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Abstract. We show that if Pc E, |P|=d +k, d= k=1 and Ocintconv P, then
there exists a simplex S of dimension = |:§] with vertices in P, satisfying Oerelint S,

the bound being sharp. We give an upper bound for the minimal number of vertices of
facets of a (j — 1)-neighbourly convex pelytope in [ with » vertices.

1. Introduction

Let P be a subset of d-dimensional Euclidean space F¢ and let conv P
denote its convex hull. STEINITZ [4] has proved that if Oeintconv P,
then there exists a subset P’ of P such that Oeintconv P’ and
d+ 1< |P’| < 2d, where these bounds are sharp. (Throughout this
paper int, relint, aff, |} denote interior, relative interior, affine hull and
cardinality of a set. For real x, | x | and [x] denote the lower and
upper integer part of x. If Q is a convex polytope, vert O denotes its
vertex set.) So, in investigating the property Oeintconv P, in what
follows, we shall assume that 4 + 1 < |P| < 2d. Recalling Carathéo-
dory’s theorem [3, p. 26], Oeintconv P implies that O is the relative
interior point of some i-simplex, with vertices in P, where i >'1. Thus
there arises the question if one can give a lower estimate for 7 in term
of | P|. In this paper we prove’
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Theorem 1. Let d = k > 1, let P be a set in B consisting of d + k
points, and let O be a point in the interior of the convex hull of P. Then
there exists a simplex of dimension not less than [ {7 whose vertices are
points of P and the relative interior of which contains O. The bound [_g-|

is sharp.
Generalizing the question of Theorem 1, we pose the following.

Conjecture 1. Letd=2,j= 1,2~ 1<k <.(2j—1)d, and let P be

a set in [F? consisting of d 4+ k poihts such that each open half-space
bounded by a hyperplane passing through the point O contains at least
J points of P. Then there exists a simplex of dimension not less than
[(2f—1)- §'| whose vertices are points of P and whose relative

interior contains O.

The case j = 1 is our theorem. If Conjecture 1 is true, then its bound
is sharp if (27 — 1)|k. Namely, for any integers &,j = 1 there is a
set P(d, j) = [, such that |P(d,j)| = d + 2j — 1 and each open half-
-space bounded by a hyperplane passing through the point O centains
at least j points of P ([2]). Now letd =Y 4"V 4, where |d/(k/
[2i—1) ] <d < [ditk/(2j — 1)) for each i. Representing E¢ as
the direct sum of E%’s, 1 <i<k/(2j— 1), we choose in each E* a
set P(d, j). Finally, let P be the union of all these P(d,, j)’s. It is easy
to check that if S is a simplex whose vertices belong to P and
Oerelint S, then dim S < [d/(k/(2j — 1)) ] .

One can ask for generalizations of Steinitz’s and Carathéodory’s
theorems in the same spirit.

Conjecture 2. Let P be a set in E“ (in E%\ {O}, respectively) such that
each open {closed, resp.) half-space bounded by a hyperplane passing
through the point O contains at least j points of P. Then P possesses
a subset P’ satisfying the same property as Paboveand d+2j — 1 <
< | P €2dj(2j < |P’| € (d+ 1), respectively).

Here the lower bounds are trivial. The conjectured upper bounds
can be attained if P contains j points on each of the positive and
negative coordinate semiaxes — this might be the unique extremal
case — (if P contains j points on each of 4 4+ 1 half-lines emanating
from O and passing through vertices of a simplex with centroid O,

resp.).

Now we point out an equivalent formulation of Conjecture 1. In [1]
the following quantity m (v, d) has been investigated. For d > 2 and
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v > d + 1let m(v, d) be the smallest number m, such that every convex
d-polytope with v vertices has a facet with at most m vertices. In [1]
bounds for m (v, d) are found; in particular, for v > d = 5 we have

L= D-v+8)r] +2<m@,d) <
<min{ | (d—2-v+2@— D], L{d=3)v+ -]}
where r = | (d+ 1)/3] and s = d+ 1 — 3r. Furthermore, we have
m,2)=23<m@3)<5
and

iminf m (v, HV > 242

(for more details see [1]). Let v>d+ 1 and let m (v, d), where
2<j< ‘—; + 1, be the smallest number m such that every convex d-poly-

tope with v vertices also satisfying the property that the convex hull of
any j— | vertices is a (j— 2)-face (ie. being (j — 1)-neighbourly,
which is for v > d + 1 only possible if j < g + 13, p. 92)) has a facet
with at most m vertices. Here we prove

Theorem 2. (i) Let v >d+ 1, 2<j <2+ 1 and let f;(v, d) be the
sharp lower bound in Conjecture 1 for P < B Pl=v,d+2j—1<
g v<coo. Then

mj(v,d)=v—j§(v,v——d— 1 — 1.
(i) Letv>d+ 1 and 3 <j <44 1. Then
m; (v, d} < |(wd—2i+2D+2j-2)/d—-2j+ 3],
or equivalently,

¥
d . _k+1
d+kdyz | — or 3 ——:.
fil ) Fk_2j+21 f A

Since m, (v, d) = m(v, d), [1] and (i) imply the following.
Corollary. For d =2, k = 4 we have

fild+k, d) 2 max{[di(k—=27, [d=2)—3T}

13*
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2. Proof of Theorem 1

If d=1 or k = 1, then the existence of the corresponding simplex
is obvious. Hence suppose that the existence part of the theorem is
proved for any set in F consisting of @’ + &’ points (¢’ > k’ > 1) with
d>d >z 1, and consider a set P in [ consisting of J+ k points
(d = k = 2) satisfying O eintconv P. Because of Carathéodory’s theo-
rem [3, p. 26] there exists a simplex S’ of dimension /> 1 whose
vertices are points of P and whose relative interior contains O. If
! z djk, then we are done. Therefore suppose that dfk > 7 > 1. Let 4~
be a (d — I)-dimensional affine subspace of the d-dimensional Eucli-
dean space which is orthogonal to the affine hull aff $* of S” and let
denote the orthogonal projection of the d-dimensional Euclidean space
onto E‘~! parallel to affS’. Since Oe intconv P therefore
n(S’) = n(0) = 0" erelintconvn (P). On the other hand = (P)is aset
in '~ with at most (d+ k) — (7 + 1) = (d — ) + (k — 1) points dif-
ferent from O”. Consequently, by induction (&' =d - Lk’ < k — 1)
we see that there exists a simplex S” of dimension at least (d — /)/(k — 1)
whose vertices are points of = (P)\{0”} and the relative interior of
which contains O”. Now it is easy to see that the existence of §” implies
the existence of a simplex S whose vertices are points of P and for which
n(S) = §”and dim S = dim S” > (d — 0)/(k — 1). Hence aff S~ aff §' =
=relmtSnafl §” = O’ is a point of the 4-dimensiona! Euclidean space.
If O = 0, then the simplex S is the simplex we are looking for since

_a
dims> 4=l k_d
k=1 k—1 &

If O # 0, then the half-line 'O will intersect the relative interior
of a face F* of §” in a point O* with O in the relative interior of the
segment O’O*. Thus O erelintconv (S U F*) where conv (Su F*) is a
simplex of dimension > dim S > (d — D/(k — 1) > djk finishing the
proof of the first part of the theorem.

The sharpness of the bound [47 follows from the construction given

after Conjecture 1.

3. Proof of Theorem 2

(i) We recall the definition and some elementary properties of
(algebraic) Gale transform [3, Ch. 3]. Let O = E¢ be a convex polytope
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with v > d + | vertices x,, X, ..., X,. An affine dependence is a relation
i1 Ax; =0, where Y. A, = 0. Considering such (4,, ..., 4,)'s as
points of ¥, they constitute a linear subspace of dimension v —d — 1.
Let (A, ..., A,), 1 €j<v—d--1 be some basis of this subspace.
Then £ = (A, ... Aig—a—)€E 77, 1 < i< vis called a Gale trans-
form of the vertex x;, of Q and Q0 ={%,, ..., £} = P~ ¢ 'is called a
Gale transform of vert Q. Several points of Q may coincide. There is
considerable arbitrariness in the construction of a Gale transform.
Namely, we may choose our basis in many ways, and these lead to
different (but linearly equivalent) Gale transforms. For Z & vert Q we
have that conv Z is a face of @ if and only if, in a Gale transform Q
of vert Q, there holds O erelint conv (vert @\ Z). Furthermore, conv Z
is a facet of Q if and only if vertQ\Z is the set of vertices of a
non-degenerate simplex with O in its relative interior. Thus the mini-
mum vertex number of facets of Q equals v — f — 1, where f is the
maximal dimension of a simplex with vertices in O and containing O
in its relative interior. That is, m (v, d) = m, (v, d) = v — f* — 1, where
F* is the minimal value of f for all point systems @ in E°~“~' which
are the Gale transforms of the vertex sets of some convex d-polytopes,
i.e., which have the properties that the centroid of 0 is O and each
open half-space bounded by a hyperplane passing through O contains
at least two points of 0. However here we can omit the centroid
condition and thus obtain f* = fy(v, v — d — 1). The case j > 2 can be
proved analogously, noting that the property that the convex hull of
any j — 1 vertices of Q is a (j — 2)-face transforms to the following
property of Q: for ZgvertQ, 1Z|=j—1 we have Oerelint
conv {vert 0\ Z). However, one easily sees that this property of @ is
equivalent to the property that each open half-space bounded by a
hyperplane passing through O contains at least j points of 0.

(ii) Observe that the property that the convex hull of any j—1
vertices of a convex polytope is a (j — 2)-face, is inherited by the faces
of the polytope. gAlso, a (2f — 3)-polytope with the above property is
a simplex and thus has 2f — 2 vertices [3, p. 92}. It is shown in [I, p. 90]
that if for a convex d-polytope Q we write Q = Fyand fori=d — 1,
d—2, ..., 0 we define F, as an i-face of F,, ; with minimum number of
vertices, then for 0 < i € 4 the number |vert F] is a convex function of
i. If O has the property that the convex hull of any j — 1 vertices is a
(j — 2)-face, then following from what has been said above we will
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have |vertF,; ij=2j—12 and |vert Fj = v = |vertQ|; hence by
2j—3<d-1<dandthe convexity of |vert | we will get inequality
(ii) in Theorem 2.

References

[1] Bezpex, A., BEzpek, K., MAKaIL, E. Jr., MCMULLEN, P.: Facets with fewest
vertices. Mh. Math. 109, 83—96 (1990}.

[2] GaLE, D.: Neighbouring vertices on a convex polyhedron, linear inequalities and
related systems. In: Linear Inequalities and Related Systems, pp. 255—263. (H. W.
Kumn, A. W. TUCKER, eds.) Princeton: Univ. Press. 1956. .

[3] McMuLLen, P., SuepHARD, G. C.: Cogvex Polytopes and the Upper Bound
Conjecture. London—New York: Cambridge Univ. Press. 1971.

4] StemviTz, E.: Bedingt konvergente Reihen und konvexe Systeme IL I Reine
Angew. Math. 144, 1—40 (1914).

A. Bezpex and E. Makal JR. K. BEZDEK

Mathematical Institute of the Department of Geometry
Hungarian Academy of Sciences Eodtvos Lorand University
Pf.: 127, Rakoczi at 5.

H-1364 Budapest H-1088 Budapest
Hungary Hungary



