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Abstract

Answering a question of H. Harborth, for any given a1, ..., an > 0,
satisfying ai <

∑
j 6=i

aj we determine the infimum of the areas of the

simple n–gons in the Euclidean plane, having sides of length a1, ..., an

(in some order). The infimum is attained (in limit) if the polygon
degenerates into a certain kind of triangle, plus some parts of zero
area. We show the same result for simple polygons on the sphere (of
not too great length), and for simple polygons in the hyperbolic plane.
Replacing simple n–gons by convex ones, we answer the analogous
questions. The infimum is attained also here for degeneration into a
certain kind of triangle.
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1 Introduction

Let a1, ..., an > 0, and let ai <
∑
j 6=i

aj, i = 1, ..., n. It is well known that there

is a unique simple n–gon in the Euclidean plane, with sides a1, ..., an (in this
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order) of maximal area, and this is the one inscribed into a circle (cf. e.
g. [9], p. 44, taking into consideration [10], p. 57). Generalizations of this
statement to arbitrary closed polygons, concerning the area of the convex
hull, cf. in [13].

A special case of the dual question, i.e., of the infimum of the areas, has
been posed by H. Harborth [6]: is it true, that for n odd, the area of a
simple n–gon with unit sides is at least

√
3/4? As observed by [6], this can

be attained in limit, cf. Fig. 1. Harborth, Kemnitz, Möller, Süssenbach [7]
gave a positive answer to this question for n = 5. Our Theorem 1 will imply
the positive answer to his question for each odd n.

Theorem 1 For n ≥ 3, the infimum of the areas of the simple polygons in
the Euclidean plane, with side lengths a1, ..., an (in some order, depending on
the polygon) — where ai ≤

∑
j 6=i

aj, i = 1, ..., n — equals min {A(N1, N2, N3;

ε1, ..., εn)}, where {N1, N2, N3} is a partition of {1, ..., n} with non-empty
classes; εi = ±1;

∑
i∈Nj

εiai, j = 1, 2, 3 are the side–lengths of a (possibly de-

generate) triangle whose area is denoted by A(N1, N2, N3; ε1, ..., εn); and, if
A(N1, N2, N3; ε1, ..., εn) > 0, then for j = 1, 2, 3 there is no partition {N ′

j, N
′′
j }

of Nj such that both
∑

i∈N ′

j

εiai and
∑

i∈N ′′

j

εiai are positive.

If n > 3 then the infimum is never attained.

A simple polygon, having an area near to the infimum, is shown in Fig.2.
The minimum appearing in Theorem 1 is well defined (it is defined on a
non–void set), as it can be seen from the proof. Note that it is essential in
Theorem 1 to assume that the polygon is simple (see 4.3.).

Apply Theorem 1 to the area A of a simple n–gon of unit sides where
n ≥ 5 is odd. Then a lower bound for A is provided by the infimum of the
areas of triangles with integer edge lengths and odd perimeter, where for
j = 1, 2, 3, Nj has no partition {N ′

j, N
′′
j } such that

∑
i∈N ′

j

εi,
∑

i∈N ′′

j

εi > 0. The

j-th side of such a triangle has length 1, and hence the area of this triangle
is
√

3/4. In particular, A >
√

3/4.
The maximal area was attained for a convex polygon, so there was no

separate question for convex polygons. However for the minimal area we
have one, which is answered by our next theorem. Here we obtain a sharper
result; namely, the order of the sides also can be fixed in advance.
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Theorem 2 For n ≥ 3, the minimal area of a (not necessarily strictly)
convex polygon in the Euclidean plane (degeneration to a doubly traversed
segment admitted), with side lengths a1, ..., an, in this order — where ai ≤∑
j 6=i

aj, i = 1, ..., n —, equals min{A(N1, N2, N3)}, where {N1, N2, N3} is a

partition of {1, ..., n} with non-empty classes, of the form {{n1, ..., n2 −
1}, {n2, ..., n3 − 1}, {n3, ..., n1 − 1}} (indices taken cyclically);

∑
i∈Nj

aj, j =

1, 2, 3 are the side lengths of a (possibly degenerate) triangle, whose area is
denoted by A(N1, N2, N3). Moreover, the only convex polygons of the minimal
area are those that degenerate to triangles (possibly degenerating to segments)
of side-lengths

∑
i∈Nj

ai, j = 1, 2, 3, {N1, N2, N3} being a partition of {1, ..., n}
of the above form, with A(N1, N2, N3) minimal.

The minimum appearing in Theorem 2, for ai ≤
∑
j 6=i

aj, is well defined (it

is defined on a non–void set). In fact, if it is well defined for some n ≥ 3,
then it is well defined for n + 1 as well. Namely let a1, ..., an+1 be the cyclic
order of sides of an (n + 1)–gon from Theorem 2. Then replace ai and ai+1,
where ai +ai+1 = minj(aj +aj+1) by ai +ai+1 (indices taken cyclically), thus
obtaining the side lengths of a polygon with n sides, in this cyclic order. Then
each side of this n–gon is at most the sum of its other sides. In fact, it only
needs to be shown that the new side ai + ai+1 is not greater than the sum of

the other sides, and this follows from 2(ai +ai+1) ≤ 1

2

n+1∑
j=1

(aj +aj+1) =
n+1∑
j=1

aj.

Now a partition from Theorem 2 for this n–gon yields in a natural way a
partition for Theorem 2 for our original (n + 1)–gon.

The same consideration shows that like in the Euclidean plane (see [11], p.
52-54), also in the hyperbolic plane, and on the unit sphere for

∑
ai ≤ 2π, the

inequalities ai ≤
∑
j 6=i

aj yield the existence of a (not necessarily strictly) convex

polygon, possibly degenerating to a doubly traversed segment, with sides
a1, ..., an, in this order. If ai <

∑
j 6=i

aj then we even have convex polygons not

degenerating to a segment; thus, simple polygons (see [11], p. 52-54 for the
Euclidean case). Namely suppose we had above a polygon degenerating to a
segment, with, say a1, ..., am covering it in one orientation, am+1, ..., an in the
other one, where necessarily m, n−m ≥ 2. Then we can deform it to a non-
degenerate convex quadrilateral with sides a1, a2+...+am, am+1+...+an−1, an.

We mean convexity on the unit sphere in the strict sense (defined with
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the help of the unique connecting great circle arcs of length < π, that are
required to exist for each pair of points). Then we have

Theorem 3 The assertions of Theorems 1 and 2 hold for simple, or ( not
necessarily strictly) convex polygons on the unit sphere, of length ≤ π, and
in the hyperbolic plane (of arbitrary length), respectively.

The paper is organized as follows. In Section 2 we deal with the Euclidean
case, and prove Theorems 1 and 2. We consider the spherical and hyperbolic
cases in Section 3, and we prove Theorem 3. Finally, we make some remarks
and pose some related open problems in Section 4; among others we show
a stability result related to Theorem 1 and the corresponding part of The-
orem 3. Throughout the paper S2 and H2 denote the unit sphere and the
hyperbolic plane, respectively.

2 The Euclidean case; proof of Theorems 1

and 2

We begin with the simple

Lemma 1 Let a (possibly degenerate) triangle in the Euclidean plane have
sides a, b, x. Then, for given a, b > 0 and for |a− b| ≤ x ≤ a + b, the area A
of the triangle is a strictly concave function of x.

Proof: Denoting by ξ the angle opposite to x, we have A = 1

2
ab sin ξ and it

suffices to investigate sin ξ = {1− [(a2 + b2−x2)/(2ab)]2}1/2 := f(x)1/2. Here
f(x)1/2 is strictly concave if f ′(x)2 − 2f(x)f ′′(x) > 0, which is equivalent to
the inequality

2(a2 + b2 − x2)2x2 − [4a2b2 − (a2 + b2 − x2)2](a2 + b2 − 3x2) > 0

for |a − b| < x < a + b. Let us suppose a2 + b2 = 1; then C := 2ab ≤ 1.
Set 1 − x2 = u, and hence we should verify g(u) := 2u2(1 − u) − (C2 −
u2)(−2 + 3u) > 0, where |u| < C. We have g′(u) = 3(u2 − C2) < 0 and
g(C) = 2C2(1 − C) ≥ 0, therefore g(u) > 0 holds for |u| < C. Q.E.D.

Proof of Theorem 1:
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1. First we show the weaker statement, where we ignore the requirement
on the non–existence of the partitions {N ′

j, N
′′
j } from the statement of the

theorem. We apply induction on n. The case n = 3 being evident, from now
on we suppose n > 3.

Let P be a simple polygon with sides a1, ..., an in this order. We have to
show that the area A(P ) of P is at least the quantity given in the theorem,
with the weakening from the last paragraph.

By Jordan’s theorem on simple polygons (see [8]), a simple polygonal
curve decomposes the plane to exactly two connected open regions, the in-
terior and exterior regions. By [5], p. 157, Proposition 3 our simple polygon
has a diagonal pq, entirely passing in the interior region. Let l denote the
length of pq. The points p and q decompose the simple polygonal curve to
two closed arcs p̂q, and adding the segment pq to any of these arcs we obtain
a Jordan polygon again. These two Jordan polygons are denoted by P ′, P ′′.
(For later reference we note that on S2 we have that if the perimeter of P is
at most π, then the perimeters of P ′ and P ′′ are strictly smaller than that of
P .) We have A(P ) = A(P ′) + A(P ′′) as a consequence of Jordan’s theorem,
([5], p. 157, Proposition 2).

Both P ′, P ′′ have at least 3, and at most n − 1 sides, so the induction
hypothesis applies to them. Let P ′ or P ′′ contain the sides a1, ..., am or
am+1, ..., an of P , respectively. Then A(P ′) is at least the area of a (pos-
sibly degenerate) triangle with sides ε′l +

∑
i∈M ′

1

ε′iai := ε′l + s′1,
∑

i∈M ′

2

ε′iai :=

s′2,
∑

i∈M ′

3

ε′iai := s′3, where {M ′
1, M

′
2, M

′
3} is a partition of {1, ..., m} with M ′

2, M
′
3

6= ∅ and ε′, ε′i ∈ {−1, 1}. We have the analogous statement for A(P ′′),
with {M ′′

1 , M ′′
2 , M ′′

3 } a partition of {m + 1, ..., n} with M ′′
2 , M ′′

3 6= ∅ and
ε′′, ε′′i ∈ {−1, 1}, and with s′′1, s

′′
2, s

′′
3 defined like above.

Let us denote the area of a (possibly degenerate) triangle with sides a, b, c
by A(a, b, c), where e.g. c ≥ |a−b| ≥ 0 holds by the triangle inequality. Then

A(P ) = A(P ′) + A(P ′′) ≥ A(ε′l + s′1, s
′
2, s

′
3) + A(ε′′l + s′′1, s

′′
2, s

′′
3) := F (l) .

Here F (l) is a strictly concave function of l, because it is the sum of two
strictly concave functions of l by Lemma 1. Its domain of definition is a
(possibly degenerate) interval [l1, l2], whose points l are characterized by the
inequalities |s′2 − s′3| ≤ ε′l + s′1 ≤ s′2 + s′3, |s′′2 − s′′3| ≤ ε′′l + s′′1 ≤ s′′2 + s′′3.
These triangle inequalities imply that all the six arguments ε′l + s′1, ..., s

′′
3 are

non-negative. (For later reference we note that on S2, if the perimeter of
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P is at most π, then the perimeters of P ′, P ′′ are smaller than π, and thus
s′2 + s′3 < π, s′′2 + s′′3 < π.)

The strict concavity yields that F (l) ≥ min{F (l1), F (l2)}, and for l1 <
l < l2 even F (l) > min{F (l1), F (l2)}. For l ∈ {l1, l2} however we have
A(P ′), A(P ′′) > 0, and either A(ε′l + s′1, s

′
2, s

′
3) = 0 or A(ε′′l + s′′1, s

′′
2, s

′′
3) =

0. (For later reference we note that also in H2, or on S2, respectively, if
equality a = ±b ± c holds in the triangle inequality then the triangle has
0 area, where we assume b + c < π on S2.) Therefore in any case we have
A(P ) > min{F (l1), F (l2)}.

Let us suppose that for lk ∈ {l1, l2} where min{F (l1), F (l2)} is attained,
e.g. the triangle with sides ε′′lk + s′′1, s

′′
2, s

′′
3 degenerates. Then we have lk =

ε′′(−s′′1 + δ2s
′′
2 + δ3s

′′
3), where δ2, δ3 ∈ {−1, 1} with δ2 + δ3 6= −2, and hence

A(P ) > min{F (l1), F (l2)} = F (lk) = A(ε′lk + s′1, s
′
2, s

′
3)

= A(−ε′ε′′s′′1 + ε′ε′′δ2s
′′
2 + ε′ε′′δ3s

′′
3 + s′1, s

′
2, s

′
3) .

Here the last term is of the form A(N1, N2, N3; ε1, ..., εn), of the form required
in the theorem, but with the weakening that we ignore the requirement about
the non-existence of partitions {N ′

j, N
′′
j }.

2. In order to prove the theorem in its full strength, it is sufficient to show
the following statement: if there is a partition {N1, N2, N3} of {1, ..., n}, and
there exist signs ε1, ..., εn ∈ {−1, 1} fulfilling all requirements in the theorem,
but the one about {N ′

j, N
′′
j }, then A(N1, N2, N3; ε1, ..., εn) cannot be minimal

for all such partitions and signs satisfying the same requirements.
Let therefore N1, N2, N3, ε1, ..., εn be as in the theorem, assume that

A(N1, N2, N3; ε1, ..., εn) > 0 and there exists a partition {N ′
1, N

′′
1 } of N1,

with s′1 :=
∑

i∈N ′

1

εiai, s′′1 :=
∑

i∈N ′′

1

εiai > 0 (thus N ′
1, N

′′
1 6= ∅). Let us denote

sj :=
∑

i∈Nj

εiai, j = 2, 3. Then A(N1, N2, N3; ε1, ..., εn) = A(s′1 + s′′1, s2, s3) >

0. Consider the triangle with sides s′1 + s′′1, s2, s3 as a simple quadrangle Q
with sides s′1, s

′′
1, s2, s3, in this order, by inserting a vertex on the side s′1 +s′′1.

The diagonal of Q, passing through the common endpoint of the sides s′1, s
′′
1

entirely passes in the interior of Q. Now we apply the results of part 1 of this
proof, with the substitutions P → Q, n = 4, m = 2, a1 → s3, a2 = am → s′1,
a3 = am+1 → s′′1, a4 = an → s2, ε′ = ε′i = ε′′ = ε′′i = 1, M ′

1 = M ′′
1 = ∅,

M ′
2 = {1}, M ′

3 = {2}, M ′′
2 = {3}, M ′′

3 = {4}, and thus s′1 → 0, s′′1 → 0,
s′2 → s3, s′3 → s′1, s′′2 → s′′1, s′′3 → s2. ( For later reference we note that on S2
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the perimeter of Q is at most that of P , thus is at most π, if the same holds
for P .) Then we gain, if e.g. the triangle with sides lk, s

′′
1, s2 degenerates, that

A(N1, N2, N3; ε1..., εn) = A(s′1 + s′′1, s2, s3) = A(Q) > A(δ2s
′′
1 + δ3s2, s3, s

′
1),

with δ2, δ3 ∈ {−1, 1}. Here the last term is of the form required in the theo-
rem, but without the requirement about {N ′

j, N
′′
j }. This shows our claim in

part 2 of this proof, and this ends the proof of the theorem. Q.E.D.

Proof of Theorem 2: Let P be a polygon like in the theorem. If it
degenerates to a segment or to a triangle, we are done. Let therefore P
degenerate to a strictly convex k–gon Q, 4 ≤ k ≤ n, with vertices q1, ..., qk,
in this order. Denoting area by A, we have A(P ) = A(Q) = A(Q′) + A(Q′′),
where Q′ = conv{q1, q2, q3, q4}, Q′′ = conv{q4, q5, ..., qk, q1}.

Let the diagonal q1q3 of the strictly convex quadrangle Q′ have length l.
Fixing the lengths of the sides of Q′, we vary l, so that triangles q1q2q3, q1q4q3,
if not degenerate, lie on different sides of q1q3. The obtained quadrangle
Q′(l) has an area F (l) = A(conv{q1, q2, q3})+A(conv{q1, q4, q3}), which is by
Lemma 1 a strictly concave function of l in the interval [l1, l2] = [max{|q1q2−
q3q2|, |q1q4−q3q4|}, min{q1q2 +q3q2, q1q4 +q3q4}]. Here the original value l0 of
q1q3 lies in (l1, l2). Thus either F (l) is strictly increasing in [l1, l0] or strictly
decreasing in [l0, l2]. Varying l, the angles of the triangles q1q2q3, q1q4q3 vary
continuously, and in case one of these triangles degenerates, its angles tend to
π, 0, 0 (π lying opposite to the longest side), or 0, π/2, π/2 (0 lying opposite to
the side q1q3), the latter case occurring exactly when the triangle is isosceles,
with q1q3 as base, and l → 0. (For later use we note that the same holds in
H2, and, provided that the perimeter of P , and thus of Q′, is at most π, also
on S2. The very same remark applies to the strict concavity of F (l).) For
k ≥ 5 let us place Q′(l) to Q′′, so that the vertices q1 and q4 of Q′(l) lie in
their original places and Q′(l) lies on that side of q1q4 as Q′. Thus we obtain
a closed k-gon Q(l) (for k = 4 let Q(l) = Q′(l)), that is simple if Q′(l) is
convex quadrangle, possibly degenerating to a triangle, but not to a segment.

Now we vary l, beginning from l = l0, either increasing or decreasing it,
so that at increasing |l− l0| F (l) strictly decreases. We stop at the first value
l∗, where some angle of Q(l) becomes π. (Below we will show that such l∗

exists.) This angle must be at one of q1, q2, q3, q4. Note that for k ≥ 5 and
Q′(l) not degenerating to a segment, the angle of Q(l) at q1, q4 is greater than
that of Q′(l) at the same vertex.

If we have increased l, then, also considering the above remark on the
limits of the angles (which we will also use below without further mentioning),
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for l = l2 either 6 q1q2q3, or 6 q1q4q3 equals π (thus q1q2q3q4 degenerates to
a triangle or segment), so the angle of Q(l) at q2 or q4 is π, or at least π,
respectively. Hence by continuity there exists a value l∗ ∈ (l0, l2] with the
above asserted property.

If we have decreased l then for l = l1 either 6 q1q2q3 or 6 q1q4q3 equals 0.
For l1 = 0, Q′(l1) degenerates to a convex deltoid degenerated to a segment,
with angles π at q1, q3, thus again l∗ exists. For 0 < l1 = |q1q2 − q3q2| =
|q1q4 − q3q4|, Q′(l1) degenerates to a quadrangle degenerated to a segment,
either with angles π at q1 and q3, or with angle 2π at q1 or q3. Hence in
both cases l∗ exists. For 0 < |q1q2 − q3q2| < |q1q4 − q3q4| = l1 or 0 < |q1q4 −
q3q4| < |q1q2 − q3q2| = l1, Q′(l) degenerates to a quadrangle degenerated to
a triangle with one side (namely q1q3) elongated beyond one of its vertices.
This quadrangle has an angle greater than π at the mentioned vertex. Thus
again l∗ exists.

If k = 4 then Q(l∗) degenerated to a triangle or a segment, while for k ≥ 5,
Q(l∗) degenerated to a simple polygon that is a strictly convex polygon with
at most k−1, and at least 3 vertices (since int Q(l∗) ⊃ int Q′′ 6= ∅). Moreover
A(Q) > A(Q(l∗)). Repeating these considerations at most n − 3 times, we
obtain the statement of the theorem. Q.E.D.

3 The spherical and hyperbolic cases; proof

of Theorem 3

We turn to the same questions on the unit sphere, and in the hyperbolic
plane. (The question of maximal area cf. in [4], II. 2.1, II. 3.3, [15].)

For a simple polygon on S2 there are two domains bounded by it, so we
have two areas to be estimated. However, if the length of a closed polygonal
line on S2 is < 2π, then it lies in an open hemisphere ([4], II. 2.7). Therefore
one of these areas is < 2π, the other one is > 2π. So for the lower estimate
it suffices to investigate the domain lying in the above open hemisphere.

We begin with the analogue of Lemma 1 for the spherical and hyperbolic
geometry. (For hyperbolic geometry cf. [1], [4], [12], [14]; in particular, the
Caley-Klein model is exposed in [1], [12].)

Lemma 2 Let a (possibly degenerate) triangle on the unit sphere or in the
hyperbolic plane have sides a, b, x, where assume a + b ≤ π in the spherical
case. Then, for a, b > 0 fixed and |a − b| ≤ x ≤ a + b, the area Ā of the
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triangle is a concave function of x. (For x = a + b = π we define Ā by a
limit procedure, i.e., we set Ā = π.) In addition, the area is strictly concave
in the hyperbolic case, and also in the sperical case if a + b < π.

Proof:

1. First we consider the spherical case. Let the respective angles of the
triangle be α, β, ξ. (For x → a + b = π, and a ≤ b, say, fix the side b. Then
the vertex with angle β moves on a small circle of spherical radius a, that is
symmetrical with respect to the large circle containing the side b. Hence for
x → a + b = π, thus ξ → π, we have Ā → π.) Then Ā = α + β + ξ − π, and
cos x = cos a cos b + sin a sin b cos ξ, etc., hence for |a− b| < x < a + b ≤ π we
have

−d2Ā

dx2
=

cos α

sin3 α

(
−cos a

sin b
· cos x

sin2 x
+ cot b · 1

sin2 x

)2

+

+
1

sin α

(
cos a

sin b
· 1 + cos2 x

sin3 x
− cot b · 2 cosx

sin3 x

)
+

+
cos β

sin3 β

(
−cos b

sin a
· cos x

sin2 x
+ cot a · 1

sin2 x

)2

+

+
1

sin β

(
cos b

sin a
· 1 + cos2 x

sin3 x
− cot a · 2 cosx

sin3 x

)
+

+
cos ξ

sin3 ξ
· sin2 x

sin2 a sin2 b
− 1

sin ξ
· cos x

sin a sin b
.

We prove that this expression is non–negative for |a − b| < x < a + b ≤ π,
and is positive for |a − b| < x < a + b < π.

Let us multiply the first two terms of −d2Ā/dx2 by sin α/ sin a, the second
two terms by sin β/ sin b, the last two terms by sin ξ/ sinx (these are equal
and > 0). We can then eliminate from the obtained expression ξ, α, β, using

cos ξ

sin2 ξ
=

(cos x − cos a cos b) sin a sin b

sin2 a sin2 b − (cos x − cos a cos b)2
,

and analogous equalities for α, β. Here all three such denominators equal
1 − cos2 a − cos2 b − cos2 x + 2 cos a cos b cos x > 0. The expression obtained
from −d2Ā/dx2 by this multiplication and this elimination, F (x), say, only
contains trigonometric functions of a, b, x, and it suffices to show F (x) ≥ 0,
or F (x) > 0 in the respective domains, respectively.
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Let G(x) = F (x)(1− cos2 a− cos2 b− cos2 x + 2 cos a cos b cos x) sin a sin b
sin3 x. It suffices to show G(x) ≥ 0, or G(x) > 0, for |a− b| < x < a+ b ≤ π,
or |a − b| < x < a + b < π, respectively. We will show these inequalities
for the larger domains 0 ≤ x ≤ a + b, where 0 ≤ a, b and a + b ≤ π, or
0 < x < a + b, where 0 < a, b and a + b < π, respectively. We have

G(x) = (1−X)
{
(A − BX)(B − AX)(A + B) + (X − AB)(1 − X2)(1 + X)

+[(A + B)(1 − X) − X(1 + X)](1 − A2 − B2 − X2 + 2ABX)
}

:= (1 − X)H(x) ,

where A = cos a, B = cos b, X = cos x. Therefore it suffices to show H(x) ≥
0, or H(x) > 0 in the respective enlarged domains, respectively.

Let A = E + F and B = E − F , and hence E ≤ 1; and for a, b ∈ [0, π],
a + b ≤ π (or a + b < π) is equivalent to E ≥ 0 (or E > 0, respectively).
Then

H(x) = E[2 − E − 2E2 + (2 − E)X](1 − X)2 +

+F 2[(1 − 6E) + (3 − 4E)X + (3 + 2E)X2 + X3] .

Varying a, b in [0, π], while fixing the value of E and X, H(x) attains its
minimum either for the minimum or for the maximum possible value of |F |.

If the coefficient of F 2 in H(x) is non–negative, we decrease |F | to 0; thus
H(x) does not increase. By what has been said above, by this decreasing
a + b ≤ π (resp. a + b < π) will remain true, 0 ≤ a, b, x (or 0 < a, b, x)
evidently remain true, and also x ≤ a+ b (or x < a+ b, respectively) remains
true since for 0 ≤ |F | ≤ 1 − E, a + b = arccos(E + F ) + arccos(E − F )
decreases (not strictly) with increasing |F |. If the coefficient of F 2 in H(x)
is negative, we increase |F |, until either 1) |F | = 1− E, i.e., a = 0, b ≥ 0 or
b = 0, a ≥ 0, and in both cases x ≤ a + b; or 2) x = a + b, and |F | ≤ 1−E,
i.e., a, b ≥ 0. Thus all inequalities 0 ≤ a, b, a + b ≤ π, 0 ≤ x ≤ a + b
remained true. Thus the proof of the inequality H(x) ≥ 0 (or H(x) > 0,
respectively) is reduced to the cases a = b, b = 0, say, and x = a + b.

First we settle the case a = b. Then E = A = B ≥ 0, F = 0, further 0 ≤
x ≤ 2a ≤ π, thus X ≥ 2A2−1, and H(x) = A[2−A−2A2+(2−A)X](1−X)2.
Hence the second factor of the expression for H(x) is ≥ 2A2(1−A) ≥ 0. Thus
H(x) ≥ 0, with equality if and only if X = 1, i.e., x = 0, or E = A = 0, i.e.,
a = b = π/2 (if A = 1 then X = 1, which case has been considered above).
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Second we settle the case b = 0, i.e. B = 1. Then H(x) = (−A + X)3,
and we have x ≤ a + b = a, i.e. X ≥ A. Hence H(x) ≥ 0, with equality if
and only if x = a = a + b.

Last we settle the case x = a + b. Then 1 − A2 − B2 − X2 + 2ABX =
sin2 a sin2 b − (cos x − cos a cos b)2 = 0, A − BX = sin b sin x, B − AX =
sin a sin x, X − AB = − sin a sin b. Thus

H(x) = sin a sin b sin2 x · (cos a + cos b − 1 − cos x)

= sin a sin b sin2(a + b) · (cos a + cos b − cos 0 − cos(a + b)) .

Here the last factor is non–negative, since if 0 ≤ t ≤ π/2 and 0 ≤ s ≤ t then
cos(t + s) + cos(t − s) is a decreasing function of s (strictly decreasing for
t < π/2). Hence H(x) ≥ 0, with equality if and only if a = 0, or b = 0 or
a + b = π.

Thus we have shown H(x) ≥ 0, for 0 ≤ x ≤ a + b, where 0 ≤ a, b and
a + b ≤ π, thus also −d2Ā/dx2 ≥ 0 for |a − b| < x < a + b, where 0 < a, b
and a + b ≤ π.

Now we show that actually H(x) > 0 for 0 < x < a+b, where 0 < a, b and
a + b < π. If the coefficient of F 2 in H(x) is non–negative, then we have de-
creased |F | to 0 (including the case that originally F = 0), thus not increasing
H(x), and this new value of H(x) is positive, by x > 0 and E > 0. There-
fore originally H(x) > 0 held. If the coefficient of F 2 in H(x) is negative,
then we have increased |F | until we have equality in one of the inequalities
0 ≤ a, 0 ≤ b, x ≤ a + b (and all these inequalities hold). Now originally
none of these equalities can hold, thus |F | has had to be strictly increased,
thus H(x) has been strictly decreased, and its new value is non–negative.
Therefore originally H(x) > 0 held. All this shows that −d2Ā/dx2 > 0 for
|a − b| < x < a + b, where a, b > 0 and a + b < π.

2. The hyperbolic case is even simpler. With the same notation as above, we
have Ā = π−α−β−ξ, cosh x = cosh a cosh b−sinh a sinh b cos ξ, etc., and for
0 < a, b, |a − b| < x < a + b, sin α/sinh a = sin β/sinh b = sin ξ/sinh x > 0.
For |a − b| < x < a + b one similarly calculates −d2Ā/dx2, which is the
same expression as +d2Ā/dx2 in the spherical case, only here trigonometric
functions of sides are replaced by hyperbolic ones, and the terms containing
1/ sinα, 1/ sinβ have positive signs in −d2Ā/dx2. We are going to show that
for |a − b| < x < a + b, where 0 < a, b, we have −d2Ā/dx2 > 0.

Analogously to the spherical case, multiplying −d2Ā/dx2 by sin α/sinh a =
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sin β/sinh b = sin ξ/sinh x and then eliminating α, β, ξ by using

cos ξ

sin2 ξ
=

(cosh a cosh b − cosh x) sinh a sinh b

sinh2 a sinh2 b − (cosh x − cosh a cosh b)2

etc. (whose denominators equal 1−cosh2 a−cosh2 b−cosh2 x+2cosh a cosh b
cosh x > 0) we obtain an expression F (x). Now let G(x) = F (x)(1−cosh2 a−
cosh2 b − cosh2 x + 2cosh a cosh b cosh x) sinh a sinh b sinh3 x.

Again, these considerations reduce the problem to the inequality G(x) ≥ 0
— where G(x) is just the same polynomial of A, B, X as above, but now
A = cosh a, B = cosh b, X = cosh x — for 0 ≤ x ≤ a + b, where 0 ≤ a, b, or
to the inequality G(x) > 0 for 0 < x < a + b, where 0 < a, b, respectively.
(Actually the second inequality is sufficient for us, but we prove it through
the first inequality.) We have G(x) = (1 − X)H(x) and X ≥ 1 (or X > 1),
thus it suffices to show that H(x) ≤ 0 (or H(x) < 0, respectively).

Defining E, F like above, we have 1 ≤ E, and similarly it suffices to
investigate the cases |F | is minimum or maximum possible, i.e., the cases
a = b (this obtained if the coefficient of F 2 in H(x) is non–positive), b = 0
(say), x = a + b (these obtained if the coefficient of F 2 in H(x) is positive).

For a = b we have 1 ≤ X ≤ 2A2 − 1 and H(x) = A[2 − A − 2A2 + (2 −
A)X](1 − X)2. Hence the second factor of H(x) is at most 2A2(1 − A) ≤ 0
for A ≤ 2, and at most 4 − 2A − 2A2 < 0 for A ≥ 2. Thus H(x) ≤ 0, with
equality if and only if x = 0 (for A = 1 we have X = 1 that is included
above).

For b = 0 we have H(x) = (−A + X)3 and X ≤ A, hence H(x) ≤ 0, with
equality if and only if x = a = a + b.

For x = a+b, similarly to the spherical case, we have H(x) = sinh a sinh b
sinh2 (a+ b)(cosh a +cosh b− cosh 0− cosh (a+ b)) ≤ 0, with equality if and
only if a = 0 or b = 0.

Thus we have shown H(x) ≤ 0 for 0 ≤ x ≤ a + b, where 0 ≤ a, b, thus
also −d2Ā/dx2 ≥ 0 for |a − b| < x < a + b, where 0 < a, b.

The inequality H(x) < 0 for 0 < x < a + b, where 0 < a, b follows from
the above results like in the spherical case, hence actually −d2Ā/dx2 > 0 for
|a − b| < x < a + b, where 0 < a, b. Q.E.D.

Proof of Theorem 3: The proofs of Theorems 1 and 2 carry over with
some modifications. We have to use Lemma 2 in place of Lemma 1. We need
yet the existence of a diagonal of our simple polygon, entirely passing in the
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interior region. (On S2 we mean this so that our polygon lies in an open
hemisphere, and we consider the region contained in that open hemisphere,
that was sufficient to consider, cf. the remarks before Lemma 2.) This
follows from the corresponding result on the Euclidean plane (cf. [5], p.
157), considering the central projection of the above open hemisphere to its
tangent plane at its spherical centre, or using the Caley-Klein model of the
hyperbolic plane, respectively. In both of these cases images of segments
are segments (for S2 the segment is supposed to lie on the open hemiphere),
thus images of simple polygons are simple polygons, and the images of the
interior regions are the interior regions of the images. On S2 we have that the
perimeter of our polygon is at most π. This ensures that at the applications
of Lemma 2 the condition a + b < π is satisfied. At the respective points we
have referred to this fact, as well as to using some geometrical facts on S2

and in H2, in parentheses, in the proofs of Theorems 1 and 2. Q.E.D.

4 Concluding remarks

4.1. As can be seen from the proof of Theorem 1 (and the corresponding
part of Theorem 3), we have proved a bit more:

Proposition 1 Under the conditions of Theorem 1 (and the corresponding
part of Theorem 3), if the order of the sides is fixed to be a1, ..., an (with∑

ai ≤ π on S2), then the area is at least the minimum given in Theorem
1 (and the corresponding part of Theorem 3), only restricting N1, N2, N3 to
consist of cyclically consecutive indices (like at Theorem 2); but then also
N ′

j, N
′′
j must consist of cyclically consecutive indices.

Namely the same inductive step shows this too; and similarly for the
statement about N ′

j, N
′′
j . Q.E.D.

However in this form the inequality is not sharp. For this we first show
the following proposition, that is a stability variant of Proposition 1.

Proposition 2 Let n ≥ 3, a1, ..., an > 0, ai <
∑
j 6=i

aj (and
∑

ai ≤ π on

S2). Then the area of a simple n–gon P with sides a1, ..., an, in this or-
der, can approach the lower bound given in Proposition 1 arbitrarily close,
only if it has a triangulation with the following properties. Each triangle in
the triangulation, except one has a small area. The exceptional triangle has
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vertices at the end–points of the arcs Ij of bd P consisting of the sides ai

with i ∈ Nj, j = 1, 2, 3, with the distance of the end–points of Ij being near
to some

∑
i∈Nj

εiai. Here {N1, N2, N3}, ε1, ..., εn are like in Proposition 1 and

are such that they minimize A(N1, N2, N3; ε1, ..., εn) among all partitions and
signs with the properties from Proposition 1.

Proof: If n = 3 then the statement readily holds.
Let n ≥ 4. We may assume that, at the inductive step at Theorem 1, for

P ′ we chose M ′
1, M ′

2, M ′
3, ε′, ε′i so that A(ε′l + s′1, s

′
2, s

′
3) was minimal among

all such choices with the properties from Proposition 1, and similarly for P ′′.
We recall the inductive step from Theorem 1:

A(P ) = A(P ′) + A(P ′′) ≥ A(ε′l + s′1, s
′
2, s

′
3) + A(ε′′l + s′′1, s

′′
2, s

′′
3) =

= F (l) ≥ min{F (l1), F (l2)} = F (lk) = A(ε′lk + s′1, s
′
2, s

′
3) =

= A(N1, N2, N3; ε1, ..., εn) .

Suppose that A(P ) approximates the lower bound given in Proposition 1
within η, where η > 0 is sufficiently small. Then A(P ) ≤ A(N1, N2, N3; ε1, ...,
εn)+η, since N1, N2, N3; ε1, ..., εn is one of the systems for which the minimum
could be taken in Proposition 1. (By part 2 of the proof of Theorem 1, the
omission of the condition about N ′

j, N
′′
j does not change the minimum of

A(N1, N2, N3; ε1, ..., εn) in Proposition 1.) Further, F (l) ≤ F (lk) + η, thus,
by strict concavity, l is near to lk (for F (l1) = F (l2) any of l1, l2 admitted
as lk), and therefore, e.g. A(ε′′l + s′′1, s

′′
2, s

′′
3) is near to 0. Moreover we

have A(P ′) ≤ A(ε′l + s′1, s
′
2, s

′
3) + η and A(P ′′) ≤ A(ε′′l + s′′1, s

′′
2, s

′′
3) + η,

hence A(P ′′) is near to 0. Also we have (up to order of indices) N1 =
M ′

1 ∪ {m + 1, ..., n}, N2 = M ′
2, N3 = M ′

3.
By the assumed minimality property of A(ε′l + s′1, s

′
2, s

′
3) and A(ε′′l +

s′′1, s
′′
2, s

′′
3) both P ′, P ′′ satisfy the hypothesis of the Proposition. By induction

they satisfy the conclusion of the Proposition. (Note that there are only
finitely many combinatorial possibilities for P ′, P ′′, so words like “near” can
be used in a uniform sense for each of these possibilities.) The triangulations
of P ′, P ′′ from the conclusion of the Proposition together give a triangulation
of P , and each triangle in P ′′, and each but one triangle in P ′ has a small
area. The exceptional triangle has vertices at the end–points of the arcs
I ′
j of bdP ′ (with analogous notation), hence at the end–points of the arcs

Ij of bdP . The distances of the end–points of Ij, j = 2, 3, are near to
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∑
i∈M ′

j

ε′iai =
∑

i∈Nj

εiai, while the distance of the end–points of I1 is near to

ε′l +
∑

i∈M ′

1

ε′iai, thus is near to ε′lk +
∑

i∈M ′

1

ε′iai = ε′lk + s′1 =
∑

i∈N1

εiai. Finally

A(N1, N2, N3; ε1, ..., εn) is minimal for all partitions and signs considered in
the Proposition, since it is near to the area of the exceptional triangle, that
is at most A(P ), and A(P ) approximates its lower bound in Proposition 1
within η. Q.E.D.

Proposition 3 The inequality in Proposition 1, for fixed order of sides, is
in general not sharp.

Proof: We show our statement in R2, but multiplying the sides of our
example in R2 by small positive numbers, we get examples in S2, H2, too.

Let us consider a simple 7-gon in R2 whose consecutive sides a1, ..., a7 are,
in this order, 1, x, 2x+1, x, y, 2y+1, y, where x, y are integers, 1 << x << y.
Then N1 = {1}, N2 = {2, 3, 4}, N3 = {5, 6, 7}, ε1 = ε3 = ε6 = 1, ε2 =
ε4 = ε5 = ε7 = −1 satisfy the properties from Proposition 1, and we have
A(N1, N2, N3; ε1, ..., ε7) =

√
3/4.

We claim that any partition {N1, N2, N3} of {1, ..., 7} with non–empty
classes consisting of cyclically consecutive indices, and any signs ε1, ..., ε7,
for which

∑
i∈Nj

εiai are the side lengths of a (possibly degenerate) triangle,

satisfy A(N1, N2, N3; ε1, ..., ε7) ≥ const >
√

3/4, unless we have the above
partition and above signs. Namely our triangle has integer sides, a, b, c say,
and odd perimeter, hence e.g. 1 ≤ c ≤ a + b − 1, a + b + c ≥ 3. Now
Heron’s formula shows that the area is ≥

√
3/4, with equality if and only if

a = b = c = 1, and otherwise the area is ≥
√

5/4. Suppose that max Nj ∈
{3k − 1, 3k, 3k + 1} (k ∈ {1, 2}). In this case, if Nj 6⊃ {3k − 1, 3k, 3k + 1}
or {3k − 1, 3k, 3k + 1} ⊂ Nj but we do not have ε3k−1 = −ε3k = ε3k+1,
then the triangle has a long side, and hence an area ≥

√
5/4. (Note that

Nj ∩{3k−1, 3k, 3k+1} = {3k−1, 3k+1} is impossible, since then |Nj| = 6,
and then some Nj′ is empty.) If Nj strictly contains {3k− 1, 3k, 3k + 1} and
k = 2, then we can repeat the same reasoning for Nj \ {3k − 1, 3k, 3k + 1},
yielding that either the area is ≥

√
5/4, or Nj is the union of some classes

{3k − 1, 3k, 3k + 1} (k ∈ {1, 2}) and {1}. Since each Nj is non-empty and∑
i∈Nj

εiai ≥ 0, we get our claim.

Now apply Proposition 2. As the paragraph above shows, if the area
approached the lower bound given in Proposition 1 arbitrarily close, then
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the exceptional triangle in Proposition 2 would have sides near to 1. This
readily implies that the sides of lengths 2x + 1, 2y + 1 would intersect, which
is absurd. Q.E.D.
4.2. In order to prove Theorem 2 in R2 only, a shorter proof can be
given using Steiner’s formula ([10], Theorem 14) for the area A of our convex
quadrangle Q′ from the proof of Theorem 2, rather than using our Lemma 1.
Namely, the Steiner formula yields that 16A2 = 4a2b2 +4c2d2−(a2 +b2−c2−
d2)2 − 8abcd cos(α + γ), where a, b, c, d are the sides, α, β, γ, δ are the angles
of Q′, in this order. We may suppose α + γ ≥ π; then like in Theorem 2
increase the length l of the diagonal separating the vertices with angles α, γ,
thus increasing α + γ and decreasing A, till α or γ becomes π. This implies
the existence of l∗, and the proof is finished like above.

4.3. If in Theorem 1, or in the corresponding statements of Theorem 3
we allow self–intersecting polygons, then for the definition of enclosed area,
different from the signed area, we have e.g. the following possibilities. 1) The
total area of all bounded connected components of the complement R2 \P of
the polygon P . 2) The sum of the integrals of the absolute values of the in-
dices of P , taken for all bounded connected components of R2 \ P . For both
of these definitions the extension of Theorem 1, and of the corresponding
statements of Theorem 3, are false. Like at Proposition 3, it suffices to give
the common counterexample for R2. The counterexample comes from pertur-
bation of the oriented polygon P = p1p2p3p4p5, where each edge has length
1, the points p2 and p5 coincide, and the segment p1p2 = p1p5 is orthogonal
to the line p3p4 and lies outside of the regular triangle p2p3p4. Now pull p2

and p5 slightly apart in a way that the edge lengths are kept and the edges
p2p3 and p4p5 intersect, and the figure retains its original axis of symmetry.
Then elementary calculations show that the area is decreased. Adding extra
double unit edges results in a counterexample of unit sides for any odd n ≥ 7.
We note yet that if we do not want counterexamples of unit edges, then the
above quadrangle p2p3p4p5 is already a counterexample. Adding still sides of
length 0, or of length some small δ0, we obtain counterexamples for any n ≥ 4.

4.4. Presumably Theorem 1 and the corresponding parts of Theorem 3
hold, if we only assume that each point of R2 (S2, H2), not on the oriented
polygon, has an index 0 or 1 with respect to the oriented polygon (with
area = the integral of the index). We ask if Theorems 1 and 2 hold for any
Minkowski metric as well. It is still open whether the statement of Theorem
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3 holds on S2 if the length of the polygon lies in (π, 2π].

4.5. We pose the similar question in Rd. If a polytope (finite union of
non-degenerate d-simplices) has facet areas A1, ..., An, then there is a (not
necessarily strictly) convex polytope having the same facet areas and not
smaller volume ([2], Theorem 2). Presumably for a convex polytope with
fixed facet areas and (nearly) maximal volume this polytope must be in
some sense near to a sphere (compare theorems in [4], II.4.3). Is the minimal
volume of an arbitrary polytope with fixed facet areas A1, ..., An attained
(in limit) if the polytope is a simplex plus some parts of zero volume, i.e.,
is the infimum of the volumes min{V (N1, ..., Nd+1; ε1, ..., εn)|{N1, ..., Nd+1}
is a partition of {1, ..., n} with non-empty classes; εi = ±1;

∑
i∈Nj

εiAi, j =

1, ..., d + 1 are the facet areas of a (possibly degenerate) simplex} (where
V (N1, ..., Nd+1; ε1, ..., εn) is the infimum of the volumes of simplices with facet
areas

∑
i∈Nj

εiAi, j = 1, ..., d + 1)? One can pose the similar question for (not

necessarily strictly) convex polytopes, but with εi = 1.

4.6. Last we sketch our original idea of proof of Theorem 1 and the corre-
sponding part of Theorem 3; for simplicity of notation we restrict ourselves to
R2. It works on the level of heuristics, is considerably longer, but maybe the
concepts in it have some interest. (Some of its details involving elementary
plane topology have not been worked out, but most probably they could be.)

We used induction on n. Let n ≥ 4. We wanted to move our n–gon P
(i.e., deform it continuously with respect to a parameter varying in a non–
degenerate closed interval of R) so that its side lengths, with their order, were
fixed (say, this is a1, ..., an), its area strictly decreased, and at the end of the
motion (but not earlier) there occurred some double points of P (these cannot
be inner points of some non-collinear sides both times). Moreover these
double points should have been such that P touched itself “from the interior
side”, not “from the exterior side”. Then the enclosed area is the sum of
enclosed areas of some subcycles of P . E.g., we can take two subcycles P1, P2,
one edge of P , a1, say, being shared by P1 and P2, a2, ..., am belonging to
P1, am+1, ..., an belonging to P2. Then we have for the areas A(P ) = A(P1)+
A(P2), and A(Pi) can be estimated from below by induction, also using the
length x of the edge of P1 on a1. Then the same concavity arguments work
as in Section 2, giving the required lower estimate for A(P ).
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For this inductive step we introduced the concept of a generalized simple
oriented polygon P , defined by the properties that the winding number of x
with respect to P is 0 or 1 for any x ∈ R2 \ P , and for each oriented side
−−−→pipi+1 of P , each point y in a neighbourhood of the open side −−−→pipi+1, lying in
the exterior side of −−−→pipi+1 (with respect to the orientation) can be connected
by an arc to infinity, avoiding P . We claimed Theorem 1 held for generalized
simple (oriented) polygons P , with area = the integral of the index over R2

(but with case of equality if and only if the set of points where the index is
1, either is an open triangle or is empty).

If the generalized simple polygon P was not actually simple, we had P1, P2

as above, and induction worked. If P was simple, we wanted to move P so
that its area strictly decreased and at the end of the motion we obtained a
non–simple generalized simple polygon of strictly smaller area, whose area
already had been estimated from below. For this motion we used induction
again. We considered Q = convP ; its vertices qi (in this order) decompose
P to arcs ̂qiqi+1 (indices taken cyclically). For Q no triangle and no n–gon
we moved the sides of P so that the arcs ̂qiqi+1 were rigidly attached to the
sides qiqi+1 of Q, while Q was moved according to the induction hypothesis,
thus preserving the side lengths of P with their order, and strictly decreasing
the area of Q, and hence that of P as well. We stopped at the first position
when P ceased to be simple. For Q an n–gon we used arguments like in our
Theorem 2 (except for n = 4 that had to be settled directly), while for Q
a triangle we could enclose P in a simple (not strictly) concave quadrangle
Q∗ as well, with three vertices at the three vertices of Q, and fourth vertex
some vertex of P , and use Q∗ rather than Q. (The motion of Q∗ is easily
discussed.) All that remains to be shown is that the stopping position of P
occurs at latest at the stopping position of Q (or Q∗, respectively), at the
stopping position P becomes a generalized simple polygon (with orientation
obtained from the positive orientation of its earlier positions, by passing to
the limit), and that with P also P1, P2 from the beginning of this paragraph
are generalized simple polygons (with the inherited orientations).
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[7] H. Harborth, A. Kemnitz, M. Möller, A. Süssenbach: Ganzzahlige
planare Darstellungen der Platonischen Körper, Elem. Math. 42 (1987),
118-122

[8] W. Hurewicz, H. Wallman: Dimension theory, Princeton University
Press, Princeton, N. J., 1941

[9] I. M. Jaglom, W. G. Boltjanski: Konvexe Figuren, Deutsch. Verl.
Wiss., Berlin, 1956

[10] N. D. Kazarinoff: Geometric inequalities, Random House, New York–
Toronto, 1961
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