
CHARACTERIZATION OF FUNCTION CLASSES C(Y )|X
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Abstract. Let X be a topological space and let Φ ⊂ C(X). Then there exists

a topological space Y containing X as a subspace and such that Φ = C(Y )|X,
if and only if Φ is weakly composition closed, i.e., for any index set I, any fi ∈

Φ (i ∈ I) and any continuous map k : R
I → R we have k ◦ 〈fi〉 ∈ Φ, where 〈fi〉 :

X → R
I is the map with i-th coordinate fi. The analogous statement is valid for

functions to any T1 space, rather than to R, and even we can consider functions to

any set of T1 spaces, and then a generalization of the above statement is valid, with

a suitably defined weak composition closedness property. We also show that some
earlier results on characterization of function classes Φ ⊂ C(X) of the form C(Y )|X,

with Y some extension of a given topological space X, and on the characterization of
function classes C(〈X,T 〉), with T some topology on a given set X, respectively, can

be generalized in an analogous way as above, by means of composition properties

analogous to the above one or by filter closedness (for functions to any set of T3

spaces, or to any set of topological spaces, respectively).

§1

J. R. Isbell ([I], p.114) proved in a special case, later the first author ([Cs 77],
Theorem 3) in generality the following

Theorem 1.1. (Isbell-Császár). Let X be a set and Φ ⊂ R
X a class of real

functions on X. Then the following three statements are equivalent:

(1) There exists a topological space Z, Z ⊃ X, such that Φ = C(Z)|X;
(2) there exist a topological space Y and a set map p : X → Y , such that

Φ = C(Y ) ◦ p;
(3) Φ is weakly composition closed, i.e., for any index set I, any fi ∈ Φ (i ∈ I)

and any continuous map k : R
I → R we have k ◦ 〈fi〉 ∈ Φ. �

The first author ([Cs 77], Theorem 6) also proved the following

Theorem 1.2. (Császár). Let X be a topological space and let Φ ⊂ C(X). Then
the following are equivalent:

(1) There exists a completely regular space Z (T0 not assumed) containing X

as a subspace, such that Φ = C(Z)|X;
(2) Φ is weakly composition closed and {f−1(0) | f ∈ Φ} is a closed base in

X. �
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By the methods of the proofs of the above mentioned theorems of Isbell [I] and
the first author [Cs 77] it is easy to establish the following theorem, which has not
been explicitly formulated by them. (Cf. also our Theorem 2.1, (2) ⇔ (3), for
R = {R}.)

Theorem 1.3. (Isbell-Császár). Let X be a topological space and let Φ ⊂ C(X).
Then the following are equivalent:

(1) There exists a topological space Y and a continuous map p : X → Y such
that Φ = C(Y ) ◦ p;

(2) there exists a completely regular space Y and a continuous map p : X → Y

such that Φ = C(Y ) ◦ p;
(3) Φ is weakly composition closed. �

The first author [Cs 77], Problem 2 posed the problem of characterizing the
function classes Φ ⊂ C(X) of the form C(Z)|X , where Z is an arbitrary superspace
of X . We will prove that the evident necessary condition of weak composition
closedness (cf. Theorem 1.3, (1) ⇒ (3), applied to the injection p : X →֒ Z) also
is sufficient for this purpose. Actually, we will prove this for functions to any T1

space rather than to R, and even we can consider functions to any set of T1 spaces.
We note that the same Problem 2 in [Cs 77] also contains the analogous question

with Z an extension of X . This has been answered by the first author ([Cs 84],
Theorem 2.3), and also in this case the evident necessary condition of composition
closedness (i.e., for any index set I, any fi ∈ Φ (i ∈ I) and any continuous map

k : 〈fi〉(X) → R (〈fi〉(X) considered as a subspace of R
I) we have k ◦ 〈fi〉

′ ∈ Φ,

where 〈fi〉
′ : X → 〈fi〉(X) is the codomain restriction of 〈fi〉 : X → R

I), or of
filter closedness (i.e., [f ∈ R

X and for each Φ-filter F in X we have that f(F)
is convergent in R] implies f ∈ Φ, where a filter F in X is a Φ-filter if for each
f ∈ Φ we have that f(F) is convergent in R) has been proved to be sufficient.
(For a continuous map f : X → Y0 and f(X) ⊂ Y ⊂ Y0 the codomain restriction
f ′ : X → Y of f is the continuous map defined by ∀x ∈ X f ′(x) = f(x), where Y

is considered with the subspace topology inherited from Y0.) We will extend this
result to functions to any set of T3 spaces.

[Cs 74], (2.6) characterized function classes C(〈X, T 〉), with T some topology on
a set X . This has been extended to functions, essentially to a class of topological
spaces, closed under products and subspaces, rather than to R, by [G]. We will
extend these results too, to functions to any set of topological spaces, and also to
certain classes of topological spaces, including those considered in [G].

For related work on function classes we refer, beside the above mentioned papers,
to [CI], [HIJ], [Cia], [DM], [Cs 71], [L-C 84] and to [ŽB] who among others has proved
analogous theorems for classes of bounded real functions (which amounts about
the same as functions to [0, 1]). Some uniform analogues of the above questions
are treated e.g. in [F], [Cs Cz], [Cs 69], [Cs 71], [Ha 74], [R], [Ha 78], [ŽB]. In the
framework of Cauchy spaces, analogous problems are treated in [L-C 84] and [L-C
91].

In the following, unless stated otherwise, a map between topological spaces is
always assumed to be continuous, and subsets of topological spaces are always
considered with the subspace topology. For fi : X → Yi (i ∈ I), 〈fi〉 : X →

∏
I Yi

denotes the map with i-th coordinate fi.
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§2

Like in [G], we will consider, rather than real valued functions, functions to any
given topological space, and, in fact, to several topological spaces. Let R = {Rα |
α ∈ A} denote a set or proper class of topological spaces, and let X be a topological
space. Let Φα ⊂ C(X, Rα) (α ∈ A). We say that the system {Φα | α ∈ A} is weakly
composition closed if for any set I, any α ∈ A and any αi ∈ A (i ∈ I), any fi ∈ Φαi

and any k :
∏

I Rαi
→ Rα we have k ◦ 〈fi〉 ∈ Φα.

We say that the system {Φα | α ∈ A} is weakly nice if there is a set B ⊂ A, such
that for any α ∈ A and any fα ∈ Φα there exist gβγ ∈ Φβ (β ∈ B, γ ∈ Γβ , where

Γβ is some set) and h :
∏

B R
Γβ

β → Rα, such that fα = h ◦ 〈gβγ〉.

For example, if R is either hereditary or both consists of T2 spaces and is closed
hereditary, respectively, and, for each α ∈ A, Φα consists of all fα ∈ C(X, Rα) for

which fα(X) or fα(X), respectively, has some topological property, independent of

α — e.g. fα(X) is compact — then {Φα | α ∈ A} is weakly nice.

Namely, in these cases we may choose a set B ⊂ A such that {Rβ | β ∈ B}
contains a homeomorphic copy of each Rα ∈ R satisfying |Rα| ≤ |X | or |Rα| ≤

22|X|

, respectively. Then we may choose some β0 ∈ B, and we may let |Γβ0
| = 1,

and Γβ = ∅ for β ∈ B \ {β0}, thus
∏

B R
Γβ

β = Rβ0
, and then h can be chosen as a

homeomorphic embedding
∏

B R
Γβ

β = Rβ0
→ Rα.

In fact, first suppose that R is hereditary, and for each α ∈ A we have Φα =
{fα ∈ C(X, Rα) | fα(X) ∈ P}, where P is a class of topological spaces closed
under homeomorphisms. Then for any α ∈ A and any fα ∈ Φα ⊂ C(X, Rα) we
have fα = h0 ◦ g0, where g0 : X → fα(X) is the codomain restriction of fα, and
h0 : fα(X) →֒ Rα is the injection. Then by hypothesis Rα ∈ R implies fα(X) ∈ R,
and then |fα(X)| ≤ |X | implies that fα(X) ∼= Rβ0

for some Rβ0
, β0 ∈ B. Therefore

fα = h0 ◦ h1 ◦ g, with g : X → Rβ0
, and h1 : Rβ0

→ fα(X) a homeomorphism.
Moreover, g ∈ Φβ0

, since by hypothesis g(X) ∼= fα(X) ∈ P implies g(X) ∈ P,
thus g ∈ {gβ0

∈ C(X, Rβ0
) | gβ0

(X) ∈ P} = Φβ0
. Then, choosing Γβ = ∅ for

β ∈ B \ {β0}, |Γβ0
| = 1, g(β0)γ = g for the unique γ ∈ Γβ0

, and h = h0 ◦ h1, we
have g = 〈gβγ〉 and fα = h ◦ g = h ◦ 〈gβγ〉.

The case when R consists of T2 spaces and is closed hereditary, is handled anal-
ogously, by using a factorization fα = h0 ◦ g0, where g0 : X → fα(X) is the

codomain restriction of fα and h0 : fα(X) →֒ Rα the injection, noting that in this

case |fα(X)| ≤ 22|fα(X)|

≤ 22|X|

.

The property of weak niceness is some analogue of the solution set condition (cf.
[HS]).

A topological space R is S1 (or symmetrical) if r1, r2 ∈ R, r1 ∈ {r2} imply that

r2 ∈ {r1}.
We prove the following theorem, that is an extension of Theorems 1.1, 1.3 and

[ŽB], Theorem 3.3.

Theorem 2.1. Let X be a topological space and R = {Rα | α ∈ A} a class
of topological spaces. Further let Φα ⊂ C(X, Rα) (α ∈ A). Then we have the
implications (1) ⇒ (2) ⇒ (3), where

(1) there exists a topological space Z, X ⊂ Z, such that for each α ∈ A we have
Φα = C(Z, Rα)|X;
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(2) there exist a topological space Y and a map p : X → Y , such that for each
α ∈ A we have Φα = C(Y, Rα) ◦ p;

(3) {Φα | α ∈ A} is weakly composition closed.

If {Φα | α ∈ A} is weakly nice, then (3) ⇒ (2), and if R is a class of T1 (S1) spaces
then (2) ⇒ (1). Moreover, in the implication (3) ⇒ (2), if {Rβ | β ∈ B} ⊂ P (with
B ⊂ A as in the definition of weak niceness), where P is a class of topological
spaces closed under products, then we may assume Y ∈ P as well. Further, in the
implication (2) ⇒ (1), we may assume additionally that X is open in Z, and also
that if X, Y are T0 then Z is T0 as well. Alternatively, for R a set of T1 (S1)
spaces, we may assume that X is closed in Z, and if X, Y are T0, T1, T2 or T3,
then Z is T0, T1, T2 or T3, respectively.

Proof. A) (1) ⇒ (2) is evident.

B) (2) ⇒ (3) is proved like in [I]. Namely if, with the notations of (2), Φα =
C(Y, Rα) ◦ p, and I, α, αi, fi and k are as in the definition of weak composition
closedness, then fi = gi◦p, gi ∈ C(Y, Rαi

) and k◦〈fi〉 = k◦〈gi〉◦p ∈ C(Y, Rα)◦p =
Φα.

C) Now, assuming that {Φα | α ∈ A} is weakly nice, we prove (3) ⇒ (2), again

following [I]. Assuming (3), let Y =
∏

β∈B R
Φβ

β and let p : X → Y be the mapping

whose (β, fβ)-th coordinate (with fβ ∈ Φβ) is just fβ. Then the projection of Y

to the (β, fβ)-th coordinate space is a map π : Y → Rβ, whose composition with
p : X → Y is (C(Y, Rβ) ◦ p ∋) π ◦ p = fβ ∈ Φβ . So C(Y, Rβ) ◦ p contains all above
fβ-s, therefore C(Y, Rβ) ◦ p ⊃ Φβ , for all β ∈ B.

For arbitrary α ∈ A and fα ∈ Φα we have by the weak niceness, for some

gβγ ∈ Φβ ⊂ C(Y, Rβ) ◦ p (β ∈ B, γ ∈ Γβ) and h :
∏

B R
Γβ

β → Rα, that fα =

h ◦ 〈gβγ〉. Thus we obtain fα ∈ h ◦ C(Y,
∏

B R
Γβ

β ) ◦ p ⊂ C(Y, Rα) ◦ p. Therefore

Φα ⊂ C(Y, Rα) ◦ p.

Now let f : Y → Rα. By the weak composition closedness we have f ◦ p ∈ Φα,
establishing C(Y, Rα) ◦ p ⊂ Φα. Hence C(Y, Rα) ◦ p = Φα, i.e., (2) holds. The
additional assertion about P is clear by construction.

D) Now we prove (2) ⇒ (1), first assuming that R is a class of T1 spaces.
With the notations of (2) we have p : X → Y , such that for each α ∈ A we have
Φα = C(Y, Rα) ◦ p. We are going to construct another topological space Z, such
that X ⊂ Z, and for each α ∈ A we have Φα = C(Z, Rα)|X . This will be done on
the lines of [He] and [K].

Let us consider the disjoint union Z of X and Y . We define the topology of Z

as follows. For x ∈ X a neighbourhood base is {U | U ∋ x is open in the original
topology of X}. For y ∈ Y a neighbourhood base is {V ∪ p−1(V ) | V ∋ y is
open in the original topology of Y }. Thus the injections X →֒ Z, Y →֒ Z become
homeomorphic embeddings from the original topologies of X and Y . Moreover,
p ∈ C(X, Y ) has an extension q ∈ C(Z, Y ), i.e., p = q|X , where q(x) = p(x), q(y) =
y (x ∈ X, y ∈ Y ).

Now let us consider a map f ∈ C(Z, R), where R is a T1 space. Then g = f |Y ∈

C(Y, R). Here g determines f uniquely, since x ∈ X implies {x} ∋ p(x), hence

{f(x)} ∋ f(p(x)), f(x) = f(p(x)). Moreover, each g ∈ C(Y, R) can be extended to
an f ∈ C(Z, R), namely to f = g ◦q. Thus the correspondences f 7→ f |Y, g 7→ g ◦q

yield a bijection of C(Z, R) to C(Y, R).
We have by (2) for each α ∈ A that Φα = {g ◦ p | g ∈ C(Y, Rα)}, that further
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equals {(g ◦ q)|X | g ∈ C(Y, Rα)} = {f |X | f ∈ C(Z, Rα)}. Therefore for each
α ∈ A we have Φα = C(Z, Rα)|X , as asserted.

If R is a class of S1 spaces, then we consider the T0-reflections r0Rα of Rα.
From the T1 case we have {g0 ◦ q | g0 ∈ C(Y, r0Rα)} = {f0 | f0 ∈ C(Z, r0Rα)}, that
implies {g ◦ q | g ∈ C(Y, Rα)} = {f | f ∈ C(Z, Rα)}, and, like above, this implies
for each α ∈ A that Φα = {f |X | f ∈ C(Z, Rα)}.

Now we present an alternative construction, first for the case that R is a set of T1

spaces. By H. Herrlich [He], Satz for any set S of T1 spaces there exists a T3 space
CS with at least two points such that for each S ∈ S each f : CS → S is constant.
(Actually this is stated there only for a single T1 space. However there is a single T1

space S0, e.g. a one with cofinite topology, such that each S ∈ S admits an injective
map to S0. Then CS can be chosen as the space constructed by [He] for this T1

space S0.) Let C = CR. Let a, b ∈ C, a 6= b. Let us consider the disjoint union
Z ′ of X, Y and X ×C, and then let us identify the pairs of points {x, (x, a)} (x ∈
X, (x, a) ∈ X × C), for each x ∈ X , and {p(x), (x, b)} (p(x) ∈ Y, (x, b) ∈ X × C),
for each x ∈ X . Performing all these identifications, we obtain a set Z. (This is
analogous to a mapping cylinder.) The points of Z will be denoted the same way
as those of Z ′, noting that this notation is sometimes ambiguous. Similarly, the
images of X, Y, {x} × C, etc. by the quotient map Z ′ → Z will be denoted by
X, Y, {x} × C, etc.

Now we define the topology on Z. For x ∈ X a neighbourhood base is {U ×W |
U ∋ x is open in the original topology of X , W ∋ a is open in the original topology of
C, W 6∋ b}. For y ∈ Y a neighbourhood base is {V ∪(p−1(V )×(W \{b})) | V ∋ y is
open in the original topology of Y , W ∋ b is open in the original topology of C, W 6∋
a}. For (x, c) ∈ X ×C, c 6= a, b a neighbourhood base is {{x}×W | W ∋ c is open
in the original topology of C, W 6∋ a, b}. Thus the injections X →֒ Z, Y →֒ Z, ix :
C →֒ Z, where ix(c) = (x, c) (x ∈ X), become homeomorphic embeddings from
the original topologies of X, Y and C. Moreover, p ∈ C(X, Y ) has an extension
q ∈ C(Z, Y ), i.e., p = q|X , where q(x) = p(x), q((x, c)) = p(x), q(y) = y (x ∈
X, c ∈ C, y ∈ Y ).

Now let us consider a map f ∈ C(Z, Rα) (α ∈ A). Then g = f |Y ∈ C(Y, Rα).
By construction g determines f uniquely, since, by the choice of C, f is constant on
each subset {x}×C (x ∈ X). Moreover, each g ∈ C(Y, Rα) can be extended to an
f ∈ C(Z, Rα), namely to f = g ◦ q. Thus the correspondences f 7→ f |Y, g 7→ g ◦ q

yield a bijection of C(Z, Rα) to C(Y, Rα).

Like above, by (2) for each α ∈ A we have Φα = {g ◦ p | g ∈ C(Y, Rα)} =
{(g ◦ q)|X | g ∈ C(Y, Rα)} = {f |X | f ∈ C(Z, Rα)} = C(Z, Rα)|X , as asserted.

The case when R is a set of S1 spaces is reduced to the case when R is a set of
T1 spaces like above. We consider the set R0 = {r0R | R ∈ R}, and then for the
space Z constructed for the set R0 we have for each α ∈ A that Φα = C(Z, Rα)|X .

E) The additional assertions about Y , about openness or closedness of X in Z,
and about the T0, T1, T2 and T3 property of Z, under the respective hypotheses,
are immediate consequences of the constructions of Y and Z. �

Remark. Even in the combined implication (3) ⇒ (1) in Theorem 2.1 we cannot
assert the T3.5 property of Z, if X is T3.5, even if R = {R}. Namely then by
Theorem 1.2 another necessary condition for this is that {f−1(0) | f ∈ Φ} be a
closed base of X , which does not follow from the weak composition closedness (e.g.
Φ = {constant maps X → R}).
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§3

Also several other results of [Cs 74], [Cs 77] and [Cs 84] about characterization
of subsets Φ ⊂ C(X) of the form C(Y )|X , where Y is some extension of a given
topological space X , or characterization of C(〈X, T 〉), with T some topology on a
given set X , or its generalization in [G], mentioned in §1, can be put in our slightly
more general setting. (The case when X is a set, can be considered as a special
case of X being a topological space, namely that X is a discrete topological space.)
Since here the proofs are just slight modifications of the original proofs and of part
D) of the proof of Theorem 2.1, we will present here only two theorems. For the
reader’s convenience, we will give complete proofs.

An extension Z of a topological space X is called a loose (or simple) extension
if X is open in Z and, for any z ∈ Z \ X, X ∪ {z} is open in Z.

Let X be a topological space, R = {Rα | α ∈ A} a class of topological spaces,
and let Φα ⊂ C(X, Rα) (α ∈ A). We say that {Φα | α ∈ A} is composition closed
(strongly composition closed) if for any set I, any α ∈ A and any αi ∈ A (i ∈ I),

any fi ∈ Φαi
and any k : 〈fi〉(X) → Rα (k : 〈fi〉(X) → Rα) we have k ◦ 〈fi〉

′ ∈ Φα,

where closure is taken in
∏

I Rαi
, and 〈fi〉

′ : X → 〈fi〉(X) (〈fi〉
′ : X → 〈fi〉(X))

is the codomain restriction of 〈fi〉 : X →
∏

I Rαi
.

We say that {Φα | α ∈ A} is nice (strongly nice) if there is a set B ⊂ A, such
that for any α ∈ A and any fα ∈ Φα there exist gβγ ∈ Φβ (β ∈ B, γ ∈ Γβ ,

where Γβ is some set) and h : 〈gβγ〉(X) → Rα (h : 〈gβγ〉(X) → Rα), such that

fα = h ◦ 〈gβγ〉
′, where 〈gβγ〉

′ : X → 〈gβγ〉(X) (〈gβγ〉
′ : X → 〈gβγ〉(X)) is the

codomain restriction of 〈gβγ〉 : X →
∏

B R
Γβ

β . (Observe however that weak niceness
⇒ niceness ⇒ strong niceness, that also shows that the examples of weakly nice
systems {Φα | α ∈ A} given after the definition of weak niceness are examples for
niceness and strong niceness as well. In particular, the classes of spaces considered
in [G], being hereditary, are strongly nice.)

We say that a filter F in X is a {Φα | α ∈ A}-filter, if for each α ∈ A and for
each fα ∈ Φα we have that fα(F) is convergent in Rα. We say that {Φα | α ∈ A}
is filter-closed, if α ∈ A, fα ∈ C(X, Rα) and [for each {Φα | α ∈ A}-filter F in X

we have that fα(F) is convergent in Rα] imply that fα ∈ Φα. (For the case that
{Rα | α ∈ A} = {R} and Φ ⊂ C(X, R), our definition of filter-closedness reduces to
the definition in [Cs 74] (cf. also our §1), in view of the T1-property of R. Namely,
[Cs 74] requires in this definition f ∈ R

X rather than f ∈ C(X, R). However,
for Φ ⊂ C(X), any convergent filter in X is a Φ-filter. Therefore, for f ∈ R

X ,
[for each Φ-filter F in X we have that f(F) is convergent in R] implies that for
each x ∈ X there exists g(x) ∈ R, such that f(V(x)) → g(x), where V(x) is the

neighbourhood filter of x in X . By f(x) ∈ ∩f(V(x)) this implies {f(x)} ∋ g(x), so,
by the T1-property of R, f(V(x)) → g(x) = f(x), hence f ∈ C(X, R).)

The following theorem is an extension of [Cs 74], (2.1), (2.4), [Cs 77], Theorem
4, [Cs 84], Theorem 2.3 and [ŽB], Theorem 3.4.

Theorem 3.1. Let X be a topological space and R = {Rα | α ∈ A} a class
of topological spaces. Further let Φα ⊂ C(X, Rα) (α ∈ A). Then we have the
implications (1) ⇒ (2) ⇒ (3) ⇒ (4), where

(1) {Φα | α ∈ A} is filter-closed;
(2) there exists an extension Z of X, such that for each α ∈ A we have Φα =

C(Z, Rα)|X;
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(3) there exist a topological space Y and a map p : X → Y , such that p(X) = Y

and for each α ∈ A we have Φα = C(Y, Rα) ◦ p;
(4) {Φα | α ∈ A} is composition closed.

If {Φα | α ∈ A} is nice then (4) ⇒ (3), if R consists of T1 (S1) spaces then
(3) ⇒ (2), and if R consists of regular spaces then (2) ⇒ (1). Moreover, in the
implication (4) ⇒ (3), if {Rβ | β ∈ B} ⊂ P (with B ⊂ A as in the definition of
niceness), where P is a class of topological spaces closed under taking products and
closed subspaces, then we may assume Y ∈ P as well. Further, in the implication
(3) ⇒ (2), we may assume additionally that X is open in Z and also that if X, Y

are T0 then Z is T0 as well. Similarly, in the implication (1) ⇒ (2), we may assume
additionally that Z is a loose extension of X, hence Z is T0 for X T0, and, if each
R ∈ R is T2, then we may assume also that distinct points of Z \ X have disjoint
neighbourhoods in Z.

Proof. A) First we prove (1) ⇒ (2), on the lines of [Cs 84], Theorem 2.3.
We begin by proving an analogue of [Cs 84], Corollary 2.2: (a) {Φα | α ∈

A} (Φα ⊂ C(X, Rα)) is filter-closed iff α ∈ A, fα ∈ C(X, Rα) and [for each open
{Φα | α ∈ A}-filter F in X we have that fα(F) is convergent in Rα] imply that
fα ∈ Φα. (An open filter is a filter having an open base.) For this it clearly suffices
to prove an analogue of [Cs 84], Lemma 2.1 (due to E. Lowen-Colebunders): (b)
if α ∈ A, fα ∈ C(X, Rα) and [for each open {Φα | α ∈ A}-filter F in X we have
that fα(F) is convergent in Rα], then [for each {Φα | α ∈ A}-filter F in X we have
that fα(F) is convergent in Rα].

We let for a filter F in X Fo (⊂ F) be the open filter in X generated by
{U ⊂ X open | U ∈ F}. Then, in order to prove (b), it suffices to establish: (c)
F is a {Φα | α ∈ A}-filter in X implies that Fo is a {Φα | α ∈ A}-filter in X .
Namely, if (c) holds, then for any {Φα | α ∈ A}-filter F in X we have that fα(Fo)
is convergent in Rα, hence, by fα(Fo) ⊂ fα(F), also fα(F) is convergent in Rα.

Now we establish claim (c). Suppose that F is a {Φα | α ∈ A}-filter in X , i.e.,
for each α ∈ A and for each fα ∈ Φα there exists rα ∈ Rα, such that fα(F) → rα.
Let us fix an α ∈ A and an fα ∈ Φα. Let Vα ⊂ Rα be open, rα ∈ Vα. Then there
exists F ∈ F such that fα(F ) ⊂ Vα, so F ⊂ f−1

α (Vα), implying f−1
α (Vα) ∈ F , so

even f−1
α (Vα) ∈ Fo. Moreover, fα(f−1

α (Vα)) ⊂ Vα, so fα(Fo) → rα. Hence Fo is a
{Φα | α ∈ A}-filter in X , as claimed. Thus we have proved our claims (c), (b), (a).

By (a) we have for each α ∈ A that Φα = {fα ∈ C(X, Rα) | for each open
{Φα | α ∈ A}-filter F in X we have that fα(F) is convergent in Rα}. We define Z

as the loose extension of X , corresponding to the trace filter system {F | F is an
open {Φα | α ∈ A}-filter in X}. The point of Z \ X corresponding to an above F
will be denoted by zF . (That is, Z is the disjoint union of X and {zF | F is an open
{Φα | α ∈ A}-filter in X}, F 7→ zF being a bijection; for x ∈ X a neighbourhood
base of x in Z is {U ∋ x | U ⊂ X is open in the topology of X}, for zF a
neighbourhood base in Z is {F ∪{zF} | F ∈ F}.) Then for any topological space R

we have C(Z, R) = {g ∈ RZ | g|X ∈ C(X, R) and for each open {Φα | α ∈ A}-filter
F in X we have g(F) → g(zF)}, hence C(Z, R)|X = {f ∈ C(X, R) | for each open
{Φα | α ∈ A}-filter F in X we have that f(F) is convergent in R}. Applying this
for R = Rα ∈ R, we obtain C(Z, Rα)|X = Φα.

Of course, to have the same conclusion C(Z, Rα)|X = Φα, it is sufficient to
consider, rather than the set {Fλ | λ ∈ Λ} of all open {Φα | α ∈ A}-filters F in
X , only a subset {Fλ′ | λ′ ∈ Λ′} (Λ′ ⊂ Λ), where for each λ ∈ Λ there exists a
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λ′ ∈ Λ′ such that Fλ ⊃ Fλ′ , and then consider the loose extension with trace filters
{Fλ′ | λ′ ∈ Λ′}. Namely then, analogously as above, for any topological space
R we have C(Z, R)|X = {f ∈ C(X, R) | for each λ′ ∈ Λ′ we have that f(Fλ′) is
convergent in R} = {f ∈ C(X, R) | for each λ ∈ Λ we have that f(Fλ) is convergent
in R}, which yields for R = Rα ∈ R that C(Z, Rα)|X = Φα.

Such a subset {Fλ′ | λ′ ∈ Λ′} can be obtained in the following way. Let Φα =
{fαδ | δ ∈ ∆α} be a labelling of Φα, and let rαδ ∈ Rα for α ∈ A and δ ∈ ∆α. Let
F(〈rαδ〉) be the coarsest filter in X (if such exists), for which for each α ∈ A and
for each δ ∈ ∆α we have that fαδ(F(〈rαδ〉)) → rαδ, i.e., F(〈rαδ〉) be the filter in X

generated by ∪{f−1
αδ (VRα

(rαδ)) | α ∈ A, δ ∈ ∆α}, if this filter exists (VRα
(rαδ) is

the neighbourhood filter of rαδ in Rα). This filter F(〈rαδ〉), if it exists, is an open
{Φα | α ∈ A}-filter in X . The collection of all such (existing) filters, with rαδ ∈ Rα

varying arbitrarily and independently of each other, for each α ∈ A and δ ∈ ∆α, is
a subset {Fλ′ | λ′ ∈ Λ′} as looked for above.

If for each α ∈ A we have that Rα is T2, then two distinct filters F1,F2 in X of
the form F(〈rαδ〉) have disjoint elements. This shows that, in the loose extension
with trace filters {Fλ′ | λ′ ∈ Λ′} from the previous paragraph, the corresponding
points zF1

, zF2
have disjoint neighbourhoods.

B) (2) ⇒ (3) is evident.

C) (3) ⇒ (4) is proved like [Cs 77], Theorem 4, (a) ⇒ (b) (and our Theorem

2.1, (2) ⇒ (3)). With the notations of (3), we have p(X) = Y and, for each α ∈ A,
that Φα = C(Y, Rα) ◦ p. Now let I, α, αi, fi, 〈fi〉

′ and k be as in the definition
of the composition closedness. We have fi = gi ◦ p, where gi ∈ C(Y, Rαi

). Then

Y = p(X) implies 〈gi〉(Y ) ⊂ 〈gi〉(p(X)) = 〈fi〉(X). Let 〈gi〉
′ : Y → 〈fi〉(X) be the

codomain restriction of 〈gi〉 : Y →
∏

I Rαi
. Then we have 〈fi〉 = 〈gi〉 ◦ p, hence

〈fi〉
′ = 〈gi〉

′ ◦ p, and k ◦ 〈fi〉
′ = k ◦ 〈gi〉

′ ◦ p ∈ C(Y, Rα) ◦ p = Φα.

D) If {Φα | α ∈ A} is nice then (4) ⇒ (3) is proved like [Cs 77], Theorem 4, (b) ⇒

(c) (and our Theorem 2.1, (3) ⇒ (2)). Let Y0 =
∏

B R
Φβ

β and let p0 : X → Y0 be the

mapping with (β, fβ)-th coordinate (fβ ∈ Φβ) just fβ. We define Y = p0(X) ⊂ Y0,
with injection i : Y →֒ Y0. Letting p : X → Y be the codomain restriction of p0,
we have p(X) = Y and p0 = i ◦ p. Then letting π : Y0 → Rβ be the projection to
the (β, fβ)-th coordinate space, we have fβ = π ◦ p0 = π ◦ i ◦ p ∈ C(Y, Rβ) ◦ p. This
proves Φβ ⊂ C(Y, Rβ) ◦ p, for all β ∈ B.

For arbitrary α ∈ A and fα ∈ Φα, by the niceness we have for some gβγ ∈ Φβ ⊂
C(Y, Rβ) ◦ p (β ∈ B, γ ∈ Γβ), where gβγ = g∗

βγ ◦ p with g∗
βγ ∈ C(Y, Rβ), and for

some h : 〈gβγ〉(X) → Rα, that fα = h ◦ 〈gβγ〉
′. Then 〈g∗

βγ〉 : Y →
∏

B R
Γβ

β , and

〈g∗
βγ〉(Y ) = 〈g∗

βγ〉p(X) ⊂ 〈g∗
βγ〉p(X) = 〈gβγ〉(X). Thus 〈g∗

βγ〉 = j ◦ 〈g∗
βγ〉

′, where

j : 〈gβγ〉(X) →֒
∏

B R
Γβ

β is the injection and 〈g∗
βγ〉

′ : Y → 〈gβγ〉(X) the codomain

restriction of 〈g∗
βγ〉. Then we have j ◦ 〈gβγ〉

′ = 〈gβγ〉 = 〈g∗
βγ〉 ◦ p = j ◦ 〈g∗

βγ〉
′ ◦ p.

This implies 〈gβγ〉
′ = 〈g∗

βγ〉
′ ◦ p, and thus fα = h ◦ 〈g∗

βγ〉
′ ◦ p ∈ C(Y, Rα) ◦ p. This

proves Φα ⊂ C(Y, Rα) ◦ p.

Conversely, let α ∈ A and k : Y → Rα. Then the composition closedness of
{Φα | α ∈ A} implies that k ◦ p ∈ Φα, which proves C(Y, Rα) ◦ p ⊂ Φα. Hence we
have C(Y, Rα) ◦ p = Φα, thus (3) holds.

E) If R consists of T1 (S1) spaces only, then the implication (3) ⇒ (2) is a simple
consequence of the proof of the analogous implication (2) ⇒ (1) in Theorem 2.1, cf.
the first construction there. We have to observe only that, if in that construction
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we have p(X) = Y , then X is a dense subspace of Z.

F) If F consists of regular spaces only, then (2) ⇒ (1) is proved like [Cs 74],
(2.1). Let Z ⊃ X be an extension of X , and let Φα = C(Z, Rα)|X for each α ∈ A.
Further let α ∈ A, and let fα ∈ C(X, Rα) satisfy [for each {Φα | α ∈ A}-filter F in
X we have that fα(F) is convergent in Rα]. Then we have to show that fα ∈ Φα.

For z ∈ Z let V(z) be its neighbourhood filter in Z, and F(z) = V(z)|X the
trace filter in X . Then for each z ∈ Z we have that F(z) is a {Φα | α ∈ A}-filter.
In fact, for any β ∈ A and any gβ ∈ Φβ = C(Z, Rβ)|X , we have gβ = hβ |X where
hβ ∈ C(Z, Rβ), so gβ(F(z)) = hβ(F ′(z)) → hβ(z), where F ′(z) is the filter in Z

generated by F(z).

For our fα we have that fα(F) is convergent in Rα, for each {Φα | α ∈ A}-
filter F in X . In particular, this holds for each filter F = F(z), where z ∈ Z.
Thus there exists a function kα ∈ RZ

α , such that kα(x) = fα(x) (x ∈ X) and
fα(F(z)) → kα(z) (z ∈ Z \ X). By the regularity of Rα, we have kα ∈ C(Z, Rα),
hence fα = kα|X ∈ C(Z, Rα)|X = Φα, as needed to show.

G) The additional assertions about Y , about openness of X in Z, about T0

property of Z and additional properties of Z, under the respective hypotheses,
are either immediate consequences of the constructions, or have been pointed out
above. �

The following theorem is an extension of [Cs 74], (2.6), [Cs 77], Theorem 2,
[G], Teorema 2.1, (a) (taking in consideration [G], Proposizione 2.1, (b)) and [ŽB],
Theorem 4.3.

Theorem 3.2. Let X be a topological space and R = {Rα | α ∈ A} a class
of topological spaces. Further let Φα ⊂ C(X, Rα) (α ∈ A). Then we have the
implication (1) ⇒ (2), where

(1) there exist a topological space Y and a map p : X → Y , such that p(X) = Y

and for each α ∈ A we have Φα = C(Y, Rα) ◦ p;
(2) {Φα | α ∈ A} is strongly composition closed.

If {Φα | α ∈ A} is strongly nice, then (2) ⇒ (1). Moreover, in the implication
(2) ⇒ (1), if {Rβ | β ∈ B} ⊂ P (with B ⊂ A as in the definition of strong
niceness), where P is a class of topological spaces closed under taking products and
subspaces, then we may assume Y ∈ P as well.

Proof. A) (1) ⇒ (2) is proved like [Cs 74], (2.6) and [Cs 77], Theorem 2, (a) ⇒ (b)
(and our Theorem 3.1, (3) ⇒ (4)). Compared to this last one, and with analogous
notations, we have here p(X) = Y and 〈gi〉(Y ) = 〈fi〉(X), and we consider the
codomain restriction 〈gi〉

′ : Y → 〈fi〉(X) of 〈gi〉 : Y →
∏

I Rαi
. With these

changes, the proof runs analogously.

B) If {Φα | α ∈ A} is strongly nice, then (2) ⇒ (1) is proved like [Cs 74], (2.6)
and [Cs 77], Theorem 2, (b) ⇒ (c) (and our Theorem 3.1, (4) ⇒ (3)). Compared
to this last one, and with analogous notations, we define here Y = p0(X), yielding
that p : X → Y , the codomain restriction of p0 : X → Y0, is onto. Then 〈g∗

βγ〉(Y ) =

〈gβγ〉(X), and we have the codomain restriction 〈g∗
βγ〉

′ : Y → 〈gβγ〉(X) of 〈g∗
βγ〉 :

Y →
∏

B R
Γβ

β , and the injection j : 〈gβγ〉(X) →֒
∏

B R
Γβ

β . With these changes, the
proof again runs analogously.

C) The additional assertion is evident by construction. �
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[Cs 71] Á. Császár, On approximation theorems for uniform spaces (MR 45 # 2456), Acta
Math. Acad. Sci. Hungar. 22 (1971), 177-186.
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