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Abstract. In a recent paper the authors have proved that a convex body K ⊂ R
d,

d ≥ 2, containing the origin 0 in its interior, is symmetric with respect to 0 if and

only if Vd−1(K ∩ H′) ≥ Vd−1(K ∩ H) for all hyperplanes H,H′ such that H and
H′ are parallel and H′ ∋ 0 (Vd−1 is (d − 1)–measure). For the proof the authors

have employed a new type of integro–differential transform, that lets to correspond

to a sufficiently nice function f on Sd−1 the function R(1)f , where (R(1)f)(ξ) =
R

Sd−1∩ξ⊥

(∂f/∂ψ)dη — with ξ ∈ Sd−1 as pole and ψ as geographic latitude — and

have determined the null–space of the operator R(1). In this paper we extend the

definition to any integer m ≥ 1, defining (R(m)f)(ξ) analogously as for m = 1,

but using ∂mf/∂ψm rather than ∂f/∂ψ. (The case m = 0 is the spherical Radon
transformation (Funk transformation).) We investigate the null–space of the operator

R(m): up to a summand of finite dimension, it consists of the even (odd) functions

in the domain of the operator, for m odd (even). For the proof we use spherical
harmonics.

1. Introduction

In [Makai–Martini–Ódor] we have proved that a convex body K ⊂ Rd, d ≥ 2,
containing the origin 0 in its interior, has the property that for every hyperplane
H the hyperplane H ′ parallel to H and passing through 0 satisfies Vd−1(K ∩H ′) ≥
Vd−1(K∩H) (Vd−1 is (d−1)–volume), if and only if this convex bodyK is symmetric
with respect to 0. The case d = 2 was proved by [Hammer, 1954]. (In fact he proved
the analogous statement for 1–dimensional sections forK ⊂ Rd, and we have proved
the analogous statement for k–dimensional sections for K ⊂ Rd, 1 ≤ k ≤ d− 1.)

We have proved our result by using a new Radon–type transformation, which
can be considered as a common generalization of partial differential operators and
Radon–type transformations. Moreover we have proved our theorem by using spher-
ical harmonics and the Funk–Hecke theorem.
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Our integro–differential transformation assigns the function R(1)f :Sd−1 → R to
a sufficiently nice function f :Sd−1 → R, where (R(1)f)(ω) is the integral of the
derivative of f in the direction ω over the Sd−2 ⊂ Sd−1 whose spherical center is
ω. In order to prove our theorem, we have established that the null–space of this
operator R(1) consists of the even functions in the domain of R(1).

Here we investigate certain generalization of this transformation where form ≥ 0,
the m’th derivative of f with respect to the geographic latitude (ω considered as
the north pole) is integrated over the same Sd−2. The case m = 0 is the spherical
Radon transformation (Funk transformation), the case m = 1 is the transformation
R(1) above. We obtain that for m ≥ 1, the null–space of this operator is the direct
sum of the even functions (for m odd) or odd functions (for m even) in the domain
of this operator, respectively, and a subspace of finite dimension. (We note that

the domain of R(1) in this paper is smaller than that in [Makai–Martini–Ódor].)
For general analytical background, we refer to the books [Tricomi, 1957], [Adams,

1975] and [Ziemer, 1989].

2. Preliminaries

As usual, Rd denotes the d–dimensional Euclidean space which is endowed with
the standard inner product and norm | · | structure. We will suppose d ≥ 2.
The origin is denoted by 0 and Vd−1 is the (d − 1)–dimensional volume on the
hyperplanes.

Let Sd−1 denote the unit sphere with center 0; its variable point will be denoted
by ω, ξ or η. For ω ∈ Sd−1 and t ∈ R let H(ω, t) be the hyperplane given by the
equation 〈x, ω〉 = t. We write ω⊥ for H(ω, 0). Often we will use a polar coordinate
system on Sd−1, with (”north”) pole some ξ ∈ Sd−1. That is, any ω ∈ Sd−1 can
be written as

(1) ω = ξ sinψ + η cosψ, where η ∈ Sd−1 ∩ ξ⊥ and − π/2 ≤ ψ ≤ π/2

(thus ψ is the geographic latitude, which will be more convenient for us than the
costumarily used ϕ = π/2 − ψ); then we write

(2) ω = (η, ψ).

A real function defined on Sd−1 is called even (odd), if for all ω ∈ Sd−1 we have
f(−ω) = f(ω) (f(−ω) = −f(ω)).

We turn to spherical harmonics, which are higher–dimensional generalizations
of the trigonometric functions cos(nx), sin(nx) (these are obtained for d = 2).
Standard references are [Müller, 1966], [Seeley, 1966], [Erdélyi et al., 1953] and, for
d = 3 in more detail, [Sansone, 1959]; further references, with some geometrical
applications, are e.g. [Blaschke, 1956], §23, Anhang, [Gardner, 1995], Appendix C,
and also the survey paper [Groemer, 1993] as well as the books [Schneider, 1993],
pp. 428–432 and [Groemer, 1996], which contain ample further bibliography.

A polynomial f : Rd → R is harmonic, if
d
∑

i=1

(∂/∂xi)
2
f = 0. (This is invari-

ant under the choice of an orthonormal base.) For an integer n ≥ 0 a spherical
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harmonic (of degree n) in d dimensions is the restriction of a homogeneous har-
monic polynomial f : Rd → R (of degree n) to Sd−1. (Since d will be fixed, later
we will not refer to the dimension.) The spherical harmonics of degree n form
a finite dimensional vector space. Choosing from this subspace an orthonormal
base {Yni | 1 ≤ i ≤ N(d, n)} (orthonormality meant in the space L2(Sd−1), for
the Lebesgue measure on Sd−1), their union for each n ≥ 0 is a complete or-
thonormal system in L2(Sd−1). Thus each f ∈ L2(Sd−1) has a Fourier expansion
∞
∑

n=0

(

N(d,n)
∑

i=1

cniYni

)

. Here we will write
N(d,n)
∑

i=1

cniYni = Yn(f), thus the Fourier

expansion of f is
∞
∑

n=0
Yn(f).

The spherical harmonics are the eigenfunctions of many linear operators com-
muting with rotations. For example, the Funk–Hecke theorem ([Seeley, 1966], The-

orem 3) says the following. Let F be measurable on [−1, 1], with
1
∫

−1

|F (t)|(1 −

t2)(d−3)/2dt <∞. Then any spherical harmonic Yn of n–th degree is an eigenfunc-
tion of the integral operator f 7→ g = g(ξ) =

∫

Sd−1

F (〈ξ, η〉)f(η)dη, that is

∫

Sd−1

F (〈ξ, η〉)Yn(η)dη = λnYn(ξ) ,

where the eigenvalue λn equals

λn = Vd−2(S
d−2)Cn(1)−1

1
∫

−1

F (t)Cn(t)(1 − t2)(d−3)/2dt .

Here Vd−2 means (d− 2)–dimensional volume, and Cn(t) = C
(d−2)/2
n (t) is the n’th

Gegenbauer polynomial, of order (d−2)/2, that is a non–zero polynomial of degree
n, satisfying for 0 ≤ n < m the orthogonality relations

1
∫

−1

Cn(t)Cm(t)(1 − t2)(d−3)/2dt = 0 .

There holds Cn(1) 6= 0, [Seeley, 1966], (3). For n odd (even) Cn is an odd (even)
function [Erdélyi et al., 1953], §10.9, (16). References to Gegenbauer polynomials
are [Erdélyi et al., 1953] and [Tricomi, 1955].

For suitable measures or distributions on [−1, 1] a formula similar to the Funk–
Hecke theorem holds, cf. for example Lemma 3.2.

3. The operators R
(m)
ψ and RPψ

Now we in essence generalize the definition of the operator R
(1)
ψ from [Makai–

Martini–Ódor]. (We observe that although R
(m)
ψ for m = 1 in this paper is defined
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by the same formula as R
(1)
ψ in [Makai–Martini–Ódor], however the domain of the

operator R
(m)
ψ for m = 1 in this paper is smaller than that of the operator R

(1)
ψ

from [Makai–Martini–Ódor]: namely it is C1(Sd−1) rather than Lip(Sd−1).) Let
d ≥ 2, and let m ≥ 1 be an integer. Let −π/2 ≤ ψ ≤ π/2, f ∈ Cm(Sd−1) and
ξ ∈ Sd−1. Using polar coordinates with pole ξ (cf. (1) and (2)), we define the

integro–differential transform R
(m)
ψ f of f by

(3) (R
(m)
ψ f)(ξ) =

∫

Sd−1∩ξ⊥

∂mf

∂ψm
(η, ψ)dη .

Here (∂mf/∂ψm)(η, ψ) is the m–th angular derivative of f at (η, ψ) along the
meridian passing through η. For ψ = 0 we drop the lower index.

The case m = 1 of the following lemma is essentially contained in Lemma
3.6 of [Makai–Martini–Ódor] (there Lip(Sd−1) and L∞(Sd−1) appear rather than
C1(Sd−1) and C(Sd−1)).

Lemma 3.1. Let d ≥ 2, m ≥ 1, −π/2 ≤ ψ ≤ π/2 and f, g ∈ Cm(Sd−1). Then

we have R
(m)
ψ f ∈ C(Sd−1), and R

(m)
ψ is symmetric, i.e.,

∫

Sd−1

(R
(m)
ψ f)(ξ)g(ξ)dξ =

∫

Sd−1

f(ξ)(R
(m)
ψ g)

(ξ)dξ.

Proof. The relation R
(m)
ψ f ∈ C(Sd−1) is proved in a standard way.

Further, we have by Lebesgue’s dominated convergence theorem

∫

Sd−1

(R
(m)
ψ f)(ξ)g(ξ)dξ =

lim
ε→0

∫

Sd−1







∫

Sd−1∩ξ⊥

(

∂m−1f

∂ψm−1
(η, ψ + ε) −

∂m−1f

∂ψm−1
(η, ψ)

)

ε−1dη






g(ξ)dξ .

Induction on m shows that this equals
∫

Sd−1

f(ξ)(R
(m)
ψ g)(ξ)dξ. The induction basis

is m = 1, which follows from Lemma 3.6 of [Makai–Martini–Ódor].

Defining R
(0)
ψ in the analogous way, i.e., by

(R
(0)
ψ f)(ξ) =

∫

Sd−1∩ξ⊥

f(η, ψ)dη ,

we have the following lemma, that generalizes Lemma 3.7 of [Makai–Martini–Ódor].
Its statement in the case m = 0 is due to [Radon, 1917] (for d = 3), and to

[Schneider, 1969], formula (5) (an alternative proof cf. in [Makai–Martini–Ódor],

Lemma 3.7), while in the case m = 1 it is due to [Makai–Martini–Ódor], Lemma
3.7.
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Lemma 3.2. Let d ≥ 2, m ≥ 0, −π/2 ≤ ψ ≤ π/2, and let Yn:S
d−1 → R

be a spherical harmonic of degree n. Then Yn is an eigenfunction of R
(m)
ψ , i.e.,

R
(m)
ψ Yn = λnYn, with

λn = Vd−2(S
d−2)C(d−2)/2

n (1)−1

(

d

dψ

)m

C(d−2)/2
n (sinψ) .

Proof. By the case m = 0 of our statement (referred to above) we have

∫

Sd−1∩ξ⊥

Yn(η, ψ)dη = Vd−2(S
d−2)Cn(1)−1Cn(sinψ) · Yn(ξ) .

From this case subsequent differentiations with respect to ψ prove the statement
for any m ≥ 1.

The following theorem is more or less a generalization of Theorem 3.8 of [Makai–

Martini–Ódor] (there Lip(Sd−1) and L∞(Sd−1) appear rather than C1(Sd−1) and
C(Sd−1)). The statement corresponding to the case m = 0, ψ = 0 in this theorem
is the Funk integral theorem (for f ∈ C(Sd−1)), cf. [Minkowski, 1905], [Funk, 1913],
Kap. 2, [Bonnesen–Fenchel, 1934], pp. 136–138, [Lifshitz–Pogorelov, 1954], [Petty,
1961], [Schneider, 1969], [Helgason, 1980], Ch. 3, §1.B and [Helgason, 1984], the
case m = 0, ψ arbitrary is essentially contained in [Schneider, 1969], while the case

m = 1 is contained in [Makai–Martini–Ódor], Theorem 3.8.

Theorem 3.3. Let d ≥ 2, m ≥ 1 and −π/2 ≤ ψ ≤ π/2. Then the null–space of the

operator R
(m)
ψ :Cm(Sd−1) → C(Sd−1) equals {f ∈ Cm(Sd−1) | the Fourier expan-

sion
∞
∑

n=0
Yn(f) of f satisfies that (d/dψ)

m
C

(d−2)/2
n (sinψ) 6= 0 implies Yn(f) = 0}.

In particular, for ψ = 0 and m odd (even) the null–space of R(m) = R
(m)
0 contains

{f ∈ Cm(Sd−1) | f is even (f is the sum of an odd function and a constant)}.

Proof. For the first statement we proceed analogously to [Alexandroff, 1937], [Petty,
1961], [Schneider, 1969], [Schneider, 1970], [Falconer, 1983]. Let f ∈ Cm(Sd−1).

Then, by 3.1, we have R
(m)
ψ f ∈ C(Sd−1) ⊂ L2(Sd−1). Moreover, by completeness

of spherical harmonics, R
(m)
ψ f = 0 holds (a.e.) if and only if for each n ≥ 0, and

each spherical harmonic Yn of degree n we have 0 = 〈R
(m)
ψ f, Yn〉, where 〈 , 〉 now

denotes scalar product in L2(Sd−1). Letting
∞
∑

n=0
Yn(f) be the Fourier expansion of

f , we have by 3.1 and 3.2 that

〈R
(m)
ψ f, Yn〉 = 〈f, R

(m)
ψ Yn〉 = λn〈f, Yn〉 =

Vd−2(S
d−2)Cn(1)−1

(

d

dψ

)m

Cn(sinψ) · 〈Yn(f), Yn〉.

For fixed n and Yn arbitrary this is 0 if and only if (d/dψ)
m
Cn(sinψ) · Yn(f) = 0.

This implies the first statement.
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For the second statement observe that for f constant we have R
(m)
ψ f = 0. Fur-

thermore, for ψ = 0, m odd (even) and f even (odd) by 3.1 we have for all ξ ∈ Sd−1

that for all η ∈ Sd−1 ∩ ξ⊥ there holds (∂mf/∂ψm)(η, 0) + (∂mf/∂ψm)(−η, 0) = 0,
thus R(m)f = 0.

More generally, let d ≥ 2, m ≥ 1 an integer, and P a real polynomial of degree
m. Further let −π/2 ≤ ψ ≤ π/2, f ∈ Cm(Sd−1) and ξ ∈ Sd−1. Using polar
coordinates with pole ξ, we define the integro–differential transform RPψf of f by

(4) (RPψf)(ξ) =

∫

Sd−1∩ξ⊥

(

P

(

∂

∂ψ

))

f(η, ψ)dη .

For ψ = 0 we drop the lower index. Then, analogously like above, we have

Theorem 3.4. Let d ≥ 2 be a fixed integer. Let m ≥ 1 be an integer, P a real
polynomial of degree m, and −π/2 ≤ ψ ≤ π/2. Furthermore, let f, g ∈ Cm(Sd−1).
Then we have RPψf ∈ C(Sd−1), and RPψ is symmetric, i.e.,

∫

Sd−1

(RPψf)(ξ)g(ξ)dξ =

∫

Sd−1

f(ξ)(RPψg)(ξ)dξ. The null–space of the operator RPψ :Cm(Sd−1) → C(Sd−1)

equals {f ∈ Cm(Sd−1) | the Fourier expansion
∞
∑

n=0
Yn(f) of f satisfies that (P (d/dψ))C

(d−2)/2
n (sinψ) =

0 implies Yn(f) = 0}.

Proof. Let P (t) =
∑m
r=0 crt

r. The statement RPψf ∈ C(Sd−1) and symmetry of

RPψ follow from 3.1. Then 3.2 implies its analogue for RPψ , with eigenvalue

λn = Vd−2(S
d−2)C(d−2)/2

n (1)−1

(

P

(

d

dψ

))

C(d−2)/2
n (sinψ) .

Then, like in 3.3, we obtain that we have RPψf = 0 if and only if

(

P

(

d

dψ

))

C(d−2)/2
n (sinψ) 6= 0

implies Yn(f) = 0, where
∞
∑

n=0
Yn(f) is the Fourier expansion of f .

Remark. By Lemma 3.1 and Theorem 3.4 R
(m)
ψ and RPψ are symmetric op-

erators. Actually it is easily seen that their closures are self–adjoint operators in
L2(Sd−1), with domain {

∑

Yn | Yn is a spherical harmonic of degree n,
∑

(1 +
λ2
n)‖Yn‖

2 < ∞}, and are given by
∑

Yn 7→
∑

λnYn, where the λn are the corre-
sponding eigenvalues.

4. The null–spaces of the operators R(m) and RP

Now, for d ≥ 2, we turn to the case of general m ≥ 1, and investigate the
null–space of R(m):Cm(Sd−1) → C(Sd−1).

For d = 2 the complete answer is given by
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Proposition 4.1. Let d = 2 and m ≥ 1. Then the null–space of the operator
R(m):Cm

(Sd−1) → C(Sd−1) equals for m odd (even) {f ∈ Cm(Sd−1) | f is even (f is the
sum of an odd function and a constant)}.

Proof. By 3.3, we have that f ∈ Cm(Sd−1) satisfies R(m)f = 0 if and only if
(d/dψ)

m
C0
n

(sinψ)|ψ=0 6= 0 implies Yn(f) = 0. However, by [Müller, 1966], p. 33, we have

for some an 6= 0 that C0
n(sinψ) = C0

n[cos(π/2 − ψ)] = an cos[n(π/2 − ψ)]. A
straightforward calculation gives then that

(

d

dψ

)m

cos[n(π/2− ψ)]

∣

∣

∣

∣

ψ=0

equals 0 if n = 0 or if n−m is odd, and equals (−1)⌊n/2⌋(−1)⌊m/2⌋nm 6= 0 if n−m
is even and n ≥ 1. Then 3.3 implies our statement.

Lemma 4.2. Let d ≥ 3 and m ≥ 1. Then there exists a polynomial Γd,m,n of n,
of degree m, such that for n−m even we have

(

d

dψ

)m

C(d−2)/2
n (sinψ)

∣

∣

∣

∣

ψ=0

= 0

if and only if Γd,m,n = 0. We have (Γd,0,n = 1,) Γd,1,n = n + d − 3, Γd,2,n =
n(n+ d− 3) and Γd,3,n = (n+ d− 3)(n2 + (d− 2)n− (d− 2)).

Proof. By [Tricomi, 1955], p. 182, for d ≥ 3 we have

C(d−2)/2
n (sinψ) = C(d−2)/2

n [cos(π/2 − ψ)] =

(−1)n
n
∑

i=0

(

−d/2 + 1

i

)(

−d/2 + 1

n− i

)

cos[(n− 2i)(π/2 − ψ)] .

Using
(

d

dψ

)m

cosψ = cos(ψ +mπ/2) ,

we have for n−m even that

γd,m,n :=

(

d

dψ

)m

C(d−2)/2
n (sinψ)

∣

∣

∣

∣

ψ=0

=

(−1)n
n
∑

i=0

(

−d/2 + 1

i

)(

−d/2 + 1

n− i

)

[−(n− 2i)]m cos[(n− 2i)π/2 +mπ/2)] =

(−1)n(−1)(n+m)/2
n
∑

i=0

(−1)i
(

−d/2 + 1

i

)(

−d/2 + 1

n− i

)

(2i− n)m.

Here (2i− n)m =
m
∑

p=0
(−1)p

(

m
p

)

2m−pnpim−p, and

im−p =

m−p
∑

q=0

cm−p,q

(

i

q

)

q! ,
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for some constants cm−p,q, where cm−p,m−p = 1. Hence

(2i− n)m =
m
∑

q=0

fm,q(n)

(

i

q

)

q! ,

where

fm,q(n) =

m−q
∑

p=0

(−1)p
(

m

p

)

2m−pcm−p,qn
p.

Therefore

γd,m,n = (−1)n(−1)(n+m)/2
m
∑

q=0

fm,q(n)δd,n,q ,

where

δd,n,q =
n
∑

i=0

(−1)i
(

−d/2 + 1

i

)(

−d/2 + 1

n− i

)(

i

q

)

q! .

Here δd,n,q is the coefficient of xn in the power series expansion of

xq
[(

d

dx

)q

(1 − x)(2−d)/2
]

(1 + x)(2−d)/2 =

(−1)q
(

−
d

2
+ 1

)(

−
d

2

)

. . .

(

−
d

2
− q + 2

)

xq(1 − x2)−d/2−q+1(1 + x)q =

(−1)q
(

−
d

2
+ 1

)(

−
d

2

)

. . .

(

−
d

2
− q + 2

)

xq
∞
∑

k=0

(−1)k
(

−d/2 − q + 1

k

)

x2k

q
∑

l=0

(

q

l

)

xl,

i.e.,

δd,n,q = (−1)q
(

−
d

2
+ 1

)(

−
d

2

)

. . .

(

−
d

2
− q + 2

)

×

∑

k≥0, 0≤l≤q, 2k+l=n−q

(−1)k
(

−d/2 − q + 1

k

)(

q

l

)

.

Here in the last summation we have 2k = n−q− l ∈ [n−2q, n−q], thus ⌈n/2⌉−q ≤
k ≤ ⌊(n− q)/2⌋ ≤ ⌊n/2⌋. Therefore we introduce the notation k = ⌊n/2⌋ − j; then
0 ≤ ⌊n/2⌋ − ⌊(n− q)/2⌋ = q/2 + δ ≤ j ≤ q − ε. Here δ = 0 for q even, δ = 1/2 or
−1/2 for q odd and n even or odd, respectively, and ε = 0 for n even, ε = 1 for n
odd. Furthermore, l = n− 2k − q = ε+ 2j − q.

We have

δd,n,q

(

−d/2 + 1

⌊n/2⌋

)−1

=
∑

q/2+δ≤j≤q−ε, j≤⌊n/2⌋

δd,n,q,j ,

where

δd,n,q,j = (−1)q
(

−
d

2
+ 1

)(

−
d

2

)

. . .

(

−
d

2
− q + 2

)

×

(−1)⌊n/2⌋−j
(

−d/2 − q + 1

⌊n/2⌋ − j

)(

−d/2 + 1

⌊n/2⌋

)−1(
q

ε+ 2j − q

)

=
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(−1)⌊n/2⌋(−1)q−j
(

−
d

2
+ 1

)(

−
d

2

)

. . .

(

−
d

2
− q + 2

)

×

(

−
d

2
− q + 1

)

. . .

(

−
d

2
− q −

⌊n

2

⌋

+ j + 2

)

×

(⌊n

2

⌋

− j
)

!−1

(

−
d

2
+ 1

)−1

. . .

(

−
d

2
−
⌊n

2

⌋

+ 2

)−1
⌊n

2

⌋

!

(

q

ε+ 2j − q

)

=

(−1)⌊n/2⌋(−1)q−j
(

−
d

2
−
⌊n

2

⌋

+ 1

)

. . .

(

−
d

2
−
⌊n

2

⌋

− q + j + 2

)

×

⌊n

2

⌋

. . .
(⌊n

2

⌋

− j + 1
)

(

q

ε+ 2j − q

)

= (−1)⌊n/2⌋gd,q,j(n) ,

where gd,q,j(n) equals, for n having the parity of m, a polynomial of n, of degree
(q− j) + j = q, and of leading coefficient 2−q

(

q
ε+2j−q

)

. However, for 0 ≤ ⌊n/2⌋ < j

we have gd,q,j(n) = 0, thus

δd,n,q

(

−d/2 + 1

⌊n/2⌋

)−1

= (−1)⌊n/2⌋
q−ε
∑

j=q/2+δ

gd,q,j(n) .

Collecting these results, we have

(−1)n(−1)(n+m)/2(−1)⌊n/2⌋γd,m,n

(

−d/2 + 1

⌊n/2⌋

)−1

=

(−1)⌊n/2⌋
m
∑

q=0

fm,q(n)δd,n,q

(

−d/2 + 1

⌊n/2⌋

)−1

=

m
∑

q=0

fm,q(n)

q−ε
∑

j=q/2+δ

gd,q,j(n) := Γd,m,n .

Here each fm,q(n) or gd,q,j(n) equals, for n having the parity of m, a polynomial of
n, of degree m− q or q, respectively. Moreover, δ and ε in the bounds of the inner
summation only depend on the parities of n and q. Therefore Γd,m,n equals, for n
having the parity of m, a polynomial of n, of degree ≤ m. Furthermore, we have
γd,m,n = 0 if and only if Γd,m,n = 0.

Now we show that Γd,m,n equals, for n having the parity of m, a polynomial of
n, of degree exactly m. More exactly, we show that its leading coefficient is 1. We
have

Γd,m,n =
m
∑

q=0

fm,q(n)

q−ε
∑

j=q/2+δ

gd,q,j(n) .

Here, by cq,q = 1, the leading term of fm,q(n) is (−1)m−q
(

m
q

)

2qnm−q. Similarly, the

leading term of gd,q,j(n) is 2−q
(

q
ε+2j−q

)

nq. Hence the coefficient of nm in Γd,m,n is

m
∑

q=0

(−1)m−q

(

m

q

) q−ε
∑

j=q/2+δ

(

q

ε+ 2j − q

)

.
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A small discussion, taking into consideration the parities of m and q, shows that
this equals

m
∑

q=0

(−1)m−q

(

m

q

)

∑

0≤ε+2j−q≤q

(

q

ε+ 2j − q

)

=

m
∑

q=1

(−1)m−q

(

m

q

)

2q−1 +
1

2
+ (−1)m

1

2
=

(2 − 1)m
1

2
− (−1)m

1

2
+

1

2
+ (−1)m

1

2
= 1.

The above considerations show that, for any given m, we can evaluate γd,m,n for all
n. Performing the above calculations for m ≤ 3, we obtain the formulas for Γd,m,n,
given in the lemma.

Using the above lemma we prove the following theorem, that is more or less a
generalization of the last statement of Theorem 3.8 of [Makai–Martini–Ódor].

Theorem 4.3. Let d ≥ 3 be a fixed integer. Then, for any integer m ≥ 1,
there exists a set A(m) of non–negative integers of the same parity as m, with
cardinality |A(m)| ≤ m, such that the following holds. The null–space of the

operator R(m):Cm(Sd−1) → C(Sd−1) equals {f ∈ Cm(Sd−1) | f is of the form
f = g +

∑

n∈A(m)

Yn, where g is even (odd) for m odd (even), and Yn is a spherical

harmonic of degree n}. In particular, for m = 2, 3 we have A(2) = {0}, A(3) = ∅.

Proof. By 3.3, we have that f ∈ Cm(Sd−1) satisfies R(m)f = 0 if and only if, for the

Fourier expansion
∑∞
n=0 Yn(f) of f , we have that γd,m,n := (d/dψ)

m
C

(d−2)/2
n (sinψ)

∣

∣

∣

ψ=0
6=

0 implies Yn(f) = 0. Since Cn is odd (even) for n odd (even), therefore for n−m
odd we have γd,m,n = 0. So we only need to consider the case n −m even. Then
by 4.2 we have γd,m,n = 0 if and only if Γd,m,n = 0, and Γd,m,n equals, for n having
the parity of m, a polynomial of n, of degree m.

We let A(m) = {n | n ≥ 0 is an integer, n−m is even, Γd,m,n = 0}. Then {f ∈

Cm (Sd−1) | R(m)f = 0} =
{

f ∈ Cm(Sd−1) | f =
∑

{Yn(f) | n ≥ 0 is an integer,

and either 2 ∤ (n−m), or (2 | (n−m) and n ∈ A(m))}
}

.
For the cases m = 2, 3, we consider the equation Γd,m,n = 0 from 4.2. For m = 2

its only non–negative even root is n = 0. Now let m = 3 and n ≥ 0 odd. Then we
have n + d − 3 ≥ 1. Furthermore, the discriminant of n2 + (d − 2)n − (d − 2) is
d2 − 4, that is not a perfect square for d ≥ 3, thus the roots of this polynomial are
irrational.

Theorem 4.4. Let d ≥ 2 be a fixed integer. Let m ≥ 1 be an integer, P a
polynomial of degree m, and ψ = 0. If P is odd (even) for m odd (even), then there
exists a set AP of non–negative integers of the same parity as m, with cardinality
|AP | ≤ m, such that the following holds. The null–space of the operator RP = RP0
equals {f ∈ Cm(Sd−1) | f is of the form f = g +

∑

n∈AP

Yn, where g is even (odd)

for m odd (even), and Yn is a spherical harmonic of degree n}.

Proof. Suppose that P = P (t) =
∑m
r=0 crt

r is such as given in the theorem. Then

we have (P (d/dψ))C
(d−2)/2
n (sinψ)|ψ=0 = 0 for n − m odd. Now let us suppose
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that n−m is even. First we suppose that d ≥ 3. We have, like at 4.3 and 4.2,

(

P

(

d

dψ

))

C(d−2)/2
n (sinψ)

∣

∣

∣

∣

ψ=0

=
m
∑

r=0

crγd,r,n =

(−1)n(−1)⌊n/2⌋
(

−d/2 + 1

⌊n/2⌋

) m
∑

r=0

cr(−1)(n+r)/2Γd,r,n

(observe that n ≡ r (mod 2)). This expression equals 0 if and only if the last sum
equals 0. Furthermore, this last sum equals an m–th degree polynomial of n, if
n − m is even. Now let AP be the set of those non–negative integer roots n of
this polynomial, for which n −m is even. Then, like in 4.3, the statement of the
theorem holds for this set AP .

Now let d = 2. Then we have from the proof of 4.1, with the same an 6= 0,

(

P

(

d

dψ

))

C0
n(sinψ)

∣

∣

∣

∣

ψ=0

= an(−1)⌊n/2⌋
m
∑

r=0

cr(−1)⌊r/2⌋nr.

Then we define AP using this last sum, like above, and again the statement of the
theorem holds for this set AP .

Remark. Possibly the space Cm(Sd−1) can be replaced by a suitable Sobolev
class or by a suitable space of distributions, still yielding similar results.

Acknowledgment. The authors express their gratitude to R. J. Gardner for
his several valuable remarks concerning this paper.
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symmetric bodies, Mathematika, accepted for publication.
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