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the onneted omponents of idempotents in the Calkin algebra of a Hilbertspae.
1 NotationsFor a Banah algebra A, let

E(A) := {p ∈ A : p2 = p}be the set of idempotents. If there is an involution ∗ on A, let
S(A) := {p ∈ A : p2 = p = p∗}be the set of self-adjoint idempotents.For a Banah spae X , let B(X) or K(X) denote the Banah algebras of allbounded or ompat linear operators on X , respetively. The quotient C(X) =

B(X)/K(X) is alled the Calkin algebra (as it was �rst studied in [C℄ for theHilbert spae ase). Let
π : B(X) → C(X)be the anonial map. More generally, we shall be onsidering situations where

π denotes a surjetive map between Banah algebras.For a linear operator T on X , let R(T ) := TX and N(T ) := T−1(0) denotethe range and the kernel of T , respetively.In this paper, the linear strutures are onsidered over the omplex salars,and the algebras are assumed to be unital. We denote by σ(x) the spetrum ofan element x.2 Historial bakgroundThe set of idempotents splits naturally into onneted omponents. Thestruture of these omponents has been studied in a number of papers and is tobe brie�y desribed below. The origins seem to start with the observation (ari-sing from perturbation theory) that lose projetions are similar [SzN1, p. 58℄,[SzN2, p. 350℄, [RieSzN, p. 266℄. The proof given in [Kat℄ made it possible tosee that the similarity an be aomplished by exponentials [Ze1℄, whih yieldsanalyti idempotent-valued onnetions between any two idempotents in thesame omponent.See also [Ka, Problem I.4.13℄ and [Ko, Theorem 1℄. Analogous results alsohold for real Banah algebras [Au1℄. Surprisingly, even polynomial onnetionsan be onstruted within a given omponent [Es℄, whose degrees are atuallyrather low in a number of ases [T1℄, [MaZe℄, [D℄. This leads to the interestingquestion of whether there is a universal bound on the minimum degree of thesepolynomial onnetions. 2



In partiular, the question seems to be open even for two Hilbert spaeprojetions, if the diret sum of the kernel of one of them and the image of theother is only dense in the spae, f. [D, Théorème 3.3℄. More preisely, an suhprojetions be approximated by projetions for whih the orresponding sum(without losure) is equal to the whole spae ? (A positive answer has now beengiven by Vladimir Kadets.)For C∗-algebras, the problem has been studied in [T2℄, [T3℄. On the otherhand, there are pieewise linear idempotent-valued onnetions in general [Ko,Theorem 1℄.The loal arwise onnetedness of the set of idempotents was notied in[Ze1, Theorem 3.2℄ and further studied in [Ho1℄, [Ho2℄. See also [Ra℄.Two idempotents belong to the same omponent if and only if they are similarvia a �nite produt of exponentials [Ze1℄, [Au1℄. Spetral haraterizations ofthis property have been studied in [AuLaZe℄, [AuZe℄, [MaZe℄.Central idempotents were haraterized in [Ze1℄, [HLaZe℄. For instane, anidempotent is entral if and only if its omponent is a singleton [Ze1, Corol-lary 3.5℄. Otherwise the omponents are unbounded, lying at distane at least1/2 from the entre [Ze1, Theorems 3.4 and 3.7℄.In this paper, we shall study the relationship between E(A) and E(A/I),where I is a losed two-sided ideal in A. Note that
πE(A) ⊂ E(A/I),where π : A → A/I is the anonial map. Thus, the lifting problem onsists inestablishing the onverse inlusion.3 Lifting of analyti families of idempotentsLifting of a single self-adjoint idempotent has been studied for the ase

A = B(H) and I = K(H), where H is a Hilbert spae, with the result that
πS(B(H)) = S(C(H)) ; see [C, Theorem 2.4℄ and [Ha, Proposition 7℄. For ageneral Banah algebra A and I = rad A, the lifting πE(A) = E(A/rad A)an be found in [Ri, Theorem 2.3.9℄ and [K, p. 125℄. The formula πE(B(H)) =
E(C(H)), with a loal analyti version, has been obtained in [L, Theorem 2℄ ; weare grateful to Professor Jean-Philippe Labrousse for personally explaining thedi�ult passages of his paper. In this setion, we study lifting of idempotentsmodulo ideals whose elements have totally disonneted spetra, extending thepreeding results to general Banah algebras.Theorem 3.1 Let π : A → B be a surjetive homomorphism between Banahalgebras. Suppose that the spetrum of eah element x ∈ π−1(0) is totally dis-onneted. Let U be an open set in the omplex plane, and let q : U → E(B) bean analyti map.Then there exists an open set V ⊂ U and an analyti map p : V → E(A)suh that πp(λ) = q(λ) for all λ ∈ V . Moreover, the set V an ontain anarbitrarily presribed point in U . 3



Proof : Suppose that 0 is the presribed point in U . If q(0) is 0 or 1, thenthe funtion q is onstant on a neighbourhood of 0, and a natural solution p isthe orresponding onstant. So we may assume that σ
(

q(0)
)

= {0, 1}.By [Le, Theorem 5.1℄, there exists an analyti map a : U → A suh that
πa(λ) = q(λ) for all λ ∈ U.Sine (

a(0)
)2

− a(0) belongs to π−1(0), it follows from our spetral assumptionand the spetral mapping theorem that σ
(

a(0)
) is totally disonneted, thatis, its onneted omponents annot onsist of more than one point (a oneptintrodued in [S℄, see also [En, p. 369 and Theorem 6.1.23℄). This, in turn,implies that C \ σ

(

a(0)
) is onneted, by [Kur2, �59, II, Theorem 1 and �47,VIII, Theorem 1℄).Thus, we an onstrut two Jordan urves Γ0 and Γ1 (onsisting of polygonallines, see [Kur2, �59, I, Theorem 1℄), whose interiors are disjoint and over

σ(a(0)), with 0 ∈ intΓ0 and 1 ∈ int Γ1 (note that σ(a(0)) ⊃ σ(q(0)) = {0, 1}).By [Au2, pp. 50�51℄, this deomposition of the spetrum also holds for theelements a(λ), with λ belonging to a neighbourhood V of 0.For λ ∈ V , onsider the Riesz idempotent
p(λ) :=

1

2πi

∫

Γ1

(z − a(λ))−1dz,and the elements
a0(λ) :=

1

2πi

∫

Γ0

(1 − z)−1(z − a(λ))−1dzand
a1(λ) :=

1

2πi

∫

Γ1

z−1(z − a(λ))−1dz.These are analyti funtions of λ ∈ V and
p(λ) = a(λ)a1(λ),

1 − p(λ) = (1 − a(λ))a0(λ).Hene
a(λ) − p(λ) = a(λ)(1 − p(λ)) − (1 − a(λ))p(λ) =

= a(λ)(1 − a(λ))a0(λ) − (1 − a(λ))a(λ)a1(λ) =

= ((a(λ))2 − a(λ))(a1(λ) − a0(λ))belongs to the ideal π−1(0).Consequently, πp(λ) = πa(λ) = q(λ) for all λ ∈ V . �Corollary 3.2 If, in Theorem 3.1, B = A/rad A and π is the anonial map,then V = U satis�es the onlusion. 4



Proof : In this ase, we have σ(πa(λ)) = σ(q(λ)) ⊂ {0, 1} for all λ ∈ U , sothat the preeding proof works with V = U . �This improves the lassial result [Ri, Theorem 2.3.9℄. However, in the generalsituation of Theorem 3.1, it is not always possible to �nd a global lifting with
V = U , for instane, when U is an annulus, see [Gr℄. This leads to the naturalquestion : how large an be the set of those λ ∈ U for whih σ(a(λ)) meets, forinstane, the line Re z = 1/2 ? Outside suh a set, the above argument applies.Also, is it always possible to have V = U when U is simply onneted ?More generally, suppose that the spetra of elements in π−1(0) are just dis-onneted or {0}. If π(a2 − a) = 0, is it true that 0 and 1 belong to di�erentomponents of σ(a) ? If so, then we ould proeed as in the proof of Theorem3.1, replaing the topologial onsiderations by [RRo, Theorem 2.10℄.There is another approah to (a partiular ase of) Theorem 3.1, assumingthe existene of a lifting for the given single lass [L, Theorem 2℄. This we haveobtained by the way :Corollary 3.3 In the situation of Theorem 3.1 we have πE(A) = E(B).If, moreover, A and B possess ontinuous involutions and π is a ∗-homo-morphism, then also πS(A) = S(B).Proof : The �rst part orresponds to the onstant funtions q.If q∗ = q = πa, then also q = π(a + a∗)/2, so we may suppose that a = a∗,whih implies σ(a) = σ(a). Choosing Γ1 symmetri with respet to the real axisyields p = p∗. This proves the seond part. �The lifting πE(A) = E(B) an also be obtained as in the radial ase [Ri,p. 58℄, [K, p. 124℄, by using a theorem of Harte [Au2, Theorem 3.3.8℄. Thisapproah only requires the weaker hypothesis that the spetra of elements inthe kernel of the surjetion π do not disonnet the omplex plane.Nevertheless, the lifting is not possible modulo a general kernel. For instane,
A = C([0, 1]), B = C({0, 1}), πf = f |{0, 1} for f ∈ C([0, 1]), does not admitlifting of idempotents.We intend to eluidate the role of the spetral hypothesis for the simpleexample where A = C(X) and B = C(Y ) are the Banah algebras of ontinuousfuntions on ompat metri spaes X and Y , respetively. The surjetion π :
C(X) → C(Y ) gives, by the Gelfand representation, an injetion Y ⊂ X , suhthat for f ∈ C(X) we have πf = f |Y ∈ C(Y ). Reall that the spetrum of
f ∈ C(X) equals the range R(f) := f(X) of f .If the di�erene X \ Y is at most ountable, then also σ(f) is at mostountable for eah f ∈ π−1(0) = {f ∈ C(X) : f |Y = 0} and our theoremapplies.If X \ Y is unountable, then there is an n suh that the ompat set
Xn := {x ∈ X : dist(x, Y ) ≥ 1/n} is unountable. Hene Xn ontains a homeo-morphi opy C of the Cantor set, see [Kur1, �36, V, Corollary 1℄. Moreover,there exists a ontinuous map of C onto [0, 1], see [Kur2, �41, VI, Corollary 3a℄,whih we an extend to a ontinuous map C∪Y → [0, 1], by de�ning it as 0 on Y .5



By the Tietze extension theorem [Kur1, �14, IV, p. 127℄, we an further extendthe latter map to a funtion g ∈ C(X), with values in [0, 1]. Then g ∈ π−1(0)and σ(g) = R(g) = [0, 1] is not totally disonneted. The funtion e2πig − 1 alsobelongs to π−1(0), and its spetrum {z ∈ C : |z| = 1} − 1 even disonnets C.Summing up : if X \ Y is unountable, then the hypothesis of our theorem isnot satis�ed, and even the weaker hypothesis, about not disonneting C, is notsatis�ed either.Nevertheless, the onlusion of our theorem is valid, in the example onside-red, if X \ Y is 0-dimensional (i.e., eah point has a neighbourhood base onsis-ting of open-and-losed sets). Namely, here lifting of idempotents is equivalentto the following : for every partition of Y onsisting of two open-and-losed sets
Y1, Y2 there is a partition of X formed by open-and-losed sets X1, X2, suh that
Y1 ⊂ X1 and Y2 ⊂ X2. We shall show that here this property holds. We havedist(Y1, Y2) > 0 ; let 0 < 5ε < dist(Y1, Y2). Consider the open ε-neighbourhoods
Uε(Yi) of Yi in X (i = 1, 2), and their losures l Uε(Yi). For eah boundary point
xi ∈ bd Uε(Yi), let V (xi) be an open-and-losed neighbourhood of xi, ontainedin Uε(xi). The ompat set l Uε(Yi) is overed by the open sets Uε(Yi) and
V (xi), xi ∈ bd Uε(Yi). Their �nite subover has a union Ai, whih is an open-and-losed set, with dist(A1, A2) > ε, so A1 ∩ A2 = ∅. Hene {A1, X \ A1} is adesired partition of X .Thus, the spetral hypothesis in our theorem is not neessary for the validityof its onlusion, even in the ase of ommutative algebras.On the other hand, Banah algebras where every element has totally dis-onneted spetrum admit elegant haraterizations and natural examples, see[Z1℄, [Z2℄.In the next setions we shall study the details of the followingCorollary 3.4 Let X be a Banah spae. Then πE(B(X)) = E(C(X)).If H is Hilbert spae, then also πS(B(H)) = S(C(H)).4 The onneted omponents of the idempotentsin the Calkin algebra of a Hilbert spaeA Hilbert spae is determined, up to a bounded linear isomorphism, by itsdimension [AG, p. 39℄. Thus, two idempotents in B(H) are similar if and onlyif their ranges and kernels have the same dimensions, respetively. Sine thegroup of invertible operators in B(H) is onneted [Ri, p. 280℄, the omponentsof E(B(H)) just orrespond to the pairs of ardinals, all them oordinates,indiating the orresponding dimensions. The same is also true for S(B(H)), bythe onnetedness of the unitary group (see [Ri, p. 281℄, [Ku℄), or by [BFMiL,p. 61℄, [M℄, [T2, Lemma 1℄. See also [MaZe, p. 94℄.Of ourse, the sum of oordinates is equal to the dimension of the Hilbertspae H .Clearly, the omponents of E(B(H)) having at least one �nite oordinateare mapped by π to the omponents {0} or {1} of E(C(H)). We shall show6



that π indues a one-to-one orrespondene between the other omponents of
E(B(H)) and E(C(H)). In view of Corollary 3.4, it is enough to prove that

‖π(P − Q)‖ ≥ 1whenever P and Q belong to di�erent omponents of E(B(H)), with in�niteoordinates. Sine the �nite rank operators F are dense in K(H), it is enoughto show that
‖P − Q − F‖ ≥ 1.But this is obvious : sine either R(P ) ∩ N(Q) or N(P ) ∩ R(Q) has in�nitedimension, and N(F ) has �nite odimension, there are unit vetors x in thesuitable intersetion suh that ‖(P − Q − F )x‖ = 1.Thus we haveProposition 4.1 For a Hilbert spae, both orrespondenes in Corollary 3.4 areone-to-one for the omponents with both oordinates in�nite. �5 The onneted omponents of the idempotentsin the Calkin algebra of a Banah spaeIn a Banah spae, subspaes of the same in�nite dimension may not beisomorphi (see below), the group of invertible operators may not be onneted[Do℄, and the �nite rank operators may not be dense in the ompat operators[E℄. Thus, eah of the three main ingredients of the argument in the preedingsetion may fail in general (perhaps all simultaneously ?), and so is with theonlusion.Proposition 5.1 There exists a Banah spae X for whih the anonial sur-jetion sends two di�erent omponents of E(B(X)), with in�nite oordinates,to the same omponent of E(C(X)).Proof : There exists an in�nite-dimensional Banah spae Y that is notisomorphi to Y ⊕ C, see [Go, pp. 935�938℄, [GoMau, Corollary 19℄. Let
X := Y ⊕ C ⊕ ℓ2,and onsider the natural projetions

P : X → Y and Q : X → Y ⊕ C.Then the di�erene P − Q has rank one, so it is ompat. However, if P and
Q were in the same onneted omponent of E(B(X)), then they would besimilar, hene their ranges isomorphi, a ontradition. Sine the ranges andkernels of both projetions are in�nite-dimensional, the omponent of πP = πQin E(C(X)) is di�erent from {0} and {1}. �Nevertheless, it is possible to prove a weaker onlusion, namely that if πPand πQ belong to the same omponent of E(C(X)), di�erent from {0} and7



{1}, then the ranges and kernels of the projetions P and Q have the sameardinalities, respetively, even if P and Q may belong to di�erent omponentsof E(B(X)). (We observe that the ardinality |.| of the subspae is (in aseof in�nite dimension) the same as the algebrai dimension, f. [PBe, p.248,Theorem 7.9℄). Indeed, by using the Gelfand measure of non-ompatness [Ze2,pp. 222�224℄, one an follow the argument in the preeding setion to show that
‖π(P − Q)‖ ≥ 1 unless the orresponding ardinalities oinide.In fat, for R(P ) ∩ N(Q) in�nite-dimensional, we have ‖P − Q − K‖ ≥ 1for any ompat operator K. For R(P ) ∩ N(Q) �nite-dimensional, we have
R(P ) = (R(P )∩N(Q))⊕Y for a losed �nite-odimensional subspae Y ⊂ R(P ).Then we have |R(P )| = |Y | ≤ |R(Q)| sine Q is by Y ∩ N(Q) = {0} injetiveon Y . Similarly we gain that unless ‖π(P − Q)‖ ≥ 1 we have |R(Q)| ≤ |R(P )|,and also |N(P )| = |N(Q)|. Then Corollary 3.4 yields the desired onlusion.The result an also be formulated in terms of densities.Let us onlude with some qualitative questions. Is it possible that, for somein�nite-dimensional Banah spae X , the set E(C(X)) an have more than twoisolated points, or only isolated points, or even that C(X) an be ommutative ?Referenes[AG℄ N.I. Akhiezer and I.M. Glazman, Theory of Linear Operators on HilbertSpae (Russian), Nauka, Moskva, 1966.[Au1℄ B. Aupetit, Projetions in real Banah algebras, Bull. London Math. So.13 (1981), 412�414.[Au2℄ B. Aupetit, A Primer on Spetral Theory, Springer, New York, 1991.[AuLaZe℄ B. Aupetit, T.J. La�ey and J. Zemánek, Spetral lassi�ation of pro-jetions, Linear Algebra Appl. 41 (1981), 131�135.[AuZe℄ B. Aupetit and J. Zemánek, On zeros of analyti multivalued funtions,Ata Si. Math. (Szeged) 46 (1983), 311�316.[BFMiL℄ Z. Boulmaarouf, M. Fernandez Miranda and J.-Ph. Labrousse,An algo-rithmi approah to orthogonal projetions and Moore-Penrose inverses, Numer.Funt. Anal. Optim. 18 (1997), 55�63.[C℄ J.W. Calkin, Two-sided ideals and ongruenes in the ring of bounded ope-rators in Hilbert spae, Ann. of Math. 42 (1941), 839�873.[D℄ A. Daoui, Sur le degré minimum des onnexions polynomiales entre les pro-jetions dans une algèbre de Banah, Rend. Cir. Mat. Palermo 49 (2000), 353�362. 8
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