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Abstract : We study surjective maps between Banach algebras and obtain
the lifting of (analytic families of) idempotents for the case when the kernel
consists of elements whose spectra are totally disconnected. Our method gives
a new proof and a global analytic version of the lifting theorem modulo the
radical. The global analytic lifting is not possible in general, which leads to the
interesting question : to how large domain does an analytic lifting exist. We
obtain a local version. In particular, our results render it possible to describe
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the connected components of idempotents in the Calkin algebra of a Hilbert
space.

1 Notations
For a Banach algebra A, let
B(A):={pe A:p*=p}
be the set of idempotents. If there is an involution * on A, let
S(A):={peA:p’=p=p"}

be the set of self-adjoint idempotents.

For a Banach space X, let B(X) or K(X) denote the Banach algebras of all
bounded or compact linear operators on X, respectively. The quotient C(X) =
B(X)/K(X) is called the Calkin algebra (as it was first studied in [C] for the
Hilbert space case). Let

m: B(X)— C(X)

be the canonical map. More generally, we shall be considering situations where
7 denotes a surjective map between Banach algebras.

For a linear operator T on X, let R(T) := TX and N(T) :=T~%(0) denote
the range and the kernel of T, respectively.

In this paper, the linear structures are considered over the complex scalars,
and the algebras are assumed to be unital. We denote by o(x) the spectrum of
an element x.

2 Historical background

The set of idempotents splits naturally into connected components. The
structure of these components has been studied in a number of papers and is to
be briefly described below. The origins seem to start with the observation (ari-
sing from perturbation theory) that close projections are similar [SzN1, p. 58],
[SzN2, p. 350], [RieSzN, p. 266]. The proof given in [Kat] made it possible to
see that the similarity can be accomplished by exponentials [Zel], which yields
analytic idempotent-valued connections between any two idempotents in the
same component.

See also [Ka, Problem 1.4.13] and [Ko, Theorem 1]. Analogous results also
hold for real Banach algebras [Aul]. Surprisingly, even polynomial connections
can be constructed within a given component [Es|, whose degrees are actually
rather low in a number of cases [T1], [MaZe], [D]. This leads to the interesting
question of whether there is a universal bound on the minimum degree of these
polynomial connections.



In particular, the question seems to be open even for two Hilbert space
projections, if the direct sum of the kernel of one of them and the image of the
other is only dense in the space, cf. [D, Théoréme 3.3]. More precisely, can such
projections be approximated by projections for which the corresponding sum
(without closure) is equal to the whole space ? (A positive answer has now been
given by Vladimir Kadets.)

For C*-algebras, the problem has been studied in [T2], [T3]. On the other
hand, there are piecewise linear idempotent-valued connections in general [Ko,
Theorem 1].

The local arcwise connectedness of the set of idempotents was noticed in
[Zel, Theorem 3.2] and further studied in [Hol], [Ho2]. See also [Ra].

Two idempotents belong to the same component if and only if they are similar
via a finite product of exponentials [Zel], [Aul]. Spectral characterizations of
this property have been studied in [AuLaZe|, [AuZe], [MaZe].

Central idempotents were characterized in [Zel], [HLaZe]. For instance, an
idempotent is central if and only if its component is a singleton [Zel, Corol-
lary 3.5]. Otherwise the components are unbounded, lying at distance at least
1/2 from the centre [Zel, Theorems 3.4 and 3.7].

In this paper, we shall study the relationship between E(A) and E(A/I),
where I is a closed two-sided ideal in A. Note that

TE(A) C E(A/I),

where 7 : A — A/I is the canonical map. Thus, the lifting problem consists in
establishing the converse inclusion.

3 Lifting of analytic families of idempotents

Lifting of a single self-adjoint idempotent has been studied for the case
A = B(H) and I = K(H), where H is a Hilbert space, with the result that
7S(B(H)) = S(C(H)); see [C, Theorem 2.4] and [Ha, Proposition 7]. For a
general Banach algebra A and I = rad A, the lifting 7E(A) = E(A/rad A)
can be found in [Ri, Theorem 2.3.9] and [K, p. 125]. The formula 7E(B(H)) =
E(C(H)), with a local analytic version, has been obtained in [L, Theorem 2] ; we
are grateful to Professor Jean-Philippe Labrousse for personally explaining the
difficult passages of his paper. In this section, we study lifting of idempotents
modulo ideals whose elements have totally disconnected spectra, extending the
preceding results to general Banach algebras.

Theorem 3.1 Let m : A — B be a surjective homomorphism between Banach
algebras. Suppose that the spectrum of each element x € n=1(0) is totally dis-
connected. Let U be an open set in the complex plane, and let ¢ : U — E(B) be
an analytic map.

Then there exists an open set V. C U and an analytic map p : V — E(A)
such that mp(\) = q(\) for all X € V. Moreover, the set V' can contain an
arbitrarily prescribed point in U.



Proof : Suppose that 0 is the prescribed point in U. If ¢(0) is 0 or 1, then
the function ¢ is constant on a neighbourhood of 0, and a natural solution p is
the corresponding constant. So we may assume that o(¢q(0)) = {0,1}.

By [Le, Theorem 5.1], there exists an analytic map a : U — A such that

ma(X) = gq(A) for all A € U.

Since (a(O))2 — a(0) belongs to 7=1(0), it follows from our spectral assumption
and the spectral mapping theorem that a(a(O)) is totally disconnected, that
is, its connected components cannot consist of more than one point (a concept
introduced in [S], see also [En, p. 369 and Theorem 6.1.23]). This, in turn,
implies that C\ o(a(())) is connected, by [Kur2, §59, II, Theorem 1 and §47,
VIII, Theorem 1]).

Thus, we can construct two Jordan curves I'yg and I'; (consisting of polygonal
lines, see [Kur2, §59, I, Theorem 1]), whose interiors are disjoint and cover
o(a(0)), with 0 € int T’y and 1 € int I'; (note that o(a(0)) D o(¢(0)) = {0,1}).

By [Au2, pp. 50-51], this decomposition of the spectrum also holds for the
elements a(A), with A belonging to a neighbourhood V' of 0.

For A € V, consider the Riesz idempotent

1 _
p(A) =5 g (2 — a(N) "z,
and the elements
1
ap(N) = 3 )i 1—2)" z—a(\) dz
0
and
1
ay(A) :== i )1 27Nz —a(N) 2.
1

These are analytic functions of A € V and

p(A) = a(Nai(}N),
1—pA) = (1 —a(A))ao(}).
Hence
a(A) =p(A) = a(N)(1=pA) — (1 —a(N)p(A) =
= a(N)(1 = a(A))ao(A) — (1 —a(A))a(Nar(A) =
= ((a(V)? = a(N)(ar1(A) — ao(N))

belongs to the ideal 771(0).
Consequently, 7p(A\) = ma(\) = g(A) forall A € V. O

Corollary 3.2 If, in Theorem 3.1, B = A/rad A and 7 is the canonical map,
then V = U satisfies the conclusion.



Proof : In this case, we have o(ma(\)) = o(q(N\)) € {0,1} for all A € U, so
that the preceding proof works with V = U. O

This improves the classical result [Ri, Theorem 2.3.9]. However, in the general
situation of Theorem 3.1, it is not always possible to find a global lifting with
V = U, for instance, when U is an annulus, see [Gr]. This leads to the natural
question : how large can be the set of those A € U for which o(a())) meets, for
instance, the line Re z = 1/2 7 Outside such a set, the above argument applies.

Also, is it always possible to have V' = U when U is simply connected ?

More generally, suppose that the spectra of elements in 7=1(0) are just dis-
connected or {0}. If m(a? — a) = 0, is it true that 0 and 1 belong to different
components of o(a)? If so, then we could proceed as in the proof of Theorem
3.1, replacing the topological considerations by [RRo, Theorem 2.10].

There is another approach to (a particular case of) Theorem 3.1, assuming
the existence of a lifting for the given single class [L, Theorem 2]. This we have
obtained by the way :

Corollary 3.3 In the situation of Theorem 3.1 we have nE(A) = E(B).
If, moreover, A and B possess continuous involutions and 7 is a *-homo-
morphism, then also 1S(A) = S(B).

Proof : The first part corresponds to the constant functions gq.

If ¢* = g = 7a, then also ¢ = w(a + a*)/2, so we may suppose that a = a*,
which implies o(a) = o(a). Choosing I'; symmetric with respect to the real axis
yields p = p*. This proves the second part. (I

The lifting 7E(A) = E(B) can also be obtained as in the radical case [Ri,
p. 58], [K, p. 124], by using a theorem of Harte [Au2, Theorem 3.3.8]. This
approach only requires the weaker hypothesis that the spectra of elements in
the kernel of the surjection 7 do not disconnect the complex plane.

Nevertheless, the lifting is not possible modulo a general kernel. For instance,
A = C([0,1]), B =C({0,1}), nf = f|{0,1} for f € C([0,1]), does not admit
lifting of idempotents.

We intend to elucidate the role of the spectral hypothesis for the simple
example where A = C(X) and B = C(Y") are the Banach algebras of continuous
functions on compact metric spaces X and Y, respectively. The surjection 7 :
C(X) — C(Y) gives, by the Gelfand representation, an injection ¥ C X, such
that for f € C(X) we have nf = f|Y € C(Y). Recall that the spectrum of
f € C(X) equals the range R(f) := f(X) of f.

If the difference X \ Y is at most countable, then also o(f) is at most
countable for each f € 771(0) = {f € C(X) : f|[Y = 0} and our theorem
applies.

If X \'Y is uncountable, then there is an n such that the compact set
Xp :={z € X :dist(x,Y) > 1/n} is uncountable. Hence X,, contains a homeo-
morphic copy C of the Cantor set, see [Kurl, §36, V, Corollary 1]. Moreover,
there exists a continuous map of C onto [0, 1], see [Kur2, §41, VI, Corollary 3al,
which we can extend to a continuous map CUY — [0, 1], by defining it asOon Y.



By the Tietze extension theorem [Kurl, §14, IV, p. 127], we can further extend
the latter map to a function g € C(X), with values in [0,1]. Then g € 7—1(0)
and o(g) = R(g) = [0, 1] is not totally disconnected. The function ¢2™% — 1 also
belongs to 771(0), and its spectrum {z € C : |z| = 1} — 1 even disconnects C.
Summing up : if X \ Y is uncountable, then the hypothesis of our theorem is
not satisfied, and even the weaker hypothesis, about not disconnecting C, is not
satisfied either.

Nevertheless, the conclusion of our theorem is valid, in the example conside-
red, if X\ 'Y is O-dimensional (i.e., each point has a neighbourhood base consis-
ting of open-and-closed sets). Namely, here lifting of idempotents is equivalent
to the following : for every partition of Y consisting of two open-and-closed sets
Y1, Y5 there is a partition of X formed by open-and-closed sets X, X5, such that
Y1 C X7 and Y5 C X5. We shall show that here this property holds. We have
dist(Y1,Y2) > 0; let 0 < 5e < dist(Y7, Ya). Consider the open e-neighbourhoods
U:(Y;) of Y; in X (i = 1,2), and their closures cl U.(Y;). For each boundary point
x; € bd U.(Y3), let V(z;) be an open-and-closed neighbourhood of z;, contained
in Us(z;). The compact set cl U.(Y;) is covered by the open sets U.(Y;) and
V(z:), z; € bd U(Y;). Their finite subcover has a union A;, which is an open-
and-closed set, with dist(A1, As) > ¢, so A; N Ay = (). Hence {A;, X \ A1} is a
desired partition of X.

Thus, the spectral hypothesis in our theorem is not necessary for the validity
of its conclusion, even in the case of commutative algebras.

On the other hand, Banach algebras where every element has totally dis-
connected spectrum admit elegant characterizations and natural examples, see
[Z1], [Z2].

In the next sections we shall study the details of the following

Corollary 3.4 Let X be a Banach space. Then nE(B(X)) = E(C(X)).
If H is Hilbert space, then also 7S(B(H)) = S(C(H)).

4 The connected components of the idempotents
in the Calkin algebra of a Hilbert space

A Hilbert space is determined, up to a bounded linear isomorphism, by its
dimension [AG, p. 39]. Thus, two idempotents in B(H) are similar if and only
if their ranges and kernels have the same dimensions, respectively. Since the
group of invertible operators in B(H) is connected [Ri, p. 280], the components
of E(B(H)) just correspond to the pairs of cardinals, call them coordinates,
indicating the corresponding dimensions. The same is also true for S(B(H)), by
the connectedness of the unitary group (see [Ri, p. 281], [Ku]), or by [BFMIiL,
p. 61], [M], [T2, Lemma 1]. See also [MaZe, p. 94].

Of course, the sum of coordinates is equal to the dimension of the Hilbert
space H.

Clearly, the components of E(B(H)) having at least one finite coordinate
are mapped by 7 to the components {0} or {1} of E(C(H)). We shall show



that 7 induces a one-to-one correspondence between the other components of
E(B(H)) and E(C(H)). In view of Corollary 3.4, it is enough to prove that

[=(P—@Q)| =1

whenever P and @ belong to different components of F(B(H)), with infinite
coordinates. Since the finite rank operators F' are dense in K(H), it is enough
to show that

IP—Q—F| >1.

But this is obvious : since either R(P) N N(Q) or N(P) N R(Q) has infinite
dimension, and N(F) has finite codimension, there are unit vectors = in the
suitable intersection such that ||(P — Q — F)z| = 1.

Thus we have

Proposition 4.1 For a Hilbert space, both correspondences in Corollary 3.4 are
one-to-one for the components with both coordinates infinite. O

5 The connected components of the idempotents
in the Calkin algebra of a Banach space

In a Banach space, subspaces of the same infinite dimension may not be
isomorphic (see below), the group of invertible operators may not be connected
[Do], and the finite rank operators may not be dense in the compact operators
[E]. Thus, each of the three main ingredients of the argument in the preceding
section may fail in general (perhaps all simultaneously ?), and so is with the
conclusion.

Proposition 5.1 There exists a Banach space X for which the canonical sur-
Jjection sends two different components of E(B(X)), with infinite coordinates,
to the same component of E(C(X)).

Proof : There exists an infinite-dimensional Banach space Y that is not
isomorphic to Y & C, see [Go, pp. 935-938|, [GoMau, Corollary 19]. Let

X =YpCqps,
and consider the natural projections
P:X—-Yand Q: X —-Ya&C.

Then the difference P — ) has rank one, so it is compact. However, if P and
Q@ were in the same connected component of F(B(X)), then they would be
similar, hence their ranges isomorphic, a contradiction. Since the ranges and
kernels of both projections are infinite-dimensional, the component of 7P = 7@
in F(C(X)) is different from {0} and {1}. O

Nevertheless, it is possible to prove a weaker conclusion, namely that if 7P
and 7@ belong to the same component of E(C(X)), different from {0} and



{1}, then the ranges and kernels of the projections P and @ have the same
cardinalities, respectively, even if P and () may belong to different components
of E(B(X)). (We observe that the cardinality |.| of the subspace is (in case
of infinite dimension) the same as the algebraic dimension, cf. [PBe, p.248,
Theorem 7.9]). Indeed, by using the Gelfand measure of non-compactness [Ze2,
pp. 222—224], one can follow the argument in the preceding section to show that
|lm(P — Q)] > 1 unless the corresponding cardinalities coincide.

In fact, for R(P) N N(Q) infinite-dimensional, we have |P — Q — K|| > 1
for any compact operator K. For R(P) N N(Q) finite-dimensional, we have
R(P) = (R(P)NN(Q))®Y for a closed finite-codimensional subspace Y C R(P).
Then we have |R(P)| = |Y| < |R(Q)] since @ is by Y N N(Q) = {0} injective
on Y. Similarly we gain that unless ||7(P — Q)| > 1 we have |R(Q)| < |R(P)],
and also |[N(P)| = |[N(Q)|. Then Corollary 3.4 yields the desired conclusion.

The result can also be formulated in terms of densities.

Let us conclude with some qualitative questions. Is it possible that, for some
infinite-dimensional Banach space X, the set E(C(X)) can have more than two
isolated points, or only isolated points, or even that C'(X) can be commutative ?
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