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Abstract. For v > d = 3, let m (v, d) be the smallest number 1, such that every
convex d-polytope with » vertices has a facet with at most m vertices. In this paper,
bounds for m (v, d) are found; in particular, for fixed d = 3,
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where r = [31{d + 1)),

1. Introduction

It is a well-known fact, which is easy to deduce from the Euler
relation, that an ordinary (three-dimensional) convex polyhedron has
a face with at most five vertices. However, the examples of the duals
of the cyclic polytopes show that, in higher dimensions, there can
exist no such fixed bound for the minimal number of vertices of a
facet of a convex polytope. We are thus led to consider the following
problem: determine m (v, d), defined to be the smallest number m,
such that every convex d-polytope with v vertices has a facet with at
most m vertices.

In this paper, we shall establish both upper and lower bounds for
m (v, d). These bounds (except the lower bound for & = 4) are linear,
but there is a considerable gap between the constants involved. As we
shall point outsour lower bound can be somewhat improved, but we
shall not specificly write down the better bound, because the
asymptotic behaviour is not affected.

Some remarks should be made on the origins of this paper.
Originally, the first two authors found a (somewhat weak) upper
bound for m(v,d), using the technique of Gale diagrams.
Subsequently, they and the third author improved the upper bound
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and found a lower bound, still using Gale diagrams. Meanwhile, the
last author had found, by the direct method described here, a further
improved upper bound. Finally, the use of Gale diagrams is avoided
in the present exposition.

2. The Upper Bound
In this section, we obtain an upper bound for m (v, d).
Theorem 1. For v > d > 3,

M (v, d) < min {[(d:iz_)?li%‘,, [(d _d:?’;‘iSJ}

Here, |«]is, as usual, the integer part of the real number «. We write
v(Q) for the number of vertices of the polytope Q. Let P be a
-polytope  with v =u(P) vertices. Write P — F;, and for
Jj=d-1,...,0, choose Ftobe a j-face of £, with v (F) minimal. Let
=v(E) - v(F_) (= 0,....d;F_,=0). Then

Hy2 My (2 ...2 10 26,

because if, say, H;, 1 < m;, then the j-face F of P different from FE with

F_= Fe F, | satisfies

v(F) < v(F_) + g <v(F_) + = v(F),

contrary to the choice of ¥,

Now F, is a vertex and F, an edge of P, so that my = 1 = n,. It thus
follows that
v—2
d—1
However, as remarked in § 1, we must also have v(F) < 5, so that
fy + n + ny < 5, and hence

Hy =

v—35
= .
: MET
Since v(F;_,) = v — n,, we conclude that
. v— 2 v—35
v(F; 1) < min {U T v m},

which (bearing in mind that » (F-1) is an integer) yields the bound of
the theorem.
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We may observe that the bound [(d - d2) vl =¥, J is only better for

certain small values of v (actually forv < d+ 3 orv=2d+ 1).
The technique employed here was first used by the last author to

provide a short proof of a result by Reay on positive bases (it appears

in [4]).
3. The Lower Bound for J = 5

We shall now obtain a lower bound for m (v, d), in case d = 5.

Theorem 2. Let v>dz=5, let*r=Ld+ 1) ‘and let
§=d+1—3r. Then

m(v,d) = [(r_ lgviS-J + 2.

To prove the theorem, first recall that the (free) join P &) QO of two
polytopes P and Q is obtained by placing them in independent affine
subspaces and taking their convex hull (for the concept, if not the
terminology and notation, see [2], Ex.4.8.1). The construction of
P ) @ is well-defined up to combinatorial isomorphism (which is all
that concerns us here); we have dim(P @ Q) = dim P + dim Q + 1,
and the faces of P (W) Q are all polytopes of the form FW G, with F
a face of P and G a face of Q (including the improper faces ¢ and P
or ( itself).

The polytope P which attains the bound of the theorem is a join
of r polygons and s points. The polygons are chosen to have as nearly

equal numbers of vertices as possible, namely [U — S] or r’ — S“ -1,
r ¥

where [x] = — |~ a is the smallest integer which is no less than «.
(The number of vertices of the polygons totals v — s.)

From the description of the join given above, and the choice of the
v J—

components, a qninimal facet F of P excludes [ S—‘ — 2 vertices

r
(that is, all but two vertices, which are those of an edge of a maximal
polygon), so that

”‘””‘F;]”*[L_"WJ”’

which yields the required bound.

i
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4. The Lower Bound for 4 = 4

We now consider m (v,4). If P, is the dual of the cyclic 4-polytope
with s vertices (see [2]), then P, itself has 1 s(s — 3) vertices, while each
of its facets is a wedge over an (s — 2)-gon, and so has 25 — 6 vertices
(see Figure 1, which illustrates the case 5= 8).

Fig. 1
We proceed to split one or two of these facets as follows. We
suppose that s = 6, and we write m = 25 — 6. Each splitting (which
tilts half the facet about a cutting plane) will produce a new polytope,
each of whose facets again has at least m vertices. The splitting plane
is depicted by dashed lines in Figures 2a, 2b and 2c. The number
™

A1
L |

Fig.2b

of vertices added is s — 4, s — 3 and s — 2, respectively. Note that one
(at least) of the new facets is of the same kind as the original, and so
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the process can be repeated, with the next splitting plane passing
through the non-simple vertex or vertices (at which more than four
facets meet). If such splittings are performed & times, any number of
vertices between & (s — 4) and k(s — 2) can be added. It is clear that
every possible number of vertices, from some point depending on s (in
fact, rather before 5%), can be obtained in this way.

Fig. 2¢c

However, suppose that, instead of performing all & splittings on
one facet, we perform k& — / of them on the first, and / of them on a
second facet which meets the first in a quadrilateral face. Then (see
Figure 3, which illustrates the case £ = 5 and I = 2}, [(k — ) further
vertices are added, in addition to those arising from the individual
splittings. Bearing in mind the previously obtained range (of length
2k.+ 1), it is not too hard to see that we can now add on any number
of vertices between k(s — 4) and k(s — 2) + [} k%], inclusive.

¥ Fig. 3
It follows that we can obtain by these means 4-polytopes whose

facets all have at least m = 25 — 6 vertices, with every possible
number of vertices from Ls(s — 3) + k(s — 4) on, so long as

k(s —2) + 3R> Gk + D(s—4) — 1,
or (replacing {1 k?| by the no larger 1 (k* — 1))
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kzy@s—-3)—4.
After a little more manipulation, we conclude::
Lemma. m(v,4) = m(s) = 25 — 6 whenever
v20(s)=3("— 115 + 16) + [y(45 — 3)| (s — 4).

This complicated relationship is not at all easy to analyse, but it is
clear that we can deduce from it

Theorem 3, liminf™ (2% > 5.5
ﬁ i

pande ol

5. Asymptotic Bounds

The asymptotic bounds given in the abstract of the paper are
immediate consequences of Theorems 1, 2 and 3, and the remarks in
the Introduction.

Theorem 4. For d = 3,

¥ =0 U b op v d—2

where ¥ = |3(d + 1)/

6. Further Remarks

For d = 5, both the upper and lower bounds for (v, d) which we
have obtained above are linear in v, although there is an increasingly
large gap between the respective bounds. It is therefore natural to
speculate about the exact asymptotic value of m (v, d)/v, if it exists.

There is good reason to suspect that the upper bound for m (v, d)
which we have found is too large. For one thing, it is extremely
unlikely that there is any d-polytope except the simplex for which (in
the notation of Theorem 1) n,=n, , =... = n,. For another, it is
conjectured that d-polytopes with no triangular faces have at least 2¢
vertices (see [1], where this conjecture is proved in the special case of
simple polytopes), while it has recently been shown (see [3]) that a
d-polytope for d > 5 must have a triangular or quadrilateral face.
While this does not necessarily strengthen the estimate
#; + 1y + 1y < 5, it does suggest that there will usually be large gaps
between some of the other n; when v is large compared with d.
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Let us also observe that any improvement in the upper bound for
m (v, d — 1) leads to a corresponding lowering of the upper bound for
m (v, d). To see this, let P be a d-polytope with » vertices, whose facets
all have at least m (v, d) = w vertices. Again using the notation of
Theorem 1, we have n,=v — wand n,_, = w — m(w,d — 1), and so
from n, = n, , follows v —w>=2w—m(w,d— 1), or

w< 2w+ m(w,d— 1)).

Consequently, of course, any improvement for m (v, d) for a given
dimension ¢ works its way up into all higher dimensions.:

In fact, we might generally conjecture that the true value of m (v, d)
is much nearer the lower bound of Theorems 2 or 3 than the upper
bound of Theorem 1. More particularly, 2 1/270 is probably the correct
order of m (v, 4), with the duals of the cyclic polytopes providing the
extreme examples; that is

Conjecture 1. m(v,4) < 8v + 9 — 3.

Were this true, it would lead to a corresponding improvement for
m(v,5); with d=35 in the remarks above, the estimates for
w=m(v,5) given by w < 3 (v + m(w,4)) and m(w,4) < cﬁé cﬁ
(for some constant ¢) yield

m(v, 5)
v

Conjecture 2. lim =1

U—c0

Since (asymptotically) the upper and lower bounds for m (v, 5)
would then coincide, it is an obvious supplement to Conjecture 2 that
the joins of polygons provide the optimal upper bounds for m (v, 5)
as well. '

Further minor improvements to the lower bound for m (v, d) are
also available. First, let us observe that, on the one hand, Euler’s
theorem and the discussion of some particular cases, and, on the
other, direct (and rather uninteresting) geometric constructions show:

¥

Theorem 5.
L forvsT, v=9v=11;
m(v,3)={4, forv=8v=10,12<v<19,v=21, v=23;
5, forv=20,v=22, v=24

If s = 1 or 2 in Theorem 2 (that is, if d is not of the form 3r — 1),
and if the number v of vertices is sufficiently large, then a judicious
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replacement of a pair consisting of a polygon and a point by a suitable
3-polytope, or a triple consisting of a polygon and two points by a
suitable 4-polytope, will result in an increase of the lower bound
estimate for m (v, d). However, the improvement is of order o (v), and

r—1 of Theorem 4; we

so does not affect the asymptotic constant
r

shall therefore not give the somewhat intricate details.
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