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Abstract. We generalize earlier results about connected components of idempo-
tents in Banach algebras, due to B. Szőkefalvi Nagy, Y. Kato, S. Maeda, Z. V.

Kovarik, J. Zemánek, J. Esterle. Let A be a unital complex Banach algebra, and

p(λ) =
n
∏

i=1

(λ−λi) a polynomial over C, with all roots distinct. Let Ep(A) := {a ∈ A |

p(a) = 0}. Then all connected components of Ep(A) are pathwise connected (locally

pathwise connected) via each of the following three types of paths: 1) similarity via a

finite product of exponential functions (via an exponential function); 2) a polynomial
path (a cubic polynomial path); 3) a polygonal path (a polygonal path consisting of

n segments). If A is a C∗-algebra, λi ∈ R, let Sp(A) := {a ∈ A | a = a∗, p(a) = 0}.
Then all connected components of Sp(A) are pathwise connected (locally pathwise

connected), via a path of the form e−icmt . . . e−ic1taeic1t . . . eicmt, where ci = c∗
i
,

and t ∈ [0, 1] (of the form e−ictaeict, where c = c∗, and t ∈ [0, 1]). For (self-adjoint)
idempotents we have by these old papers that the distance of different connected com-

ponents of them is at least 1. For Ep(A), Sp(A) we pose the problem if the distance
of different connected components is at least min

{

|λi−λj | | 1 ≤ i, j ≤ n, i 6= j
}

. For

the case of Sp(A), we give a positive lower bound for these distances, that depends

on λ1, . . . , λn. We show that several local and global lifting theorems for analytic
families of idempotents, along analytic families of surjective Banach algebra homo-

morphisms, from our recent paper with B. Aupetit and M. Mbekhta, have analogues

for elements of Ep(A) and Sp(A).
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1. Introduction

In this paper all Banach spaces and Banach algebras are over C, and all Banach
algebras have units whose norms are 1, and all Banach algebra homomorphisms
preserve the units. For X a Banach space, B(X) denotes the Banach algebra of all
bounded linear operators X → X . For a Banach algebra A,

E(A) :=
{

a ∈ A | a2 = a
}

,

and for a Banach algebra A with an involution,

S(A) :=
{

a ∈ A | a = a2 = a∗
}

.

We begin with a terminology. An arc in a Hausdorff space X is a homeomor-
phic image of [0, 1] in X . A path in a Hausdorff space X is a continuous image of
[0, 1]. Since we only consider metric, thus Hausdorff spaces, (locally) arcwise con-
nectedness is equivalent to (locally) pathwise connectedness. Namely, Hausdorff
continuous images of [0, 1], called Peano continua, are arcwise connected, cf. Ku],
. . . . Further in this paper we will deal with (locally) pathwise connectedness, and
will look for “nice” connecting paths.

The subject began with an observation of B. Szőkefalvi Nagy ([SzN42], Ch. . . .
§ 3, Hilfssatz, p. 58, [SzN47], Ch. . . . , § 1, 3, p. 350 and [RSzN] § 105, Théorème,
p. 266) that two orthogonal (i.e., self-adjoint) projections on a Hilbert space H, of
distance less than 1, are similar via a unitary. Later C. Davis [Dav], . . . , Y. Kato
[YKa75], Theorem, p. 257, [YKa76], Theorem 2, p. 367 gave simpler proofs for this
theorem.

Y. Kato [YKa76], Ch. I, § 4, 6, p. 33 proved the analogous statement for X a
Banach space, for two projections, i.e., idempotent operators in B(X), of distance
less than 1, with similarity via an invertible operator. [YKa76], Ch. I, § 4, 6,
Problem 4.13, p. 34 showed that under the same hypothesis there is an analytic
path connecting the two idempotent operators.

S. Maeda [Ma] investigated the set S(A) of self-adjoint projections in C∗-alge-
bras A. He showed in his Theorem 2 and its Corollary that its connected compo-
nents are arcwise connected and locally arcwise connected. Thus are relatively open
among all self-adjoint projections. He showed in his Lemma 2 that for e, f ∈ S(A),
with ‖f − e‖ < 1, e and f are similar via a self-adjoint involution. In his corollary
to Theorem 2 he showed that two self-adjoint idempotents belong to the same con-
nected component if and only if they are similar via a finite product of self-adjoint
involutions. He showed in his Theorem 1 that if e, f ∈ S(A), are similar via a finite
product of self-adjoint involutions, then they can be connected by a self-adjoint
projection valued path.

Later Z. V. Kovarik [Ko], § 6, Theorem 1 proved, for X a Banach space, and
E0, E1 ∈ B(X) projections at distance less than 1 that

1) E0, E1 can be connected by a projection-valued analytic path of the form
e−itwE0e

itw, t ∈ [0, 1] and
2) E0, E1 can be also connected by a polygonal path consisting of two segments

and
3) E0, E1 are similar via an involution.
A consequence of 3) is [Ko], § 8, Theorem 2: If two projections are connected

by a continuous projection valued path, then they are similar via a finite product
of involutions.
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J. Zemánek [Ze] investigated the idempotents in Banach algebras. He obtained
that

1) e, f ∈ E(A), ‖f − e‖ < 1 implies similarity of e and f via an exponential, i.e.,
f = e−ceec, cf. his Lemma 3.1;

2) local arcwise connectedness of E(A) and arcwise connectedness of each con-
nected component of E(A), cf. his Theorem 3.2;

3) e, f ∈ E(A) are in the same connected component of E(A) if and only if f is
of the form

e−cm . . . e−c1eec1 . . . ecm ;

4) an idempotent e lies in the centre of A if and only if {e} is isolated in E(A) (i.e.,
is a connected component of E(A)); if an idempotent e does not lie in the centre of
A, then the connected component of E(A) containing e contains a (complex) line,
hence is unbounded.

J. Esterle [Es], Theorem and its proof proved refinements of J. Zemánek’s results.
He obtained that

1) e, f ∈ E(A), ‖f − e‖ < 1 implies similarity of e and f or the form

f = e−c′′e−c′eec
′

ec
′′

= (1− c′′)(1− c′)ee(1 + c′)(1 + c′′), where (c′)2 = (c′′)2 = 0,

where even one of the factors containing c′ can be omitted, leaving this formula
valid;

2) pathwise connectedness of each connected component of E(A), by polyno-
mial paths (and at the same time similarities via a finite product of exponential
functions) of the form

e−c′′nte−c′nt . . . e−c′′
1
te−c′

1
teec

′
1
tec

′′
1
t . . . ec

′
ntec

′′
nt

= (1− c′′nt)(1− c′nt) . . . (1− c′′1 t)(1− c′1t)e(1 + c′1t)(1 + c′′1 t) . . . (1 + c′nt)(1 + c′′nt),

where (c′i)
2 = (c′′i )

2 = 0, for 1 ≤ i ≤ n, where one of the factors containing c′1 can
be omitted leaving this formula valid. Here, for ‖f − e‖ < 1 we have n = 1, thus
we have a connection via a cubic polynomial path.

For some further results about E(A) cf. the references in this paper.
Now we turn to the other subject of our paper. For unital complex Banach

algebras A we write
E(A) := {a ∈ A | a2 = a}.

If A is a unital complex Banach algebra with continuous involution ∗, then we write

S(A) := {a ∈ A | a2 = a = a∗}.

Let π : B → A be a unit preserving homomorphism between two unital complex
Banach algebras B and A. If A and B are Banach algebras with continuous in-
volutions ∗, then we additionally suppose that π is involution-preserving. Then
clearly

πE(B) ⊂ E(A),

and for unital complex Banach algebras with continuous involutions

πS(B) ⊂ S(A).



4 E. MAKAI, JR. AND J. ZEMÁNEK

From now on suppose that π is surjective. We say that the lifting property holds
for π : B → A, if

πE(B) = E(A), or πS(B) = S(A), respectively.

We write for Banach spaces X , Y B(X, Y ) for the Banach space of all bounded
linear operators X → Y . We write B(X) := B(X,X), and we write K(X) for the
Banach space of compact linear operators in B(X).

For H a Hilbert space, and π : B(H) → B(H)/K(H) the canonical mapping, we
have πS(B(H)) = S(B(H)/K(H)), cf. [Ca], Theorem 2.4 and [dlH], Proposition 7.
For any Banach algebra A and π the canonical mapping A → A/rad A (rad(·)
being the radical) we have πE(A) = E(A/rad A), cf. [Ri], Theorem 2.3.9 and
[IKa], p. 125. An analogue of the above mentioned first result is πE(B(H)) =
E(B(H)/K(H)), which is due to [La]; we are grateful to Prof. J.-Ph. Labrousse
for personally explaining the difficult passages of his paper. In fact [La] proved
more. Suppose U ⊂ C with 0 ∈ U is open, and let us have an analytic map
q : U → E(B(H)/K(H)). Then there exist V ⊂ C open, such that 0 ∈ V ⊂ U , and
an analytic map p : V → E(B(H)), such that π(p(λ)) = q(λ) for each λ ∈ V . This
is called a local lifting theorem. If we can choose V = U , then we speak about a
global lifting theorem.

In [AMMZ03] there are proved several further local and global lifting theorems,
under hypotheses that the spectra of all elements of Ker π are “small”. Observe
that the spectra of compact operators on a Banach space X are either finite or
are of the form {0} ∪ {λn | n ∈ N}, where λn → 0, thus they are “small”. So no
compactness of operators is necessary, but only “small spectra”.

All these results of [AMMZ03] were strengthened in [AMMZ14]. There not only
the idempotents were analytic functions of λ ∈ U (for u ⊂ C open), but also the
surjective unit-preserving Banach algebra homomorphisms, written as π(λ). Under
the strongest spectral hypothesis that the spectra of all elements of all kernels
Ker π(λ) are {0}, we proved global lifting theorems, both for E(·) and for S(·).
For the case of S(·), both the idempotents q(λ) and the ∗-homomorphisms π(λ)
were real analytic maps from some open subset G of R with 0 ∈ G. Actually in
[AMMZ14] not only a single analytic family of idempotents could be lifted, but
even a mutually orthogonal sequence of analytic families of idempotents could be
lifted to a mutually orthogonal sequence of analytic families of idempotents. Here
two idempotents e, f in some Banach algebra are orthogonal, if ef = fe = 0.

Under weaker spectral hypotheses, [AMMZ14] proved local lifting theorems, both
for E(·) and S(·). For the unital complex Banach algebra case it was sufficient to
suppose that the spectra of all elements of Ker π(0) did not disconnect C. For
the case of unital complex Banach algebras with continuous involutions (with real
analycity of q(·) and the ∗-homomorphisms π(·) like above) it was sufficient to
suppose that the spectra of all elements of Ker π(0) was totally disconnected (i.e.,
they did not contain any connected subsets consisting of more than one points; this
property implies that they did not disconnect C). Observe that in both of these
cases we had no hypotheses for the spectra of elements of Ker π(λ), for λ 6= 0.

A large part of the results of this paper have been announced in [MZ].

2. Theorems

Let F be a commutative field, and A a unital F -algebra. In general we will write
0 or 1 both for the zero or unit in F and A, but it will be clear which is meant;
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but sometimes we will write 0F and 0A, and 1F and 1A. For n ≥ 2 an integer, and
λ1, . . . , λn ∈ F distinct we write

p(λ) :=
n
∏

i=1

(λ− λi),

that is a polynomial over F , and

E(A) := {a ∈ A | a = a2} and

Ep(A) := {a ∈ A | p(a) = 0A}.

We consider n and λ1, . . . , λn as fixed, in the whole paper. A particular case is
when A is the algebra of all bounded linear operators on a complex vector space X
(with F = C).

We say that

{e1, . . . , en} ⊂ E(A) forms a partition of unity.

If eiej = 0 for 1 ≤ i, j ≤ n, i 6= j, and
n
∑

i=1

ei = 1. In other words, we have an

E(A)-valued measure on F , concentrated on {λ1, . . . , λn} ⊂ F , with total mass 1A,
with the measure of {λi} being ei.

Proposition 1. With the above notations, we have for a ∈ A that

a ∈ Ep(A)

if and only if a is of the form

a =

n
∑

i=1

λiei, where {e1, . . . , en} ⊂ E(A) is a partition of unity.

Here, for each 1 ≤ i ≤ n, the function a 7→ ei = ei(a) is a polynomial, with
coefficients in F . These polynomials only depend on λ1, . . . , λn.

If a =
n
∑

i=1

λiei =
m
∑

j=1

µjfj, for {e1, . . . , en}, {f1, . . . , fm} ⊂ E(A) partitions of

unity, with distinct λi’s and distinct µj’s, and with ei 6= 0, fj 6= 0 for 1 ≤ i ≤ n
and 1 ≤ j ≤ m, then m = n, and, after a permutation of the indices, λi = µi

and ei = fi, for 1 ≤ i ≤ n. In particular, for {e1, . . . , en}, {f1, . . . , fn} ⊂ E(A)

partitions of unity, with distinct λi’s, a =
n
∑

i=1

λiei =
n
∑

i=1

λifi implies ei = fi for

1 ≤ i ≤ n.

Corollary 2. Let A = B(X), where X is a complex Banach space. Then for
T ∈ B(X) we have T ∈ Ep(A) if and only if there exists a direct sum decomposition
X1 ⊕ . . .⊕Xn of X, where each Xi is a closed subspace of X, such that

T | Xi = λi · idXi
, for each 1 ≤ i ≤ n.

�
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Remark A. Now we show by an example that our considerations do not work if some
λi’s are equal, even in the “simplest” case of A = B(H), the algebra of bounded
linear operators of a Hilbert space. We consider the simplest such polynomial:
p(λ) := λ2. Then we can write operators T ∈ B(H⊕H) in 2×2 block matrix form.
If T is superdiagonal, i.e.,

T =

(

0 T12

0 0

)

,

we have T 2 = 0, and the structure of T can be as complicated as the structure of
T12 ∈ B(H) can be.

If moreover F and A have involutions ∗, we always suppose λ∗
i = λi, 1 ≤ i ≤ n,

and we write
S(A) := {a ∈ A | a = a2 = a∗}, and

Sp(A) := {a ∈ A | a = a∗, p(a) = 0A}.
For the C∗-algebra case, λi ∈ R is a natural hypothesis. In fact, if q(λ) :=

π{(λ− λi) | 1 ≤ i ≤ n, λi ∈ R}, then p(a) = 0 and a = a∗ imply q(a) = 0. Thus we
could use q(·) rather than p(·).

A particular case is when A is the algebra of all bounded linear operators on a
complex Hilbert space H (with F = C).

Then we have the analogue of Proposition 1.

Proposition 3. With the above notations, we have for a ∈ A that

a ∈ Sp(A)

if and only if a is of the form

a =
n
∑

i=1

λiei, where {e1, . . . , en} ⊂ S(A) is a partition of unity.

Here, for each 1 ≤ i ≤ n, the function a 7→ ei = ei(a) is a polynomial, with
coefficients in F , all of which are self-adjoint. These polynomials only depend on
λ1, . . . , λn, and coincide with those from Proposition 1 (except that here λ∗

i = λi).
Of course, the last statement of Proposition 1 remains valid if we replace E(A)

by S(A), and require λ∗
i = λi, µ

∗
j = µj, for 1 ≤ i ≤ n, 1 ≤ j ≤ m.

Corollary 4. Let A = B(H), where H is a complex Hilbert space. Then for
T ∈ B(H) we have T ∈ Sp(A) if and only if there exists an orthogonal direct sum
decomposition H1 ⊕ . . .⊕Hn of H, where each Hi is a closed subspace of H, such
that

T | Hi = λi · idHi
, for each 1 ≤ i ≤ n.

�

Corollary 5. Let F be a commutative topological field, and A a unital topologi-
cal F -algebra. Then the function a 7→ ei(a) from Propositions 1 and 3, being a
polynomial, is continuous, for each 1 ≤ i ≤ n. �

Remark B. For an ordered partition of unity (e1, ..., en), the function (e1, ..., en) 7→
n
∑

i=1
λiei ∈ Ep(A) is clearly continuous. By Corollary 5, for a ∈ Ep(A), the function
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a 7→ (e1(a), . . . , en(a)) is continuous. Their composition a 7→ (e1(a), ..., en(a)) 7→
∑

λiei(a) is identity by Proposition 1. We show that the other composition

(e1, . . . , en) 7→ ∑

λiei 7→
(

e1
(
∑

λiei
)

, . . . , en
(
∑

λiei
)

)

is also identity. We cal-

culate, e.g., e1
(
∑

λiei
)

. Analogously, as in the proof of Proposition 1, 2, we have

e1

(

∑

λiei

)

=

n
∏

j=2

( n
∑

i=1

(λi − λj)ei

) / n
∏

j=2

(λ1 − λj)

like in that proof, this product equals

en−1
1

n
∏

j=2

(λi − λj)
/

n
∏

j=2

(λ1 − λj) +
n
∑

i=2

en−1
i

n
∏

j=2

(λi − λj)
/

n
∏

j=2

(λ1 − λj) = e1.

Hence these maps constitute two homeomorphisms, inverse to each other.

The analogous statement holds for ordered self-adjoint partitions of unity, and
a ∈ Sp(A), by Proposition 3, and the above arguments.

These statements mean that when investigating local connectedness or connect-
edness of components of Ep(A) or Sp(A) via analytic or polynomial paths, we
obtain the same answers for connected components of ordered (self-adjoint) par-

titions of unity. For this observe only that the maps (e1, . . . , en) 7→
n
∑

i=1
λiei and

a 7→ (e1(a), . . . , en(a)) are polynomial (hence analytic) maps. Of course, for polyg-
onal maps we do not have an equivalence, but as we will see in the prooofs of
Theorems 12, 13, 14, we will deduce polygonal connections in Ep(A) and Sp(A)
from polygonal connections in ordered partitions of unity, and ordered self-adjoint

partitions of unity. For this observe that the map (e1, . . . , en) 7→
n
∑

i=1
λiei is linear.

Later in this paper we will only consider Ep(A) and Sp(A).
Apart from Theorems . . . and . . . , from now on, in the whole paper we restrict

our attention to the case when A is a unital complex Banach algebra, or sometimes
a C∗-algebra, or more generally a unital complex Banach algebra with a continuous
involution. For x ∈ A we write σ(x) for the spectrum of x in A.

Remark C. For unital complex Banach algebras A Corollary 5 can be shown also
in other ways.

1) For a ∈ Ep(A), by the spectral mapping theorem, we have

∅ 6= σ(a) ⊂ {λ1, . . . , λn}.

Then ei, for 1 ≤ i ≤ n, can be obtained as a Riesz idempotent

ei :=
1

2πi

∫

Γi

(a− λ)−1dλ, (C.1)

where Γi is a small circle with centre λi, and for i 6= j we have Γi ∩ Γj = ∅. Then

also a =
n
∑

i=1

λiei. Now (C.1) also implies continuity of the function a 7→ ei = ei(a)

(and self-adjointness of ei for C
∗-algebras, and λi’s real).
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2) Let a, a+ ε ∈ Ep(A), where ‖ε‖ ≤ 1, and 1 ≤ i ≤ n. Then

‖ei(a+ ε) − ei(a)‖ = ‖pi(a+ ε)− pi(a)‖

=

∥

∥

∥

∥

∥

∥

∥







n
∏

j=1

j 6=i

(a+ ε− λj)−
n
∏

j=1

j 6=i

(a− λj)







/

n
∏

j=1

j 6=i

(λi − λj)

∥

∥

∥

∥

∥

∥

∥

≤







n
∏

j=1

j 6=i

(‖a‖+ ‖ε‖+ |λj |)−
n
∏

j=1

j 6=i

(‖a‖+ |λj |)







/

n
∏

j=1

j 6=i

|λi − λj |

= σ‖a‖(‖ε‖),

where σ‖a‖ means that the constant in the σ sign depends on ‖a‖ (observe that
λ1, . . . , λn are fixed in the whole paper).

Remark D. For A a C∗-algebra (which is the only case of ∗-algebras that we will
be able to handle when investigating paths) it is no restriction of generality that
we restricted our attention to real λi’s. In fact, let a = a∗ ∈ A. Then σ(a) ⊂ R, cf.
[En], p. 1. Therefore for λ ∈ C \ R a− λ is invertible. So if we had admitted also
non-real λi’s, we could have omitted all the factors a − λi with λi ∈ C \ R from
p(λ), thus obtaining a polynomial q(λ) with q(a) = 0.

Theorem 6. Let A be a unital complex Banach algebra. Then Ep(A) is locally
polynomially connected, via cubic polynomial paths, for t ∈ [0, 1].

Moreover, suppose that a0, a1 ∈ Ep(A), a0 is fixed, and ‖a1 − a0‖ is sufficiently
small. Then a0 and a1 are similar, via some exponential (thus invertible element),
i.e.,

a1 = e−ca0e
c.

This implies an analytic path a(t) ∈ Ep(A) for t ∈ [0, 1], from a0 to a1, namely

a(t) = e−cta0e
ct.

The distance of this path from a0 tends to 0, if ‖a1 − a0‖ → 0.
Hence the connected component of a0 in Ep(A) is locally pathwise connected, via

similarity with an exponential function.

Theorem 7. Let A be a unital complex Banach algebra, and let c be a connected
component of Ep(A). Then C is a relatively open subset of Ep(A). Let a0, a1 ∈ C.
Then a0 and a1 are similar, via a finite product of exponentials (that is invertible),
i.e.,

a1 = e−cm . . . e−c1a0e
c1 . . . ecm ,

for some integer m ≥ 1, where ci ∈ A. This implies an analytic path a(t) ∈ C from
a0 to a1, for t ∈ [0, 1], namely

a(t) = e−cmt . . . e−c1ta0e
c1t . . . ecmt.

Additionally, we may suppose

c21 = · · · = c2m = 0,
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which implies a polynomial path

ã(t) = e−cmt . . . e−c1ta0e
c1t . . . ecmt = (1− cmt) . . . (1− c1t)a0(1 + c1t) . . . (1 + cmt),

from a0 to a1, for t ∈ [0, 1]. Here one of the factors containing c1 can be deleted,
without changing the value of the right-hand side in the last equation.

Hence c is pathwise connected via similarities with finite products of exponential
functions, and also with polynomial paths. Moreover, there is a single path satisfying
both properties.

Corollary 8. Let A be a unital complex Banach algebra. Let a0 ∈ Ep(A). Then
a0 is in the centre of A if and only if the connected component of a0 in Ep(A) is
{a0} (i.e., a0 is isolated in Ep(A)).

Theorem 9. Let A be a unital complex Banach algebra. If some connected compo-
nent of Ep(A) does not intersect the centre of A, then any element of C is contained
in a complex line entirely contained in C. In particular, C is unbounded.

Corollary 10. Let A be a unital complex Banach algebra. Then Ep(A) is a union
of its isolated point and of complex lines.

Theorem 11. Let λ1, . . . , λn ∈ R. Let A be a unital complex C∗-algebra. Suppose
that a0, a1 ∈ Sp(A), a0 is fixed, and ‖a1−a0‖ is sufficiently small. Then a0 and a1
are similar via a unitary,

a1 = e−ica0e
ic, where c = c∗ ∈ A, and ‖c‖ is small.

This implies a self-adjoint analytic path a(t) ∈ Sp(A) from a0 to a1, for t ∈ [0, 1],
namely

a(t) = a(t)∗ = e−icta0e
ict.

The distance of this path from a0 tends to 0, if ‖a1 − a0‖ → 0.

Hence the connected component of a0 in Sp(A) is locally pathwise connected via
a similarity with a unitary valued exponential function.

Theorem 12. Let λ1, . . . , λn ∈ R. Let A be a unital complex C∗-algebra, and let
C be a connected component of Sp(A). Then C is a relatively open subset of Sp(A).
Let a0, a1 ∈ C. Then ac and a1 are similar. Via some unitary s ∈ A, i.e.,

a1 = s−1a0s = s∗a0ss where s−1 = s∗.

Here, for some integer m ≥ 1, s is of the form

s = eic1 . . . eicm , where ci = c∗i ∈ A.

This implies a self-adjoint analytic path a(t) = a(t)∗ ∈ C from a0 to a1, for t ∈
[0, 1], namely

a(t) = e−icmt . . . e−ic1ta0e
ic1t . . . eicmt.
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Corollary 13. Let λ1, . . . , λn ∈ R. Let A be a unital complex C∗-algebra. Let
a0 ∈ Sp(A). Then a0 is in the centre of A if and only if the connected component
of a0 in Sp(A) is {a0} (i.e., a0 is isolated in Sp(A)).

Remark E. For the C∗-algebra case, local connectedness of Sp(A) via cubic poly-
nomial paths (analogously to Theorem 6 about Ep(A)) and connectedness of con-
nected components of Sp(A) via polygonal paths (analogously to Theorem 7 about
Ep(A)) are false, already for S(A).

Actually, this happens in the simplest case A := B(C2). There the connected
components of Sp(A) are those with given rank, cf. [AMMZ03]. Thus one connected
component is

C := {T ∈ S(B(C2)) | rank T = 1}.
For idempotent elements T , rank T = 1 means that the eigenvlaues are 0, 1

(with multiplicities 1), or equivalently that the sum and product of the eigenvalues
are 1, and 0, respectively. Equivalently, we have

TrT = 1 and det T = 0. (E.1)

Self-adjointness of T =: (aij)
2
i,j=1 means a11, a22 ∈ R, a21 = a12. That is,

for some a, b, c, d ∈ R we have a11 = a, a22 = b, a12 = c+ id, a21 = c− id.

Rewriting (E.1) for T self-adjoint, we have

a+ b = 1 and ab− (c2 + d2) = 0. (E.2)

Eliminating b, we obtain a(1− a)− (c2 + d2) = 0, or, equivalently

1

4
=

(

a− 1

2

)2

+ c2 + d2. (E.3)

Now suppose that for t ∈ [0, 1] T = T (t) =: (aij(t))
2
i,j=1 is a polynomial of t.

Then, with the above notations, for t ∈ [0, 1]

a = a(t), b = b(t), c = c(t), d = d(t)

are polynomials of t as well, and (E.3) holds for all t ∈ [0, 1]. Now observe that if a
polynomial of t vanishes at more values of t than its degree, then it is identically 0.
This implies that equality (E.3) continues to hold for all t ∈ R. Then each of
a(t)− 1/2, a(t), b(t), (c(t), d(t) is a polynomial bounded on R, i.e., is constant.

This shows that C contains no non-constant polynomial path, while |c| > 1.
Hence C is neither locally connected, nor connected via any polynomial paths.

Moreover, we cannot prove Theorem 6 and the part of Theorem 7 concerning sim-
ilarities via finite products of exponentials for general Banach ∗-algebras. Namely,
we used in their proofs S. Maeda [Ma], who already in the proof of his Lemma 1,
display, first equality uses the C∗-algebra property. Probably the mentioned state-
ments are false, but we have no counterexamples.

The following Theorem 13 ?? is a particular case of the next Theorem 14. We
separated these two statements because the more general Theorem 14 will be proved
by reducing its statement to its particular case dealt with in Theorem 13.
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Theorem 14. Let A = B(X), where X is a complex Banach space. Let a0, a1 ∈
Ep(A), with a0 fixed and ‖a1−a0‖ sufficiently small. Then there exists a polygonal
path in Ep(A), connecting a0 and a1, consisting of n segments. The distance of this
path from a0 tends to 0, if ‖a1 − a0‖ → 0.

Hence the connected component of a0 in Ep(A) is locally pathwise connected via
paths of n segments.

Theorem 15. Let A be a unital complex Banach algebra. Let a0, a1 ∈ Ep(A),
with a0 fixed, and ‖a1 − a0‖ small. Then there exists a polygonal path in Ep(A),
connecting a0 and a1, consisting of n segments. The distance of this path from a0
tends to 0, if ‖a1 − a0‖ → 0.

Hence the connected component of a0 in Ep(A) is locally pathwise connected via
paths of n segments.

Theorem 16. Let A be a unital complex Banach algebra, let C be a connected
component of Ep(A), and let a0, a1 ∈ C. Then there exists a polygonal path in
Ep(A), connecting a0 and a1.

Remark F. For C∗-algebras, in general, polygonal connection between elements of a
connected component of Sp(A) is impossible. This holds already for p(x) = x(x−1),
i.e., for S(A), even in the simplest case A = B(H), for H a Hilbert space. Although
this follows from Remark E, we give here another argument, which yields infinitely
many examples for this special case.

The connected components of S(A) = S(B(H)) are

{

e ∈ S(A) | dim N(E) = α, dim R(E) = β,

for some cardinalities α, β ≥ 0, with α + β = dim H
}

.

(Here dim is the dimension in Hilbert space sense.) Let dim H ≥ 2, and let 0 <
β = k < dim H an integer. Let Ck be the connected component of S(A), consisting
of self-adjoint (i.e., orthogonal) projections of rank k. We claim that Ck contains
no non-trivial segment (while it consists of more than one element).

Let a0, a1 ∈ Ck, such that the segment [a0, a1] lies in Ck. For a ∈ [a0, a1] a
is a compact operator, with singular values ‖a‖ = s0(a) ≥ s1(a) ≥ s2(a) ≥ . . . .
These si(a)’s are the eigenvalues of the non-negative square root

√
a∗a = a, with

multiplicities, in decreasing order. (For dim H finite, si(a) = 0 for i ≥ dim H.)
Therefore 1 = s0(a) = . . . = sk−1(a) > 0 = sk(a) = sk+1(a) = . . . . Thus all
singular numbers are constant on the segment [a0, a1]. This implies

a0 = a1,

by B. Aupetit, E. Makai, Jr., J. Zemánek [AMZ], Theorem, p. 517.

Corollary 17. Let A = B(H), where H is a (complex) Hilbert space. Then the
(pathwise) connected components of Ep(A) are of the form

{a ∈ Ep(A) | for each 1 ≤ i ≤ n the Hilbert space dimension of
the eigensubspace corresponding to the eigenvalue λi is αi}, where
α1, . . . , αn ≥ 0 are any cardinalities whose sum is the Hilbert space
dimension of H.
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For the same A, considered as a C∗-algebra, and with λ1, . . . , λn ∈ R, we have
the following. The (pathwise) connected components of Sp(A) are of the same form
as given above, where still the respective eigensubspaces are orthogonal.

Therefore the connected components of Ep(A) and Sp(A) are just the similarity
classes of operators in Ep(A) and Sp(A) via conjugation with an invertible, or
unitary element.

Remark G. For A = B(H), if we consider all self-adjoint elements, with their
respective self-adjoint partitions of unity, then unitary similarity of these self-adjoint
partitions of unity for a0, a1 ∈ A implies a path joining a0, a1 in the set of elements
unitarily similar to a0, a1. This can be shown as in the second part of the proof
of Corollary 16. However it is not clear how to extend the definition of Sp(A)
from finite real spectra to more general self-adjoint partitions of unity (and then to
investigate their connected components).

Problem. It would be a natural conjecture that the distance of different connected
components of Ep(A), for A a unital complex Banach algebra (at least for A a unital
complex C∗-algebra) and that the distance of different connected components of
Sp(A), for A a unital complex C∗-algebra, and λ1, . . . , λn ∈ R is at least

min
{

|λi − λj | | 1 ≤ i, j ≤ n, i 6= j
}

.

This was the case for p(λ) = λ(λ − 1), i.e., for idempotents, or self-adjoint
idempotents. This implies the conjecture for n = 2, i.e., for p(λ) = (λ−λ1)(λ−λ2) in
general. We just have to observe that the set E(λ−λ2)(λ−λ2)(A), or S(λ−λn)(λ−λ2)(A)
can be obtained from E(A), or S(A), by the transformation x 7→ λ1 ·1A+(λ2−λ1)x,
for x ∈ A. For S(λ−λ1)(λ−λ2)(A), with λ1, λ2 ∈ R, we have by the same argument
that the distance of different connected components is at least |λ1 − λ2|.

Clearly this conjecture, if true, would be sharp, for any A. Namely, λ1·1A, . . . , λn·
1A ∈ Ep(A) (or ∈ Sp(A)), and since they are central, by Corollaries 8 and 12 their
connected components in Ep(A) (in Sp(A)) are {λ1 ·1A}, . . . , {λn ·1A}. The minimal
pairwise distance of these components is

min
{

|λi − λj | | 1 ≤ i, j ≤ n, i 6= j
}

.

However, for n ≥ 3 our proof does not give even that two different connected
components of Ep(A) would have a positive distance. There arise several questions.

1) Are these distances positive?
2) Are these distances bounded below by some positive function of λ1, . . . , λn?
3) Are these distances at least

min
{

|λi − λj | | 1 ≤ i, j ≤ n, i 6= j
}

?

The same questions arise for the C∗-algebra case, with self-adjoint idempotents,
and λ1, . . . , λn ∈ R, but then questions 1) and 2) are answered positively in the
following Theorem 16.

Even the commutative case would be of interest.
Observe that if we had a positive answer for 2) or 3), then this would imply the

stronger statement that even the spectral distance of different connected compo-
nents (i.e., the infimum of the spectral radii of the differences of elements in the
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different components of Ep(A) in question) would satisfy the respective inequality.
(For the C∗-algebra case the norm equals the spectral radius, so there is no such
separate question.) In fact, Ep(A) and its connected components do not depend
on the particular norm of A. For a ∈ C, b ∈ D, with C,D distinct components of
Ep(A) we can renorm A so that ‖a − b‖ < ̺(a − b) + ε, for any ε > 0 (and ‖1A‖
remains 1), where ̺(·) denotes spectral radius. Then any lower bound for ‖a − b‖
implies the same lower bound for ̺(a− b).

If question 3) had a positive answer for Banach algebras, then it would have a
positive answer for C∗-algebras as well. Namely, different connected components
Sp(A) lie in different connected components of Ep(A), by [BFML], § 1, Applications
2). Observe that the considerations there only use the C∗-algebra generated by
{P (t) | t ∈ [0, 1]}. Also, they concern only the case of E(A) and S(A). However,
a path connecting a0, a1 ∈ Sp(A) in Ep(A) (cf. Theorem 7 and Theorem 16) yields
paths connecting the idempotents ei(a0) to the idempotents ei(a1), where ei(·) are
the functions in Proposition 1. Moreover, by Corollary 5, ei(·) from Proposition 1
is a continuous function of its argument.

Since [BFML], § 1, Applications 2) essentially uses the C∗-algebra property,
most probably for Banach ∗-algebras with continuous involutions different con-
nected components of Sp(A), or S(A) may lie in the same connected component of
Ep(A), or E(A). However, we do not have a concrete example.

Theorem 18. Let A be a unital complex C∗-algebra, and λ1, . . . , λn ∈ R. Then
the distance of different connected components of Sp(A) is at least

(

min
1≤α,β≤n

α6=β

|λα − λβ |
)

min
1≤i≤n

n
∏

j=1

j 6=i

|λi − λj |
/

/

[ n
∏

j=1

j 6=i

(

max
k 6=j

|λk − λj |+ min
1≤α,β≤n

α6=β

|λα − λβ |
)

−
n
∏

j=1

j 6=i

max
k 6=j

|λk − λj |
]

.

For n = 2 this gives back that the distance between different connected compo-
nents of S(A) is at least 1, and the distance between different connected components
of Sp(A) is at least |λ1 − λ2|, that is sharp, cf. the following problem. However, for
n ≥ 3 this estimate is probably far from the conjecturable value

min
i6=j

|λi − λj |.

E.g., for the case λi = e(2πi)(i/n) the expression in Theorem 17 is

en??(
∫

π

0
log(2 sin t)dt/π+o(1)) / 2n,

while

min
i6=j

|λi − λj | = |λ2 − λ1| = 2 sin(π/n) = (2π/n) · (1 + o(1)).

Still observe that the estimate in Theorem 17 is invariant under simultaneous
translation of λ1, . . . , λn, and their simultaneous multiplication by a number of
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absolute value 1, and is homogeneous of first degree under their simultaneous mul-
tiplication by a positive number. These properties are shared by the (yet unknown)
expression of the exact infimum.

Now we turn to another subject. We begin with a notation. For Banach spaces
X , Y , we denote by B(X, Y ) the Banach space of all bounded linear operators
X → Y . In our papers B. Aupetit, E. Makai, Jr., M. Mbekhta, J. Zemánek
[AMMZ03], [AMMZ14] we investigated the following situation. Let A and B be
Banach algebras, and let 0 ∈ U ⊂ C be an open set. We investigated analytic
families of idempotents q : U → E(B) ⊂ B, and analytic familes π : U → B(A,B),
whose values are surjective Banach algebra homomorphisms A → B. We looked
for conditions which assure that there exists an analytic family of idempotents
p : U → E(A) ⊂ A, or p : V → E(A) ⊂ A, where 0 ∈ V ⊂ U is some open set of C,
such that

q(λ) = π(λ) for all λ ∈ U, or λ ∈ V, respectively.

(We called them global, or local liftings of analytic families of idempotents along
analytic families of surjective Banach algebra homomorphisms.) We had analogous
theorems for S(A) and S(B) as well.

It is a natural question, posed by L. W. Marcoux on the conference on linear
algebra in Ljubljana, Slovenia, 2014 (and also earlier by some participant of a
conference on operator theory at the Banach centre, Warsaw, some years ago),
whether these theorems have extensions for Ep(A), or Sp(A).

A real analytic map from an open subset G of R (Rn) to a Banach space is a
map f which for each x0 ∈ G has locally a power series expansion

f(x) =
∞
∑

0

ai(x− x0)
i

(with the analogous formula for Rn). When we write in the following theorems
spectrum of an element of Ker π(λ) ⊂ A or Ker π(0) ⊂ A, we mean spectra in A.
Two idempotents e, f in some Banach algebra are orthogonal if ef = fe = 0. For ex-
amples where the hypotheses of the following theorems are satisfied cf. [AMMZ14],
§ 3.

We remark that the global lifting Theorems 19, 20 are generalizations of
[AMMZ14], Theorems 3, 4, if these are restricted to single idempotents, rather
than for sequences of idempotents. However, the local lifting Theorems 21, 22
have stronger counterparts for idempotents, cf. [AMMZ14], Theorems 1, 2, inas-
much there the spectral hypotheses are weaker: the spectrum of each element of
Ker π(0) does not disconnect C, or is totally disconnected, respectively.

Theorem 19. Let U be an open subset of C. Let A and B be unital complex
Banach algebras, and let π : U → B(A,B) be an analytic map, whose values are
surjective unit-preserving homomorphisms A → B. Suppose that the spectrum of
each element of Ker π(λ), for each λ ∈ U , is {0}. Let b(·) : U → Ep(B) (⊂ B) be
an analytic map. Then there exists an analytic map a(·) : U → Ep(A) (⊂ A) such
that

π(λ)a(λ) = b(λ) for each λ ∈ U.
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Theorem 20. Let G be an open subset of R. Let A and B be unital complex
Banach algebras with continuous involutions, and let π : G → B(A,B) be a real
analytic map, whose values are surjective unit-preserving ∗-homomorphisms A →
B. Suppose that the spectrum of each element of Ker π(λ), for each λ ∈ G, is {0}.
Let b(·) : G → Sp(B) (⊂ B) be a real analytic map. Then there exists a real analytic
map a(·) : G → Sp(A) (⊂ A) such that

π(λ)a(λ) = b(λ) for each λ ∈ G.

The following Theorems 20 and 21 are localized versions of Theorems 18 and
19. It is interesting that we have in Theorems 20 and 21 the spectral hypothesis of
Theorems 18 and 19 for λ = 0 only, and still we have local versions of Theorems
18 and 19 for some open set (V or H) containing 0.

Theorem 21. Let U be an open subset of C, containing 0. Let A and B be unital
complex Banach algebras, and let π : U → B(A,B) be an analytic map, whose values
are unit-preserving homomorphisms A → B, such that π(0) is surjective. Suppose
that the spectrum of each element of Ker π(0) is {0}. Let b(·) : U → Ep(B) (⊂ B)
be an analytic map. Then there exists an open set V ⊂ C, such that 0 ∈ V ⊂ U ,
and an analytic map a(·) : V → Ep(A) (⊂ A), such that

π(λ)a(λ) = b(λ) for each λ ∈ V.

Theorem 22. Let G be an open subset of R, containing 0. Let A and B be unital
complex Banach algebras with continuous involutions, and let π : U → B(A,B) be
a real analytic map, whose values are unit preserving ∗-homomorphisms A → B,
such that π(0) is surjective. Suppose that the spectrum of each element of Ker π(0)
is {0}. Let b(·) : G → Sp(B) (⊂ B) be a real analytic map, then there exist an open
set H ⊂ R, such that 0 ∈ H ⊂ G, and a real analytic map a(·) : H → Sp(A) (⊂ A)
such that

π(λ)a(λ) = b(λ) for each λ ∈ H.

Remark H. The following statements follow from the proofs in [AMMZ14], cf. in
particular [AMMZ14], Remark 1. In Theorem 18 we may replace U by a Stein
manifold. In Theorem 19 we may suppose G ⊂ Rn open, provided each connected
component of U has a neighbourhood base in Cn consisting of domains of holomor-
phy, when Rn is embedded in Cn in the canonical way. In Theorem 20 we may
suppose that 0 ∈ U ⊂ Cn is open. In Theorem 21 we may suppose that 0 ∈ G ⊂ Rn

is open.

Remark I. We repeat a question posed in [ . . . ] that has relations to the spectral
hypotheses in Theorems 19–22. Let H be a Hilbert space, and let k(λ) be an
analytic family of compact operators in B(H), for λ ∈ C, with |λ| < 1. Suppose
that for some sequence {λn} ⊂ C with |λn| < 1. Converging to 0, we have that the
spectrum of k(λn) is {0}. Is then the spectrum of k(λ) equal to {0} for each λ with
|λ| < 1? [ . . . ] gave a positive answer if each k(λ) has finite rank.

Remark J. In [AMMZ03] we asked whether there exists an infinite dimensional
Banach space X , such that its Calkin algebra C(X) (i.e., B(X)/K(X), where B(X)
and K(X) are the Banach algebras of all bounded, or compact linear operators



16 E. MAKAI, JR. AND J. ZEMÁNEK

on X , respectively) is commutative. Then, in particular, by [Ze], cited in the
Introduction under number 4, each point of E(C(X)), being central, is isolated in
E(C(X)).

It is known that there exists an infinite dimensional Banach space X , such that

B(X) = {λI +K | λ ∈ C, K ∈ K(X)},

cf. [ . . . ]. Then C(X) ∼= C is commutative, and thus E(C(X)) = {0, 1} consists of
two isolated points.

However, it remains open, whether E(C(X)) can consist of n ∈ [3,∞) isolated
points.

3. Proofs

Proof of Proposition 1. 1. We begin with the proof of the implication that a ∈
Ep(A) implies a =

n
∑

i=1
λiei, with {e1, . . . , en} as in the proposition.

Let p1, . . . , pn denote the Lagrange interpolation polynomials, i.e.,

pi(λ) =
n
∏

j=1

j 6=i

(λ− λj)
/

n
∏

j=1

j 6=i

(λi − λj).

Then
p : (λj) = δij for 1 ≤ i, j ≤ n,

and any polynomial f over F , of degree at most n− 1 can be written, in a unique
way, as a linear combination of these polynomials, namely as

f(λ) =

n
∑

i=1

f(λi)pi(λ).

In particular, we have

1F =
n
∑

i=1

pi(λ), and λ =
n
∑

i=1

λipi(λ). (1.1)

(Recall that, by hypothesis, n ≥ 2.)
Let us define

ei := pi(a).

Then 1F =
n
∑

i=1
pi(λ) implies

1A =

n
∑

i=1

pi(a) =

n
∑

i=1

ei, (1.2)

and λ =
n
∑

i=1
λipi(λ) implies

a =

n
∑

i=1

λipi(a) =

n
∑

i=1

λiei. (1.2)
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Let i 6= j. Then pi(λ)pj(λ) is a multiple of p(λ), and p(a) = 0A, hence

0A = pi(a)pj(a) = eiej . (1.4)

Now we calculate e2i . Let us divide pi(λ) by λ− λi (with remainder), obtaining

pi(λ) = (λ− λi)qi(λ) + pi(λi) = (λ− λi)qi(λ) + 1.

Multiplying both sides with pi(λ), we obtain

pi(λ)
2 = pi(λ)(λ− λi)qi(λ) + pi(λ) =

p(λ)
n
∏

i=1
j 6=i

(λ− λj)
qi(λ) + pi(λ).

Substitute here a for λ, and observe p(a) = 0. Then we obtain

e2i = pi(a)
2 = pi(a) = ei. (1.5)

2. We turn to the proof of the converse implication. So, let a :=
n
∑

i=1

λiei, with

{e1, . . . , en} as in the proposition. We calculate p(a). We have, using
n
∑

i=1

ei = 1A,

that

p(a) = p

( n
∑

i=1

λiei

)

=

n
∏

j=1

( n
∑

i=1

λiei − λj

)

=

n
∏

j=1

( n
∑

i=1

λiei − λj · 1A
)

=
n
∏

j=1

( n
∑

i=1

λiei − λj ·
n
∑

i=1

ei

)

=
n
∏

j=1

( n
∑

i=1

(λi − λj)ei

)

.

Here the last expression is an n-fold product of sums of n terms of the form (λi −
λj)ei. Rewrite this as a sum of nn terms, each term being an n-fold product,
and recall that the ei’s commute. Then each of these n-fold products, containing
different ei’s, vanishes. There remains a sum of n terms, each term being an n-fold
product, containing only a single ei. Such an n-fold product equals

n
∏

j=1

(λi − λj) · eni = 0 · ei = 0A.

Then p(a) is a sum of n terms, each being equal to 0A, so

p(a) = 0A, i.e., a ∈ Ep(A). (1.6)

3. By 1 the function a 7→ ei(a) is the polynomial function λ 7→ pi(λ).

4. By the hypothesis of the last statement of the proposition we have, for each
integer N ≥ 0, that

aN =
n
∑

i=1

λi
Nei =

m
∑

j=1

µj
Nfj , thus

n
∑

i=1

λi
Nei +

m
∑

j=1

µj
N (−fj) = 0.
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We use these equations for 0 ≤ N ≤ n + m − 1. We have n,m > 0, and we may
suppose n ≤ m.

First suppose that λi 6= µj for each 1 ≤ i ≤ n, 1 ≤ j ≤ m. Then we have a system
of linear equations on the vector space A, with determinant the Vandermonde
determinant of λ1, . . . , λn, µ1, . . . , µm, that are all distinct. Then the Vandermonde
determinant is not 0, and the unique solution of this system is e1 = . . . = en =
f1 = . . . = fm = 0, a contradiction. Hence, say, λ1 = µ1.

Then our system of equations reduces to

λ1
N (e1 − f1) +

n
∑

i=2

λi
Nei +

m
∑

j=2

µj
N (−fj) = 0.

If λi 6= µj for each 2 ≤ i ≤ n, 2 ≤ j ≤ m, then we use these equations for
0 ≤ N ≤ n+m− 2. Again the determinant is the Vandermonde determinant of λ1

(= µ1), λ2, . . . , λn, µ2, . . . , µm. Therefore

e1 − f1 = e2 = . . . = en = f2 = . . . = fm = 0.

If n = m = 1, we have λ1 = µ1, e2 = f2, and we are done. Else we have a
contradiction to ei 6= 0, fj 6= 0. Therefore we may suppose, say, λ2 = µ2. We have

λ2
N (e1 − f1) + λ2

N (e2 − f2) +

n
∑

i=3

λi
Nei +

m
∑

j=3

µj
Nfj = 0.

If λi 6= µj for each 3 ≤ i ≤ n, 3 ≤ j ≤ m, then we use our equations only for
0 ≤ N ≤ n+m− 3. Like above, we obtain

e1 − f1 = e2 − f2 = e3 = . . . = en = f3 = . . . = fm = 0.

If n = m = 2, we have λ1 = µ1, e1 = e2, and also λ2 = µ2, e2 = f2, and we are
done. Else we have a contradiction to ei 6= 0, fj 6= 0. Therefore we may suppose,
say, that λ3 = µ3.

We continue analogously at each step, either the statement of the proposition
becomes proved, or we have a contradiction to ei 6= 0, fj 6= 0.

If we have not obtained the statement of the proposition earlier, we get to

e1 − f1 = e2 − f2 = . . . = en − fn = fn+1 = . . . = fm = 0.

Then either m = n, and we have the statement of the proposition, or m ≥ n + 1,
and we have a contradiction. This proves the last statement of the proposition. �

Proof of Proposition 3. In 1 of the proof of Proposition 1 we showed that a ∈
Ep(A) implied a =

n
∑

i=1

λiei, with {e1, . . . , en} as in Proposition 1. Now we have

a ∈ Sp(A) ⊂ Ep(A), so these considerations apply. There remains to prove ei
∗ = ei.

We have

ei = pi(a) =
n
∏

j=1

j 6=i

(a− λj)
/

n
∏

j=1

j 6=i

(λi − λj).
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Therefore, a = a∗ and λi
∗ = λi imply

ei = pi(a) = pi(a
∗) = pi(a)

∗ = ei
∗. (3.1)

In 2 of the proof of Proposition 1 we showed that a =
n
∑

i=1

λiei with {e1, . . . , en}
as in Proposition 1, implied a ∈ Ep(A). Now λi = λi

∗ and ei = ei
∗ imply

a∗ =
(

n
∑

i=1

λiei

)∗

=
n
∑

i=1

λi
∗ei

∗ =
n
∑

i=1

λiei = a.

Then a ∈ Ep(A) and a∗ = a imply

a ∈ Sp(A). (3.2)

By Proposition 1 (cf. 3 of its proof), we know that a 7→ ei(a) is a polynomial,
with coefficients in F . But this polynomial is λ 7→ pi(λ), whose coefficients are
rational functions of the self-adjoint elements λi, hence themselves are self-adjoint.

�

Proof of Theorem 6. By Proposition 1 we have

a0 =
n
∑

i=1

λie0i, a1 =
n
∑

i=1

λie1i,

where e0i, e1i ∈ E(A). By Corollary 5, we have

‖e1i − e0i‖ < 1, for all 1 ≤ i ≤ n,

provided ‖a1 − a0‖ is sufficiently small. Therefore, by J. Zemánek [Ze], Lemma 3.1
and its proof, there exist si ∈ A involutions. For all 1 ≤ i ≤ n, such that

e1i = s−1
i e0isi. (6.1)

Moreover, for ‖a1−a0‖ sufficiently small we have ‖e1i− e0i‖ sufficiently small, and
then by [Ze], Lemma 3.1, Proof

‖si − (2e0i − 1)‖ is sufficiently small as well. (6.2)

Here 2e0i − 1 is an involution, thus σ(2e0i − 1) ⊂ {−1, 1} so for ‖si − (2e0i − 1)‖
sufficiently small, by upper semicontinuity of the spectrum,

si = eci , hence e1i := e−cie0ie
ci , (6.3)

where ci ∈ A. Moreover, we may choose c′i, c
′′
i ∈ A so that

e1i = e−c′′i e−c′ie0ie
c′iec

′′
i and (c′i)

2 = (c′′i )
2 = 0, (6.4)

cf. J. Esterle [Es], Theorem, Proof. Here even one of the factors containing c′i can
be deleted, without changing the value of the right-hand side expression of the
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first equality in (6.4), leaving (6.4) valid, cf. [Es], Theorem, Proof. For ‖a1 − a0‖
sufficiently small, we have for each 1 ≤ i ≤ n that ‖e1i − e0i‖ is sufficiently small,
and then for each 1 ≤ i ≤ n we have that

both ‖c′i‖ and ‖c′′i ‖ are small, (6.5)

cf. [Es], Theorem, Proof.
Now we define

s :=
n
∑

i=1

e0isi =
n
∑

i=1

sie1i and s′ :=
n
∑

i=1

s−1
i e0i =

n
∑

i=1

e1is
−1
i . (6.6)

(The equalities (6.6) follow from (6.1).) Then

s′s :=
n
∑

i=1

s−1
i e0isi =

n
∑

i=1

e1i = 1, ss′ :=
n
∑

i=1

sie1is
−1
i =

n
∑

i=1

e0i = 1, (6.7)

hence
s′ = s−1.

Then we have

s−1a0s =
n
∑

i=1

s−1
i e0i ·

n
∑

j=1

λje0j ·
n
∑

k=1

e0ksk =
n
∑

i=1

s−1
i e0iλisi =

n
∑

i=1

λie1i = a1. (6.8)

Rewriting this, by (6.6) and (6.3) we have

a1 =

n
∑

i=1

s−1
i e0i · a0 ·

n
∑

i=1

e0isi =

n
∑

i=1

e−cie0i · a0 ·
n
∑

i=1

e0ie
ci . (6.9)

Analogously, we have by (6.4)

a1 =
n
∑

i=1

λie1i =
n
∑

i=1

e−c′′i e−c′ie0i · a0 ·
n
∑

i=1

e0ie
c′iec

′′
i

=
n
∑

i=1

(1− c′′i )(1− c′i)e0i · a0 ·
n
∑

i=1

e0i · (1 + c′i)(1 + c′′i ).

(6.10)

This implies an analytic, or polynomial path

a(t) :=
n
∑

i=1

e−cite0i · a0 ·
n
∑

i=1

e0ie
cit, (6.11)

or

ã(t) : =

n
∑

i=1

e−c′′i te−cite0i · a0 ·
n
∑

i=1

e0ie
c′itec

′′
i t

=

n
∑

i=1

(1− c′′i t)(1− c′it)e0i · a0 ·
n
∑

i=1

e0i(1 + c′it)(1 + c′′i t),

(6.12)
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between a(0) = a0 and a(1) = a1, with t ∈ [0, 1]. In (6.12), for all 1 ≤ i ≤ n, one
of the factors containing c′i can be deleted, leaving the value of the last expression
in (6.12) unchanged. This means that we have a cubic polynomial path between
ã(0) = a0 and ã(1) = a1.

Since by (6.5) ‖c′i‖ and ‖c′′i ‖ are small, for each 1 ≤ i ≤ n, the distance of this
cubic polynomial path to a0 for t ∈ [0, 1] is small, proving local connectedness of
Ep(A) via cubic polynomial paths.

For ‖a1 − a0‖ sufficiently small, for all 1 ≤ i ≤ n ‖si − (2e0i − 1)‖ is small (cf.
(6.2)), and therefore

∥

∥

∥

∥

n
∑

i=1

e0i
(

si − (2e0i − 1)
)

∥

∥

∥

∥

=

∥

∥

∥

∥

n
∑

i=1

e0isi −
n
∑

i=1

e0i
(

2e0i − 1
)

∥

∥

∥

∥

=

∥

∥

∥

∥

n
∑

i=1

e0isi −
n
∑

i=1

e0i

∥

∥

∥

∥

= ‖s− 1‖

is small as well. As soon as ‖s− 1‖ < 1, we have

s = ec, (6.13)

where ‖c‖ is small as well, for ‖s− 1‖ small. Then, by (6.8) and (6.13)

a1 = s−1a0s = e−ca0e
c,

that implies an analytic path

â(t) = e−cta0e
ct (6.14)

between â(0) = a0 and â(1) = a1, for t ∈ [0, 1].
For ‖a1 − a0‖ sufficiently small, ‖c‖ is sufficiently small, and then the distance

of this whole path from a0 is small. This proves local connectedness of Ep(A), via
similarities with exponential functions. �

Remark K. Even though the inidividual si’s can be chosen as involutions, however
most probably

s =
n
∑

i=1

e0isi

will not be an involution in general. Thus in this respect Ep(A) behaves differently
from E(A). We do not know if s could be chosen as an involution, in the proof of
Theorem 6.

The same remark concerns also the proof of Theorem 10, for the analogous
question for C∗-algebras.

Proof of Theorem 7. By Theorem 6, Ep(A) ⊂ A is locally (pathwise) connected.
This implies that all connected components of Ep(A) are relatively open subsets of
Ep(A).

Now let us fix a0 ∈ C. We let

C(a0) :=
{

a∈Ep(A) | ∃m ≥ 1 integer, ∃c1, ..., cm∈A, a = e−cm ...e−c1aec1 ...ecm
}

.
(7.1)
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Since a0 = e−0a0e
0, we have a0 ∈ C. Then for a ∈ C(a0) there exists an analytic

path

a(t) = e−cmt . . . e−c1ta0e
c1t . . . ecmt, (7.2)

hence a ∈ C. That is,

C(a0) ⊂ C. (7.3)

By Theorem 6, C(a0) is a relatively open subset of Ep(A). In fact, for a ∈ C(a0),
any a′ ∈ Ep(A) sufficiently close to a is of the form

a′ = e−caec = e−ce−cm . . . e−c1a0e
c1 . . . ecmec,

hence a′ ∈ C(a0) as well (with integer m+ 1 and elements c1, . . . , cm, c ∈ A).
Now suppose that C(a0) $ C. Since C is connected, it cannot have a non-trivial

open-and-closed subset. Since a0 ∈ C(a0) $ C, and C(a0) is open, therefore C(a0)
is not closed. That is, there is a point

b ∈ C(a0) ∩
(

C \ C(a0)
)

(7.4)

( meaning closure in Ep(A), that is closure in A, by closedness of Ep(A).)

By b ∈ C(a0) any neighbourhood of b, relative to Ep(A), intersects c(a0). By
Theorem 6, some neighbourhood of b consists of elements of the form e−cbec, where
c ∈ A. That is,

e−cbec = e−cm . . . e−c1a0e
c1 . . . ecm , (7.5)

which implies

b = ece−cm . . . e−c1a0e
c1 . . . ecme−c. (7.6)

Therefore b ∈ C(a0) (with integer m + 1, and elements c1, . . . , cm,−c ∈ A). How-
ever, by (7.4) b /∈ C(a0), a contradiction. This proves

C(a0) = C. (7.7)

Then for a1 ∈ C = C(a0) (7.1) implies an analytic path a(t) ∈ Ep(A), thus
a(t) ∈ C, from a0 to a1. Namely,

a(t) = e−cmt . . . e−c1ta0e
c1t . . . ecmt, (7.8)

for t ∈ [0, 1].
As we have seen in the proof of Theorem 6, (6.4), (6.12), we may additionally

suppose c21 = . . . = c2m = 0, which implies a polynomial path

ã(t) = e−cmt . . . e−c1ta0e
c1t . . . ecmt = (1− cmt) . . . (1− c1t)a0(1 + c1t) . . . (1 + cmt),

(7.9)
from a0 to a1. For t ∈ [0, 1], and here one of the factors containing c1 can be
deleted, without changing the value of the right-hand side of (7.9), by J. Esterle
[Es], Theorem, Proof (cf. the proof of Theorem 6). �

Proof of Corollary 8. Let a0 ∈ Ep(A), and let C be the connected component of a0
in Ep(A).
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Suppose that a0 is in the centre of A, then for any a1 ∈ C, by Theorem 7, for
some invertible s we have

a1 = s−1a0s = a0s
−1s = a0.

Hence C = {a0}.
Now suppose that a0 is not in the centre of A. Let x ∈ A, a0x 6= xa0. Then, for

t → 0,

C ∋ e−txa0e
tx = (1− tx)a0(1 + tx) +O(t2) = a0 + t(−xa0 + a0x) +O(t2) 6= a0.

Then C is not the singleton {a0}. �

Proof of Theorem 9. Let a ∈ Ep(A) be an arbitrary element of Ep(A). That is,

a =
n
∑

i=1

λiei,

where {e1, e2, e3, . . . , en} is an arbitrary partition of unity to mutually orthogonal
idempotents in A. We want to perturb e1 and e2 to e′1 and e′2. Leaving e3, . . . , en
unchanged, so that we obtain a new partition of unity to mutually orthogonal
idempotents in A.

Let x ∈ A be arbitrary, and let

e′1 := e1 + e1xe2, e′2 := e2 − e1xe2, and e′i = ei for i ≥ 3.

Then

e′1 + e′2 + e′3 + . . .+ e′n = 1, (e′1)
2 = e′1, (e′2)

2 = e′2, e′1e
′
2 = e′2e

′
1 = 0,

and for i, j ≥ 3, i 6= j

e′1e
′
i = e′ie

′
1 = e′2e

′
i = e′ie

′
2 = 0 and e′ie

′
j = 0.

Thus {e′1, e′2, e′3, . . . , e′n} is a new partition of unity to mutually orthogonal idem-
potents in A.

We consider the element

a′ := λ1e
′
1 + λ2e

′
2 + λ3e

′
3 + . . .+ λne

′
n ∈ Ep(A).

Multiplying it from left by e′1, e
′
2 we obtain

e′1a
′ = λ1e

′
1 = λ1(e1 + e1xe2) and e′2a

′ = λ2e
′
2 = λ2(e2 − e1xe2).

Also we have either λ1 6= 0 or λ2 6= 0. In the first case we use the equation for
e′1a

′, in the second case we use the equation for e′2a
′. Thus unless the continuous

linear map A ∋ x 7→ λ1 · e1xe2 (or λ2 · e1xe2) is identially 0, its image contains a
(complex) line. In the second one of these cases also the image of the continuous
linear map

A ∋ x 7→ a′ = λ1e
′
1 + λ2e

′
2 + λ3e

′
3 + . . .+ λne

′
n

= λ1(e1 + e1xe2) + λ2(e2 − e1xe2) + λ3e3 + . . .+ λnen
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contains a (complex) line. For x = 0 we have a′ = λ1e1+λ2e2+λ3e3+. . .+λnen, so
the above line contans the arbitrarily chosen element a of Ep(A). Now a′ ∈ Ep(A),
and a′ is in the same connected component of Ep(A) as a.

We can replace e1, e2 by any other ei, ej (i 6= j) in the above considerations.
Therefore either

1) for each x ∈ A and each i 6= j we have eixej = 0, or

2) for some i 6= j the image of the map A ∋ x 7→
n
∑

i=1
λie

′
i contains a complex

line.
In Case 2) the theorem is proved.
In Case 1)

eix = eix · 1 =
n
∑

i6=j

eixej + eixei = eixei and

xei = 1 · xei =
n
∑

i6=j

ejxei + eixei = eixei.

Therefore
eix = eixei = xei.

Here x ∈ A is arbitrary, hence ei ∈ Z(A), and

a =
n
∑

i=1

λiai ∈ Z(A).

Then by Corollary 8 the connected component of Ep(A) containing a is the single-
ton {a}. �

Proof of Corollary 10. By Corollary 8 and Theorem 9, the central points of Ep(A)
are isolated in Ep(A), and the non-central points of Ep(A) lie on complex lines
contained in Ep(A). �

Proof of Theorem 11. The proof is analogous to that of Theorem 6.
We have that si, that was an involution in the proof of Theorem 6, is now even

a self-adjoint involution, by S. Maeda [Ma], Lemma 2. Moreover, s, defined in (6.6)
in the proof of Theorem 6, now satisfies, also using Proposition 3, (6.7) from the
proof of Theorem 6, and s2i = 1, that

s∗ =

n
∑

i=1

s∗i e
∗
0i =

n
∑

i=1

sie0i =

n
∑

i=1

s−1
i e0i = s′ = s−1, (11.1)

so s is unitary as well. Moreover, from the proof of Theorem 6, for ‖a1 − a0‖
sufficiently small, ‖s− 1‖ is small as well. As soon as ‖s− 1‖ < 1, we have

s = eic, (11.2)

where ‖c‖ is small for ‖s−1‖ small. In fact, letting log the branch of the logarithm
function that takes the value 0 at 1, we define

ic := log s. (11.3)
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By (10.1)
c = c∗. (11.4)

Then
a(t) = a(t)∗ = e−icta0e

ict (11.5)

is, for t ∈ [0, 1], a self-adjoint analytic path between a0 and a1.
Like in Theorem 6, for ‖a1 − a0‖ sufficiently small, the distance of this whole

path from a0 is small, showing local connectedness of Sp(A), by similarities via
unitary valued exponential functions. �

Proof of Theorem 12. Like in the deduction of the global Theorem 7 from the local
Theorem 6, we have from the local Theorem 9 that

a1 = e−icm . . . e−ic1a0e
ic1 . . . eicm ,

where ci = c∗i ∈ A for 2 ≤ i ≤ m.
The statement about the self-adjoint analytic path follows immediately. �

Proof of Corollary 13. Let a0 ∈ Sp(A) and let C be the connected component of
a0 in Sp(A).

Suppose that a0 is in the centre of A. Then, like in the proof of Corollary 8 we
obtain C = {a0}. (By the way, this actually follows from Corollary 8.)

Now suppose that a0 is not in the centre of A. Let x ∈ A, a0x 6= xa0. Let
x = y + i2, y = y∗, z = z∗. Then a0 does not commute either with y, or with z.
That is, we can assume x = x∗. Then, like in the proof of Corollary 8 for t → 0 we
have

C ∋ e−itxa0e
itx = a0 + it(−xa0 + a0x) +O(t2) 6= a0.

Then C is not the singleton {a0}. �

Proof of Theorem 14. 1. We have by Proposition 1 and Corollary 5

a0 =

n
∑

i=1

λie0i, a1 =

n
∑

i=1

λie1i, with ‖e1i − e0i‖ small for each 1 ≤ i ≤ n. (14.1)

By Corollary 2, we have

X =
n

⊕

i=1

X0i =
n

⊕

i=1

X1i, (14.2)

with coordinate projections

e0i : X → X0i, ei1 = X → X1i.

We will consider n+ 1 decompositions of X as direct sums, namely

X =

n
⊕

i=1

X0i, X = X11 ⊕
( n
⊕

i=2

X0i

)

,

X = X11 ⊕X12 ⊕
( n
⊕

i=3

X0i

)

, . . . ,

X =

(n−1
⊕

i=1

X1i

)

⊕X0n, X =

n
⊕

i=1

X1i.

(14.3)
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We will show that these are in fact direct decompositions of X , and that all their
respective coordinate projections are close to e01, . . . , e0n. Moreover, we will show
that for any two neighbouring decompositions in (13.3), say, the jth and (j + 1)st

one, where j ∈ {1, . . . , n}, a simultaneous linear interpolation between their first,
. . . , nth coordinate projections, for a parameter t ∈ [0, 1], gives a linear path of n
pairwise orthogonal idempotents, summing to I ∈ B(X), for each t ∈ [0, 1].

Hence, multiplying these n orthogonal idempotents by λ1, . . . , λn, respectively,
and summing these, we obtain a linear path in Ep(A), joining its values for t = 0
and t = 1. These values are obtained from the first, . . . , nth projections of the
jth and (j + 1)st decompositions (for some 1 ≤ j ≤ n), by multiplying them by
λ1, . . . , λn, respectively, and summing them.

We will consider the case j = 1, i.e. the construction of the second direct decom-
position of X from the first one in (14.3). The further cases are analogous.

2. Let e0, e1 ∈ E(A) = E(B(X)), where e0 is fixed, and ‖e1−e0‖ is small. Then
the Kovarik element

g = g(e0, e1) (14.4)

is defined in the following way, cf. Z. V. Kovarik [Ko], p. 343, (7), Definition of
S1, C1 and p. 345, (b), and p. 347, Definition of F , and J. Esterle [Es], p. 253,
Theorem, Proof, first paragraph. Suppose ‖e1 − e0‖ < 1. Then e0 + e1 − 1 is
invertible ([Ko], p. 345, (b) and [Es], above cited), and we let

g = g(e0, e1) := e1(e0 + e1 − 1)−2e0 = e1
[

1− (e1 − e0)
2
]−1

e0, (14.5)

then
g = g2 ∈ E(A),

e1g = g, thus R(g) ⊂ R(e1),

ge1 = e1, thus R(e1) ⊂ R(g), hence R(g) = R(e1),

e0g = e0, thus N(g) ⊂ N(e0),

ge0 = g, thus N(e0) ⊂ N(g), hence N(g) = N(e0)

(14.6)

(here R(·) is range, N(·) is kernel), cf. [Ko], p. 347, [Es], p. 253). Clearly, a
projection g is uniquely determined by R(g) = R(e1) and N(g) = N(e0) for each
t ∈ [0, 1] (even for each t ∈ C) we have

(1− t)e0 + tg, (1− t)e1 + tg ∈ E(A) (14.7)

cf. [Ko], p. 347. (By the way, all these calculations are rather straightforward.)

3. As told in 1, we want to change the direct sum decomposition X =
n
⊕

i=1
X0i

to the direct sum decomposition X = X10 ⊕
( n
⊕

i=2
X0i

)

, in such a way that the

simultaneous linear interpolation (for t ∈ [0, 1]) of the first, . . . , nth projections
gives for all t ∈ [0, 1] a system of orthogonal projections summing to 1.

The projections corresponding to the direct sum decomposition X =
n
⊕

i=1

Xi are

e01, . . . , e0n. The projection to X11, corresponding to the direct sum decomposition

X = X11 ⊕
( n
⊕

i=2

X0i

)

, (14.8)
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has range X11 = R(e11), and has kernel
n
⊕

i=2

X0i = N(e01), hence supposing ‖e11 −
e01‖ < 1, it exists and equals

g(e01, e11) = e11(e01 + e11 − 1)−2e01. (14.9)

Since later we will use only g(e01, e11), we most often will write for it just g. Thus

R(g) = X11 and N(g) =
n

⊕

i=2

X0i. (14.10)

Observe that for ‖a1 − a0‖ small we have ‖e1i − e0i‖ small for each 1 ≤ i ≤ n, and
‖g(e01, e11)− e01‖ small.

For the complementary projection 1− g we have

R(1− g) =

n
⊕

i=1

X0i and N(1− g) = X11. (14.11)

Now we consider
e0i(1− g) for 2 ≤ i ≤ n. (14.12)

This is obtained by first applying the projection 1 − g, having range
n
⊕

i=2

X0i, and

then applying the restriction to
n
⊕

i=2

X0i of the i
rm th projection X =

n
⊕

i=1

X0i → X0i.

This shows that e0i(1− g) is a projection of X to X0i, so

R
(

e0i(1− g)
)

= X0i. (14.13)

Similarly one sees that

X11 = N(1−g) ⊂ N
(

e0i(1−g)
)

and for 2 ≤ j ≤ n, j 6= i we have X0j ⊂ N
(

e0i(1−g)
)

.

Hence

N
(

e0i(1− g)
)

= X11 ⊕
( n
⊕

j=2

j 6=i

X0j

)

. (14.14)

Now we turn the opposite way. We define g(e01, e11) by (14.10), which is possible
as soon as ‖e11 − e01‖ < 1. Then we have

R(g) = R(e11) and N(g) = (e01). (14.15)

We will show that
g and e0i(1− g) for 2 ≤ i ≤ n (14.16)

form an orthogonal system of idempotents summing to 1. Their sum is

g +

n
∑

i=2

e0i(1− g) = g + (1− e01)(1− g) = 1 + e01g − e01 = 1 (14.17)
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by (13.6).
4. It remained to show that the elements in (13.16) form an orthogonal system

of idempotents. We will show more: a simultaneous linear interpolation between
e01 and g and between e0i and e0i(1− g), for t ∈ [0, 1], gives an orthogonal system
of idempotents, summing to 1.

That is

(1− t)e01 + tg and (1− t)e0i + te0i(1− g) for 2 ≤ i ≤ n (14.18)

are orthogonal systems of idempotents summing to 1.

Since e01 +
n
∑

i=2

e0i = 1 and g +
∑n

i=2 e0i(1− g) = 1 (cf. (14.17)), the sum of all

elements in (14.16) is 1 for all t ∈ [0, 1].
The inclusion

(1− t)e01 + tg(e01, e11) ∈ E(A) (14.19)

is contained in Z. V. Kovarik [Ko], p. 347.
For 2 ≤ i ≤ n we have

(1− t)e0i + te0i(1− g) = e0i − te0ig. (14.20)

Its square is
e0i − te0ig − te0ige0i + t2e0ige0ig.

Here the third and fourth summands contain

g(e01, e11)e0i = e11(e01 + e11 − 1)−2e01e02 = 0.

Therefore the element (14.20) belongs to E(A).
There remains to show that the elements in (14.18) are pairwise orthogonal.
Let 2 ≤ i ≤ n. Then, using the shorter form in (14.19),

[(1−t)e01+tg]·[e0i−te0ig] = (1−t)e01e0i−(1−t)te01e0ig+tge02−t2ge02g. (14.21)

Here the first and second summand contain e01e0i = 0, and the third and fourth
summands contain ge02 = 0. Hence (14.21) is 0.

On the other hand,

[e0i − te0ig] · [(1− t)e01 + tg]

= (1− t)e0ie01 + te0ig − t(1− t)e0ige01 − t2e0igg

= 0 + te0ig − t(1− t)e0ig − t2e0ig = e0ig · (t− t(1− t)− t2) = 0.

(14.22)

Now let 2 ≤ i, j ≤ n, i 6= j. Then

[e0i − te0ig] · [e0j − te0jg]

= e0ie0j − te0ie0jg − te0ige0j + t2e0ige0jg.
(14.23)

Here the first and second summands contain e0ie0j = 0, and the third and fourth
summands contain

g(e01, e11)e0j = e11(e01 + e11 − 1)2e01e0j = 0.
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5. Then multiplying the simultaneous interpolating elements in (12.15)?? (14.15)??,
which form for each t ∈ [0, 1] a partition of unity, by the respective λi’s, and sum-
ming them, we obtain a segment in Ep(A), beginning from a0. We have to show

that its other endpoint is
n
∑

i=1

λifi, where the fi’s are the projections associated to

the direct sum decomposition X = X11 ⊕
( n
⊕

i=2

X0i

)

. For i = 1 we have seen this

in 3, (14.10), while for 2 ≤ i ≤ n we have seen this in 3, (14.13) and (14.14). This

means that our procedure changed the direct sum representation X =
n
⊕

i=1

X0i to

X = X11 ⊕
( n
⊕

i=2

X0i

)

, as we wanted to show. Moreover, the respective projections

changed just a bit. Then, for ‖a1−a0‖ sufficiently small, we can change in the sec-
ond analogous step X02 to X12, . . . , in the nth analogous step X0n to X1n, the last

direct sum decomposition will be thus X =
n
⊕

i=1

X1i. Even in this last decomposi-

tion the respective projections remain close to the original projections e0i, showing
local connectedness of Ep(A) by polygons consisting of n segments. Therefore, we

obtained in Ep(A) a polygon of n segments, joining a0 =
n
∑

i=1
λie0 to a1 =

n
∑

i=1
λifi,

where {e1, . . . , en}, {f1, . . . , fn} ⊂ E(A) are partitions of unity.

6. As mentioned in 5, by the first exchange all the respective projections changed
just a bit, so they remained close to e01, . . . , e0n. The same holds for the second, . . . ,
nth exchange. Then linearly interpolating between the successive respective first,
. . . , nth projections, we obtain polygonal paths close to the original projections
e01, . . . , e0n. �

Proof of Theorem 15. 1. We use the same formulas as in the proof of Theorem 13.

That is, we define from a0 =
n
∑

i=1

λie0i and a1 =
n
∑

i=1

λie1i, where ‖a1 − a0‖ is small,

hence by Corollary 5 also ‖e1i − e0i‖ for each 1 ≤ i ≤ n is small, the elements

g = g(e01, e11), 1− g, e0i(1− g), (1− t)e01 + tg, (1− t)e0i + te0i(1− g)

for each 2 ≤ i ≤ n, and each t ∈ [0, 1].

(15.1)

Recall that in the proof of Theorem 12 we exchanged the direct summands X0i

with the direct summands X1i, one by one, in the first step for i = 1, . . . , for the
nth step for i = n. However, we did not directly use these subspaces, but only the
respective projections, and the whole proof was done by algebraic manipulations
with these projections. At the end of the proof it was established that after the
last step of these n exchanges X01, . . . , X0n was exchanged to X11, . . . , X1n. Equiv-
alently, the first, . . . , nth coordinate projection for the direct sum decomposition

X =
n
⊕

i=1

X0i were exchanged, after the last of the n steps, by the first, . . . , nth

coordinate projection for the direct sum decomposition X =
n
⊕

i=1

X1i.

We have to show that performing these exchanges, the n-tuple e01, . . . , e0n will
change just to e11, . . . , e1n, also for the case of a Banach algebra, and not only for
the case of the algebra of bounded operators on a Banach space.
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We recapitulate the formulas describing these exchanges in a form suitable for
us. We consider an (n+ 1)× n matrix, with entries in E(A), namely









f01 . . . f0n
f11 . . . f1n
...

...
fn1 . . . fnn









. (15.2)

We set f01 = e01, . . . , f0n = e0n. For 1 ≤ i ≤ n we set

fii = g(fi−1,i, e1i) for 1 ≤ i ≤ n, and

fij = fi−1,j(1− g(fi−1,i, e1i)) for 1 ≤ i, j ≤ n, i 6= j.
(15.3)

Observe that for e01, . . . , e0n fixed and ‖e1j − e0j‖ small we have for each 1 ≤
i, j ≤ n that ‖fij − e0j‖ is small. This follows by induction for i. For j = i this
follows by continuity of the function (e, f) 7→ g(e, f) (where e, f ∈ E(A) are close).
For j 6= i, by the same continuity fij is close to e0j(1− g(e0i, e0i)) = e0j(1− e0i) =
e0j .

Using the recursive formulas (14.3), we see that each fij (0 ≤ i ≤ n, 1 ≤ j ≤ n)
is a “rational” function of e01, . . . , e0n, e11, . . . , e1n. More exactly, each fij can be
expressed by e01, . . . , e0n, e11, . . . , e1n by using the following operations: linear com-

binations, multiplication, and applying the function x 7→ (1−x)−1 =
∞
∑

m=0
xm, where

‖x‖ is small (‖x‖ < 1 is necessary). Therefore in particular fnj , for each 1 ≤ i ≤ n,
belongs to the closed subalgebra of A, generated by e01, . . . , e0n, e11, . . . , e1n. We
have to show fnj = e1j for each 2 ≤ j ≤ n. (Theoretically there would be a
possibility to express f21, . . . , f2n, then further f31, . . . , f3n, etc. by these “ratio-
nal” functions, superposed to each other, but these formulas soon become very
complicated, and seem not to be treatable.)

2. Let us consider the regular representation

ϕ : A → B(A), (15.4)

that maps any a ∈ A to the (bounded) operator x 7→ ax (i.e., left multiplication by
a). This is a Banach algebra homomorphism, and even is an isometric embedding
A → B(A). In particular, ϕ is injective.

Then ϕ preserves linear combinations, multiplication and the function x 7→
(1 − x)−1 (for ‖x‖ small). Therefore considering ϕe01, . . . , ϕe0n, ϕe11, . . . , ϕe1n ∈
E(B(A)) ⊂ B(A), and also ϕfij ∈ E(B(A)) ⊂ B(A), for each 0 ≤ i ≤ nn and
1 ≤ j ≤ n, we have the following. Each ϕfij , 0 ≤ i ≤ n, 1 ≤ j ≤ n, thus in par-
ticular each ϕfnj , 1 ≤ j ≤ n, is expressed by the same formula via ϕe01, . . . , ϕe0n,
ϕe11, . . . , ϕe1n, as fij , in particular fnj , is expressed via e01, . . . , e0n, e11, . . . , e1n.
Observe that ϕe01, . . . , ϕe0n, ϕe11, . . . , ϕe1n and ϕfn1, . . . , ϕfnn can be considered
as to play the role of e01, . . . , e0n, e11, . . . , e1n and fn1, . . . , fnn for the case of the
operator algebra B(A), rather than for A.

However, by Theorem 14 we already know the equalities fnj = e1j for 1 ≤ j ≤ n,
for the case of A = B(X), where X is a Banach space. In particular, this holds for
B(A), i.e., we have

ϕfnj = ϕe1j for 1 ≤ j ≤ n. (15.5)
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Since ϕ is injective, this implies

fnj = e1j for 1 ≤ j ≤ n, (15.6)

that was to be shown.
3. It remained to prove that the linear interpolations between f0i, f1i, and

between f1i, f2i
, . . . , and between fn−1,i, fni together give a polygonal path which??

is close to the original projection f0i = e0i, for each 1 ≤ i ≤ n. However, this was
proved in Theorem 13 for B(X) for any Banach space X, thus in particular for
B(A). Now recall that the regular representation ϕ : A → B(A) is an isometry
into. From Theorem 13 we know that the image by ϕ of this polygonal path in
B(A) is close to ϕe0i, for each 1 ≤ i ≤ n. By the isometric property of ϕ this
polygonal path in B is close to E0i, for each 1 ≤ i ≤ n. �

Proof of Theorem 16. The proof follows from Theorem 14 in an analogous way as
the proof of Theorem 7 followed from Theorem 6 (and as the proof of Theorem 11
followed from Theorem 10). �

Proof of Corollary 17. Let C be a connected component of Ep(A), or of Sp(A), and
let a0 ∈ C. Then for any a1 ∈ C, a1 is similar to a0 via some invertible, or unitary
element of A = B(H), cf. Theorems 7 and 11. This similarity implies the equality
of the Hilbert space dimensions of the eigensubspaces of a0 and a1 corresponding
to the eigenvalue λi, for each 1 ≤ i ≤ n.

Conversely, let for a0, a1 ∈ Ep(A), or a0, a1 ∈ Sp(A) (in the second case with
λ1, . . . , λn ∈ R) the Hilbert space dimensions of the eigensubspaces corresponding
to each eigenvalue λi, 1 ≤ i ≤ n, be equal. Then H is the direct sum of these
eigensubspaces, both for a0 and a1. In the C∗-algebra case these eigensubspaces
are even orthogonal, then we have

a1 = s−1a0s,

where s ∈ B(H) is invertible, and in the C∗-algebra case s is unitary. Now recall
that Ge(H), as well as the unitary group U(H) of H, is (pathwise) connected.
Therefore we have a path in Ge(H), or U(H), from Id to s. Its image by the
continuous map t 7→ t−1a0t is a path from a0 to a1, in Ep(A), or Sp(A). For the
C∗-algebra case (in the second case with λ1, . . . , λn ∈ R). �

Proof of Theorem 18. We proceed analogously to Remark C, 2), only will make
use of the C∗-algebra property. Also we recall the proof of Theorem 6, and use the
notations there.

So we have, also using Propositions 1 and 3 that

a0 =
n
∑

i=1

λie0i

n
∑

i=1

λiei(a0), a1 =
n
∑

i=1

λie1i =
n
∑

i=1

λiei(a1). (18.1)

As soon as
‖ei(a1)− ei(a0)‖ < 1, for each 1 ≤ i ≤ n, (18.2)

we have that ei(a0), ei(a1) belong to the same connected component of S(A), and
their linear combinations

a0 =

n
∑

i=1

λiei(a0), a1 =

n
∑

i=1

λiei(a1)
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belong to the same connected component of Sp(A). (Observe that then (e1(a0), . . . , en(a0))
and (e1(a1), . . . , e1(an)) belong to a connected component of S(A)n, as the prod-
uct of connected sets is connected. Then its image by the linear, thus continuous

function (e1, . . . , en) 7→
n
∑

i=1

λiei is also connected.)

We will write
a1 = a0 + min

1≤α,β≤n

α6=β

|λα − λβ| · ε, (18.3)

where by the problem before Theorem 17 we may suppose ‖ε‖ < 1. We look for
upper estimates of ‖ε‖ which assure (18.2). ?? Recall that

ei(λ) =

n
∏

j=1

j 6=i

(λ− λj)
/

n
∏

j=1

j 6=i

(λi − λj). (18.4)

Hence for a ∈ A, a =
n
∑

k=1

λkek we have by
n
∑

k=1

ek = 1 that the numerator of ei(a) is

n
∏

j=1

j 6=i

(λ− λj) =

n
∏

j=1

j 6=i

( n
∑

k=1

λkek − λj

)

=

n
∏

j=1

j 6=i

( n
∑

k=1

(λk − λj)ek

)

. (18.5)

Hence the numerator of ‖ei(a0 + ε) − ei(a0)‖ is

∥

∥

∥

∥

n
∏

j=1

j 6=i

(

a− λj + min
1≤α,β≤n

α6=β

|λα − λβ | · ε
)

−
n
∏

j=1

j 6=i

(α− λj)

∥

∥

∥

∥

=
n
∏

j=1

j 6=i

( n
∑

k=1

(λk − λj)ek + min
1≤α,β≤n

α6=β

|λα − λβ | · ε
)

−
n
∏

j=1

j 6=i

n
∑

k=1

(λk − λj)ek

∥

∥

∥

∥

.

(18.6)

(18.6) is a non-commutative polynomial of ε, but
n
∑

k=1

(λk − λj)ek are self-adjoint

commuting elements. Clearly in (18.6) ?? the coefficient of ε◦ is 0. All other terms
contain ε at least once. Performing the multiplications in

n
∏

j=1

j 6=i

( n
∑

k=1

(λk − λj)ek + min
1≤α,β≤n

α6=β

|λα − λβ |ε
)

, (18.7)

we obtain 2n−1 additive terms, each of degree n− 1. Each of these additive terms
is a product or n− 1 factors, each factor being of the form

n
∑

k=1

(λk − λj)ek, or min
1≤α,β≤n

α6=β

|λα − λβ|ε. (18.8)

The norm of a single such product is at most the product of the norms of the
factors. This last product contains some power of

∥

∥ min
1≤α,β≤n

α6=β

|λα − λβ |ε
∥

∥, say,

∥

∥ min
1≤α,β≤n

α6=β

|λα − λβ |ε
∥

∥

k
,



ON THE STRUCTURE OF THE SET OF ELEMENTS . . . 33

which we estimate from above by

(

min
1≤α,β≤n

α6=β

|λα − λβ |
)k

− ‖ε‖ (18.9)

(observe that now k ≥ 1, and ‖ε‖ < 1, so ‖ε‖k ≤ ‖ε‖). The upper estimate of the
last mentioned single product still contains n− 1− k factors of the form

∥

∥

∥

∥

n
∑

k=1

(λk − λj)ek

∥

∥

∥

∥

= max
1≤k≤n

|λk − λj |, (18.10)

(i.e., here j can take n − 1 − k values), the equality holding by the C∗-algebra
property and e∗k = ek (cf. Proposition 3). (We note yet that if at least two factors
of the form

∑n
k=1(λk − λj)ek follow each other in a summand after performing

the multiplications in (18.7), then further simplifications become possible: since
e2k = ek and ek1

ek2
= 0 for k1 6= k2, so such a product will be a linear combination

of the ek’s only. However, such a better result would give great complications in
the estimate of Theorem 18.)

Then (18.6) can be estimated above

∥

∥

∥

∥

n
∏

j=1

j 6=i

( n
∑

k=1

(λk − λj)ek + min
1≤α,β≤n

α6=β

|λα − λβ |
)

−
n
∏

j=1

j 6=i

n
∑

k=1

(λk − λj)ek

∥

∥

∥

∥

· ‖ε‖

≤
[ n
∏

j=1

j 6=i

(

∥

∥

∥

n
∑

k=1

(λk − λj)ek

∥

∥

∥
+ min

1≤α,β≤n

α6=β

|λα − λβ |
)

−
n
∏

j=1

j 6=i

∥

∥

∥

n
∑

k=1

(λk − λj)ek

∥

∥

∥

]

· ‖ε‖.

(18.11)
(Observe that here writing the first product as the sum of 2n−1 summands, one
summand cancels with the second product, which corresponds to the fact that in
(18.7) the coefficient of ε◦ is 0.) Then (18.11) with (18.10) imply

[ n
∏

j=1

j 6=i

(

max
1≤α,β≤n

α6=β

|λk−λj |+ min
1≤α,β≤n

α6=β

|λα−λβ |
)

−
n
∏

j=1

j 6=i

max
1≤k≤n

|λk−λj |
]

·‖ε‖
/ n

∏

j=1

j 6=i

|λi−λj |.

(18.12)
Now recall (18.12) and the considerations following it. Then, as soon as

‖ei(a1)− ei(a0)‖ = ‖ei(a0 + ε)− ei(a0)‖ < 1 for each 1 ≤ i ≤ n, (18.13)

a0 and a1 belong to the same connected component of Sp(A). That is, for

max
1≤i≤n

‖ei(a1)− ei(a0)‖ < 1

a0 and a1 belong to the same connected component of Sp(A). Said otherwise, if a0
and a1 belong to different connected components of Sp(A), then

max
1≤i≤n

‖ei(ai)− ei(a0)‖ ≥ 1.
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Then (18.13) gives for min
1≤α,β≤n

α6=β

|λα − λβ | ‖ε‖ = ‖a1 − a0‖ the lower estimate given

in the theorem. �

We give the proof of Theorem 19, and then will indicate the necessary changes
to prove Theorems 20, 21 and 22.

Proof of Theorem 19. Let λ ∈ U , thus b(λ) ∈ Ep(B). By Proposition 1, “only if”
part

b(λ) =

n
∑

i=1

λifi(λ) =

n
∑

i=1

λiei(b(λ)),

where {f1(λ), . . . , fn(λ)} ⊂ E(B) is a partition of unity,

with ei(·) the polynomials from Proposition 1. That is, f1(λ), . . . , fn(λ) are mu-
tually orthogonal, and f1(λ) + . . .+ fn(λ) = 1. Observe that U ∋ λ 7→ ei(b(λ)) ∈
E(B) ⊂ B, as a composition of two analytic functions, is analytic. By [AMMZ14],
Theorem 3, using the hypotheses of this theorem, this analytic family of mutually
orthogonal idempotents admits a lifting f̃i(·) : U → E(A) ⊂ A, which is also an
analytic family of mutually orthogonal idempotents, thus satisfies

π(λ)f̃i(λ) = fi(λ) for each λ ∈ U.

Of course we cannot guarantee f̃1(λ) + . . .+ f̃n(λ) = 1. Therefore we replace f̃n(·)
by 1 − f̃1(·) − . . . − f̃n−1(·), which is also an analytic family of idempotents, and

which forms with f̃1(·), . . . , f̃n−1(·) a mutually orthogonal system of idempotents,
summing to 1, i.e., we have a partition of unity in E(A).

Once more we apply Proposition 1, now the “if” part. Thus

λ1f̃1(·) + . . .+ λn−1f̃n−1(·) + λn(1− f̃1(·)− . . .− f̃n−1(cdot)) ∈ Ep(A),

and thus we have in the last display an analytic family of elements of Ep(A). Still
we have to prove that this analytic family lifts b(·). In fact,

π(λ)
(

λ1f̃1(λ) + . . .+ λn−1f̃n−1(λ)
)

+ λn(1− f̃1(λ)− . . .− f̃n=1(λ)
)

= λ1f1(λ) + . . .+ λn−1fn−1(λ) + λn

(

1− f1(λ)− . . .− fn−1(λ)
)

= λ1f1(λ) + . . .+ λn−1fn−1(λ) + λnfn(λ) = b(λ).

�

Proof of Theorem 20. We replace in the proof of Theorem 19 Proposition 1 by
Proposition 3, and [AMMZ14] Theorem 3 by [AMMZ14], Theorem 4. �

Proof of Theorem 21. We use Proposition 1 and [AMMZ14], Theorem 5. Thus we

obtain liftings f̃1(λ), . . . , f̃n−1(λ), 1 − f̃1(λ) − . . . − f̃n−1(λ), not for each λ ∈ U ,
but only for λ ∈ V1, . . . , λ ∈ Vn−1, λ ∈ V1 ∩ . . . ∩ Vn−1, respectively, for some
open subsets V1, . . . , Vn−1 of U , each containing 0. Then Theorem 21 holds for
V := V1 ∩ . . . ∩ Vn−1. �

Proof of Theorem 22. We use Proposition 3, and [AMMZ14], Theorem 6, and finish
like in the proof of Theorem 21. �
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[AZ] B. Aupetit, J. Zemánek, On zeros of analytic multivalued functions, Acta Sci. Math.

(Szeged) 46 (1983), 311–316.

[BFML] Z. Boulmaarouf, M. Fernandez Miranda, J.-Ph. Labrousse, An algorithmic approach

to orthogonal projections and Moore–Penrose inverses, Numer. Funct. Anal. Optim.
18 (1997) (1-2), 55–63, MR97m:65105.

[Ca] J. W. Calkin, Two-sided ideals and congruences in the ring of bounded operators in
Hilbert space, Ann. of Math. 42 (1941), 839–873.
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