed counterclockwise arcs pq

and qp of bd K are equal, we have that p and q are antipodal points
of K.

We remark that Averkov’s proof of [4], Theorem 4, readily gives the
implication 2. ⇒ 1. in this more general Theorem 5.1 as well.
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Proof of Theorem 5.1. Of course, it is sufficient to show 3. ⇒ 2. ⇒ 1.
3. ⇒ 2. follows from a trivial continuity consideration.
We turn to show 2. ⇒ 1. Like in the proof of Theorem 3.1, we may

and will assume ϕ(u) > 0 for each u ∈ S1 (by changing its values to 1 on
ϕ−1

(
(−∞, 0]

)
). We retain the notation o(p) ∈ bdK for p ∈ bd K for that

unique point of bdK, for which the integrals
∫

ϕ
(
n(x)

)
ds taken on the

closed counterclockwise arcs po(p) and o(p)p are equal (its existence and
unicity are implied by the positivity of ϕ). Observe o

(
o(p)

)
= p for p ∈ bdK.

The point o(p) depends continuously on p, and moving p counterclockwise
along bdK, the point o(p) also moves counterclockwise (strictly) along bdK.
For a point p ∈ bd K, the set of points of K antipodal to p will be denoted
by A(p). This is a closed arc on bdK (for p a smooth point of bdK it is a
closed segment or a point). So 2. of Theorem 5.1 says that o(p) ∈ A(p).

Now let us suppose that bdK contains a (maximal non-degenerate) seg-
ment [p1, p2], where p2 follows p1 counterclockwise. Let a relative interior
point p of [p1, p2] move from p1 to p2, with a uniform Euclidean speed. The
point p lies on a unique supporting line of K, namely aff [p1, p2] (aff A denotes
the affine hull of the set A ⊂ R2). Then any point of K, which is antipo-
dal to p, must lie on the other supporting line L of K, parallel to aff [p1, p2].
Thus, by moving p, the point o(p) moves on the supporting line L of K.
By the equality of the integrals

∫
ϕ
(
n(x)

)
ds on the closed counterclockwise

arcs po(p) and o(p)p, if p moves on [p1, p2] with a uniform Euclidean speed
from p1 to p2, then o(p) moves on L in the opposite direction as p, but with
the same uniform Euclidean speed, from o(p1) to o(p2). Hence L contains
a (maximal) segment on bdK, of Euclidean length at least that of [p1, p2].
Now one can change the roles of [p1, p2] and K ∩ L. It follows, that [p1, p2]
and K ∩ L are parallel segments of the same Euclidean length, and that for
p ∈ [p1, p2] the point o(p) is the centrally symmetric image of p with respect
to the centre of the parallelogram p1p2o(p1)o(p2).

Now let us suppose that p ∈ bdK is not a smooth point of bdK. Let L1

and L2 be the (different) extreme supporting lines of K at p, such that L1 is
the half-tangent line to bdK if we move from p clockwise, and L2 is the half-
tangent line to bdK if we move from p counterclockwise. Let, for i = 1, 2, L′i
denote the supporting line of K, parallel to and different from Li. Let L′1 and
L′2 intersect at q. Then K lies in one of the four angular domains into which
L′1 and L′2 divide R2. Further, K has support sets K ∩ L′1 or K ∩ L′2, on
L′1 or L′2, respectively. First suppose q /∈ K. Then the support sets K ∩ L′1
and K ∩ L′2 do not contain q either. Let i = 1, 2. If K ∩ L′i is a point, let r′i
denote this point. If K ∩ L′i is a proper segment, let r′i denote its endpoint
closer to q, cf. Fig. 1.

Then consider the open arc r′1r
′
2 of bdK, not containing p. This arc is

not degenerate, hence it is smooth, with the exception of at most countably
infinitely many of its points. Let x1 6= x2 be two points of smoothness of this



CONVEX BODIES IN MINKOWSKI SPACES 509

Fig. 1

open arc. Hence the unit outer normals u1 or u2 of K at x1 or x2 are in the
smaller open arc of S1, with endpoints the unit outer normals of K, orthog-
onal to L′1 or L′2, at points of K ∩ L′1 or K ∩ L′2, respectively. This implies
A(x1) = A(x2) = {p}, hence o(x1) = o(x2) = p, a contradiction to x1 6= x2.
This contradiction shows that q ∈ K. Let L′′1 and L′′2 be the extreme sup-
porting lines of K at q, where L′′1 or L′′2 is the half-tangent line to bdK, if
we move from q clockwise, or counterclockwise, respectively. Then the an-
gular domain containing K, formed by L′′1 and L′′2, satisfies the following. If
we take its image with respect to point reflection at (p + q)/2, then the so
obtained angular domain will be a subset of the angular domain with ver-
tex p, determined by L1 and L2, and containing K. Now, changing the roles
of p and q, we obtain that L′1 = L′′1 and L′2 = L′′2.

We continue the investigation of the non-smooth point p ∈ bdK. We
have A(p) = (K ∩L′1)∪ (K ∩L′2) and A(q) = (K ∩L1)∪ (K ∩L2). We want
to show that o(p) = q (and thus o(q) = p). Assume the contrary. We may
suppose, without loss of generality, that o(p) ∈ (K ∩ L′1) \ {q}, cf. Fig. 2.

Fig. 2
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Then we have that the integral
∫

ϕ
(
n(x)

)
ds taken on the closed coun-

terclockwise arc qp has a value less than the half of the value of
∫

ϕ
(
n(x)

)
ds

taken on bdK. Therefore o(q) ∈ (K ∩L2)\{p}. Then
[
o(p), q

]
and

[
p, o(q)

]
are non-degenerate segments on bdK. Now let x be a relative interior point
of

[
o(p), q

]
, which moves from o(p) to q with uniform Euclidean speed. Then,

as we have seen above, o(x) moves on a line parallel to L′1, from o
(
o(p)

)
= p

to o(q). Hence the line spanned by p and o(q), i.e., L2, is parallel to L′1, that
is parallel to L1. Hence L1 = L2, a contradiction to the assumption that
p ∈ bd K is a non-smooth point. This contradiction shows o(p) = q (and
thus o(q) = p).

Now we are going to show that statement D) of Theorem 3.1 is sat-
isfied, from which by Theorem 3.1 there will follow the central symmetry
of K. In fact we will show D) of Theorem 3.1 in the stronger form obtained
by replacing “du-almost every” by “every”. Let u ∈ S1 be a direction such
that the shadow boundary of K with respect to illumination from direction
u is sharp. Let this sharp shadow boundary be {p, q}. Then p and q are
antipodal points of K.

First suppose that one of p and q, e.g., p, is not a smooth point of bdK.
Furthermore, let L1 and L2 be the two extreme supporting lines of K at p,
with L1 or L2 being the half-tangent line to bdK, when moving from p along
bd K clockwise or counterclockwise, respectively. Let the other supporting
lines of K, parallel to L1 or L2, be L′1 or L′2, respectively. Let r be the
intersection point of L′1 and L′2. Then, by what has been said above, r ∈ K
and L′1, L

′
2 are the extreme supporting lines of K at r; moreover, r = o(p)

(and p = o(r)).
We have that p belongs to the shadow boundary of K with respect to

parallel illumination from direction u, if and only if u lies in the translate
through −p of the union of the two opposite closed angular domains de-
termined by L1 and L2, none containing K. Since the pairs {L1, L2} and
{L′1, L′2} are symmetric with respect to (p + r)/2, the above two equivalent
valid statements are equivalent also to that r belongs to the shadow bound-
ary of K with respect to parallel illumination from direction u. Now r 6= p
and this shadow boundary is {p, q} 3 r. Therefore o(p) = r = q. So the val-
ues of the integrals

∫
ϕ
(
n(x)

)
ds taken on the closed counterclockwise arcs

pq and qp are equal (i.e., (1) from Theorem 3.1 holds).
The remaining case is when both points p and q are smooth points of

bdK. Then, by hypothesis, o(p) ∈ A(p). Since there is a unique supporting
line L at p to K, any point of K, antipodal to p, must lie in K ∩L′, where L′
is the other supporting line of K parallel to L. So q ∈ A(p) = K ∩ L′, and,
by hypothesis, o(p) ∈ A(p). By sharpness of the shadow boundary, A(p) =
K ∩ L′ is a point, hence q = o(p), and once more the values of the integrals∫

ϕ
(
n(x)

)
ds taken on the closed counterclockwise arcs pq and qp are equal

(i.e., (1) from Theorem 3.1 holds). ¤
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Remark 5.2. Hypotheses B) and C) of Theorem 3.1 (or Theorem 3.3)
are very similar. However, we see no other way of deducing B) from C) than
via A) (of course, unless for each u ∈ Sd−1 we have

∫

{v∈Sd−1|〈u,v〉=0}
dSK(v) = 0

for all u ∈ Sd−1, when by Lebesgue’s dominated convergence theorem
∫

S+
u

ϕ(v) dSK(v)

is a continuous function of u ∈ Sd−1; analogously for dSK,k(u)). In fact,∫
S+

u
ϕ(v) dSK(v) is not continuous for K a simplex. We remind, that in [26],

for another characterization of central symmetry of convex bodies in Rd, we
had an equation that was satisfied by the nature of the problem for almost
all u ∈ Sd−1 only.

Remark 5.3. For special classes of convex bodies in Md, Theorem 3.1
might have consequences that are worth mentioning, too. For example, a
convex body K ⊂Md is called a convex body of constant Minkowskian width
if the vector sum K + (−K) is a ball in the norm of Md; see [30]. On the
other hand, K ⊂Md is said to be a reduced convex body if any proper closed
convex subset of K has a smaller minimal width (with distance of differ-
ent parallel supporting hyperplanes measured in the norm of Md); see [25].
Since every centrally symmetric reduced convex body, in particular, every
centrally symmetric convex body of constant Minkowskian width in Md is
necessarily a ball of the space (see [25] and [30]), we have that reduced con-
vex bodies, in particular, convex bodies of constant Minkowskian width in
Md, having our “halving properties” in the sense of Theorems 3.1 and 3.3
(e.g., with some Minkowskian surface area measure in Theorem 3.1), are
necessarily balls in the sense of the norm.

Remark 5.4. As noticed in [22], in recent years many uniqueness results
from convex geometry have been strengthened and formulated as stability
statements. Also in certain cases stability versions of characterizations of
some special classes of convex bodies can be obtained, see, e.g., [6]. It is
possible that using the tools developed in Section 5 of [22], stability versions
of characterizations presented in this paper can be obtained, that is, if each
shadow boundary of a convex body K ⊂ Rd nearly halves the Euclidean or
Minkowskian surface area of K (or, k-th area measure, 1 5 k 5 d− 2), then
K is nearly centrally symmetric. Similarly one can ask for a stability version
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of Theorem 1.4. Observe that the paper [22] contains some results pointing
to this direction.
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