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Abstract. We consider triangle faced convex polyhedra inscribed in the
unit sphere S2 in R3. One way of measuring their deviation from regular
polyhedra with triangular faces is to consider the quotient of the lengths of
the longest and the shortest edges. If the number of faces tends to infinity,
and the polyhedron with this number of faces varies, then the limit inferior
of this quotient is 2 sin 36◦ = 1.1756 . . ..
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1 Introduction

We consider convex polyhedra inscribed in the unit sphere in the 3-dimen-
sional Euclidean space, having m faces, all of which are triangles. Let η
denote the quotient of the length of the maximal edge and the length of the
minimal edge. We have η = 1 if and only if the polyhedron is regular with
triangular faces (in which case m = 4, 8 or 20). Thus in this sense η measures
the deviation of the polyhedron from the regular triangular ones. Since for
m > 20 there are no regular triangular polyhedra, we have for largem η > 1.
There arises the question, how closely regular can such a polyhedron be in
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this sense, i.e. how can one construct such polyhedra, with m → ∞, such
that the quotient η remains as close to 1 as possible. We will prove the
following.

Theorem. Let em denote the infimum of η = length of maximal edge/length
of minimal edge, for all convex polyhedra inscribed in a unit sphere in the
3-dimensional Euclidean space, having m faces, all of which are triangles.
Then we have lim inf

m→∞
em = 2 sin 36◦ = 1.1756 . . . .

The proof of the theorem consists of the proof of two inequalities:

lim inf
m→∞

em ≥ 2 sin 36◦ and lim inf
m→∞

em ≤ 2 sin 36◦.

The first one is proved using the idea of L. Fejes Tóth. The second one
has been known for some time. Namely Clinton [1] constructed polyhedra,
for which m → ∞, which he found to satisfy (Clinton [2], [3]) η ≤ 2 sin 36◦

(presumably on the basis of calculations on computers). They will be shortly
discussed in Section 3. Later Kitrick [5] has given another construction which
however seemed to be handled much more simply when calculating η. His
paper asserts that η ≤ 2 sin 36◦ holds for these polyhedra as well, however
it does not contain any hint about the mathematical proof of η ≤ 2 sin 36◦

either. Actually we will prove that Kitrick’s polyhedra satisfy η ≤ 2 sin 36◦.
This question has its origin in architecture. Namely, building engineers

want to build large spherical domes, which consist of triangular elements
(faces). For them it is important, how uniform this inscribed triangular
polyhedron is, i.e., that the above η should be as small as possible. This has
partly esthetic reasons, and also at actual construction one can manifacture
rods of equal length, and then only the joints at the vertices are produced
differently. There are also some other objectives at building spherical domes,
usually expressed by some other minimality conditions. The author thanks
T. Tarnai for having turned his attention to this question, which was later
repeated also by L. Fejes Tóth, who proved the asymptotic lower estimate
2 sin 36◦ for η.

The two inequalities will be contained in Propositions 1 and 2, and in
fact they will be proved in a bit sharper form.
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2 The lower estimate

Proposition 1. Let a convex polyhedron inscribed in a unit sphere have m
faces, all of which are triangles. Then we have η = length of maximal edge/
length of minimal edge ≥ 2 sin 36◦

√
1− (d2k/4) ≥ sin 36◦/ sin(30◦(m+4)/m).

That is, we have (with em as defined in the Theorem) em ≥ 2 sin 36◦
√
1− (d2k/4) ≥

sin 36◦/ sin(30◦(m + 4)/m), consequently lim inf
m→∞

em ≥ 2 sin 36◦. Here k =
1
2
m + 2 and dk denotes the maximum of g(P1, . . . , Pk) = min

i 6=j
PiPj, where

P1, . . . , Pk is an arbitrary system of points on the unit sphere (and PiPj means
the Euclidean length of the straight line segment PiPj).

The idea of the proof is due to L. Fejes Tóth (oral communication).

Proof. By [4, p. 115] we have

d2k ≤ 4−
1

sin2
(

k
k−2

)
· 30◦

= 4−
1

sin2
(
m+4
m

· 30◦
) .

Hence

2 sin 36◦
√

1−
d2k
4

≥ sin 36◦
/

sin

(
m+ 4

m
· 30◦

)
.

Thus it suffices to show the first inequality of the proposition.
By Euler’s theorem on polyhedra k = m

2
+ 2 is the number of vertices of

the polyhedron ([4, p. 114]), and there is a vertex to which at most five edges
are adjacent ([4, p. 15 (6)]).

We see easily (by convexity) that a straight line segment connecting two
vertices of the polyhedron of minimal distance is an edge of the polyhedron.
Thus the minimal edge of the polyhedron has length ≤ dk.

Let us suppose first that the vertices of the polyhedron are on a closed
half-sphere. Let us consider a supporting plane of the polyhedron separating
(not strictly) the polyhedron and the centre of the sphere, having a maximal
distance from the centre of the sphere. Let this plane intersect the sphere
in a circle C of radius r. Then it is easily seen that the intersection of the
polyhedron and this plane contains the centre of the circle C. Thus the
polyhedron has an edge (in the plane of the circle) of length ≥ 2r/

√
3.

We may suppose that the length of the minimal edge of the polyhedron
is ≥

(
2r/

√
3
)
/2 sin 36◦. Let us consider a half-sphere with the above circle

C as equator. Let us project the spherical cap (on the unit sphere) bounded
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by C that contains the vertices of the polyhedron by rays perpendicular to
the plane of C to the half-sphere above our circle C. One sees easily that
this mapping is distance-increasing (not strictly). This is to be shown only
for the “vertical” coordinates, and is a consequence of the monotonity of√
r2 − a2−

√
r2 − b2, as a function of r, for 0 ≤ a ≤ b ≤ r. Therefore by this

projection the vertices of the polyhedron are carried over to points P ′
1, . . . , P

′
k

on the half-sphere, satisfying

min
i 6=j

P ′
iP

′
j ≥

2
√
3
r
/
2 sin 36◦ > 0.9822r.

Lemma. Let P ′
1, . . . , P

′
k, k ≥ 12, be points on a half-sphere of radius r. Then

min
i 6=j

P ′
iP

′
j ≤

24
√
6 + 11

145
r < 0.9626r.

Proof. The spherical caps with centres P ′
i and (Euclidean) diameter min

i 6=j
P ′
iP

′
j

are non-overlapping and are on the spherical surface S of a segment of the
sphere of radius r containing the half-sphere, of height r + 1

2
min
i 6=j

P ′
iP

′
j. The

area of the surface S is 2r2π
(
r + 1

2
min
i 6=j

P ′
iP

′
j

)
, and the areas of the circles

are 2r2π

(
r −

√
r2 −

(
1
2
min
i 6=j

P ′
iP

′
j

)2
)
. Their quotient is at least 12, whence

the lemma follows.

We continue with the proof of the proposition. By [4, pp. 114-115] we
have for k ≤ 12

2 sin 36◦
√

1−
d2k
4

≤ 2 sin 36◦
√

1−
d212
4

= 1 (≤ η).

Thus we can suppose k > 12. Then the above considerations, together with
the lemma, show that the vertices are not on a closed half-sphere, unless
η ≥ 2 sin 36◦.

Thus we may suppose that the centre of our unit sphere is in the interior
of the polyhedron. We project the edges of the polyhedron on the surface
of the sphere. Thus we obtain a tiling on the sphere, consisting of spherical
triangles corresponding to the faces of the polyhedron. There is a vertex to
which at most five edges are adjacent, thus there is a spherical triangle with
an angle ≥ 72◦.
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Now let us suppose that

η < µ = 2 sin 36◦
√

1−
d2k
4
.

Then the longest edge has a length ≤ ηdk < 2 sin 36◦
√
1− (d2k/4) · dk ≤

2 sin 36◦. Thus each side of every spherical triangle in the tiling has length
< π

2
.
Let ABC be a spherical triangle in the tiling, with maximal angle γ =

∢ACB ≥ 72◦. Let ÃB = c, B̃C = a, C̃A = b (˜ meaning the spherical
length of the respective side), a ≤ b. If γ and a are fixed and b is decreased
to b = a, c will decrease too, to c = c0.

For a = b the quotient AB/BC of the (Euclidean) lengths is sin c
2

/
sin a

2
.

By spherical trigonometry sin c0
2
= sin γ

2
·sin a, so sin c0

2

/
sin a

2
= 2 sin γ

2
·cos a

2
.

So for our triangle ABC we have sin c
2

/
sin a

2
≥ 2 sin 36◦ · cos a

2
.

Since the minimal edge of the polyhedron has (Euclidean) length ≤ dk,
we have c0 ≤ c ≤ 2 arcsin

(
1
2
ηdk

)
.

We have

η ≥ sin
c

2

/
sin

a

2
≥ 2 sin 36◦ · cos

a

2
≥ 2 sin 36◦ · cos

a1
2
,

where a1 ≤ π
2
is defined by 1

2
ηdk = sin 36◦ · sin a1. (As above stated, we have

1
2
ηdk ≤ sin 36◦.) Namely

sin a = sin
c0
2

/
sin

γ

2
≤

ηdk
2

/
sin 36◦ = sin a1.

Thus

η ≥ 2 sin 36◦ · cos
a1
2

= 2 sin 36◦
√

1

2

(
1 +

√
1− sin2 a1

)

= 2 sin 36◦

√√√√√1

2


1 +

√

1−
(

ηdk
2 sin 36◦

)2

 =: f(η),

where the last equality holds by definition.
Let us take into account that for 1 ≤ η ≤ 2 sin 36◦ f(η) is decreasing

and µ = f(µ) (this holds, since dk <
√
2). Thus we see that η < µ implies

η < f(η), which is a contradiction. Hence the indirect assumption η < µ
cannot hold, which proves the proposition.
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Remark. The best upper estimate of dk known at present is due to Robinson
[7]. We have used the estimate of Fejes Tóth [4] because of its simplicity and
because it is already asymptotically sharp, [4, p. 114]. Thus the utilisation
of the results of Robinson [7] yields only a slight improvement for large m.

3 The upper estimate

A) Clinton’s polyhedra

We first sketch the construction of Clinton [1]. He considered first a regular
icosahedron inscribed in a unit sphere and then projected it radially (i.e.
from the centre of the sphere) to the surface of the sphere. In the spherical
tiling thus obtained each spherical edge was divided into n equal parts (n ≥ 1
integer). The dividing points are then carried back by radial projection to the
surface of the inscribed icosahedron. In this way on a face of the icosahedron
we obtain points A1, . . . , An−1; B1, . . . , Bn−1; C1, . . . , Cn−1, these points lying
on the sides a, b, c of the face, respectively, in this order and following each
other in the positive orientation.

Now draw through each Ai parallels to b and c, through each Bj parallels
to c and a and through each Ck parallels to a and b.

If we replace the points A1, . . . , Cn−1 by points A′
1, . . . , C

′
n−1 which lie on

the same sides in the same order but divide the sides into n equal parts,
then drawing the parallels similarly we obtain a subdivision of the face of
the icosahedron into n2 regular triangles. Let P ′ be one of the vertices
of one of these regular triangles, which is not a vertex of the face of the
icosahedron; it lies on three of these parallels through some points A′

i, B
′
j ,

C ′
k (counting now the sides of the face to these parallels, too). Consider now

the corresponding parallels through the respective points Ai, Bj, Ck. These
will not be concurrent in general but will bound a regular triangle T (P ′).
We denote the centre of this triangle by P . If P ′ is a vertex of the face of
the icosahedron, let P = P ′. In any case we denote the radial projection of
P to the surface of the sphere by Q.

The vertices of Clinton’s polyhedron will be all the points Q (derived from
all the points P ′ on all the faces of the icosahedron). Two vertices Q and Q
will be connected by an edge if and only if the points P ′ and P ′ corresponding
to them lie on the same face of the icosahedron and are connected by an edge
(in the subdivision of the face into the n2 regular triangles). The number of
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faces of Clinton’s polyhedron is m = 20n2.
When trying to check that for Clinton’s polyhedron for n → ∞ there

holds η → 2 sin 36◦, we have to determine the edge lengths of this polyhedron
asymptotically. This leads to the determination of the maximum and the
minimum of a certain function of two variables. However this function is
given in a rather involved way and its discussion could be accomplished
probably only by lengthy calculations and possibly by using computers. Thus
for Clinton’s polyhedra the relation η → 2 sin 36◦ is still only a conjecture.

Clinton [1] has given also another construction which he also found to
satisfy η → 2 sin 36◦. The only difference is that now he derives from the
points P ′, instead of the points Q derived above, rather the points R which
are defined in the following way. For P ′ a vertex of a face of the icosahedron
let R = P ′. Otherwise consider the above defined regular triangle T (P ′).
Projecting its vertices radially on the surface of the sphere we obtain the
vertices of another planar triangle T1(P

′). The incentre of T1(P
′) will be

projected radially on the surface of the sphere, to obtain the point R. The
vertices of this second polyhedron of Clinton will be all the points R, and
two vertices R and R will be connected by an edge under the same condition
as above for Q and Q. However for this second polyhedron the (asymptotic)
calculations seem to be even more complicated, thus the relation η → 2 sin 36◦

is only a conjecture, in this case as well.

B) Kitrick’s polyhedra

Now we recall the definition of Kitrick’s polyhedra, [5]. Consider a regu-
lar dodecahedron inscribed in a unit sphere. Project its faces radially to
the surface of the sphere. Thus we obtain a tiling on the sphere consisting
of regular spherical pentagons. Decompose each of these pentagons to five
isosceles spherical triangles of common vertex the centre of the pentagon and
bases the sides of the pentagon. The angles of these triangles are 72◦, 60◦,
60◦. Each of these triangles will be subdivided into n2 smaller triangles in
the same way.

Let us suppose the axis of symmetry of one of these triangles is the
equator of the sphere. Now divide the equal sides of our isosceles triangle
into n equal parts (n ≥ 1 integer). Through the dividing points draw (the
portions inside the triangle of the) meridians and parallels. These divide our
spherical triangle into 2n triangles and n2−n symmetric quadrangles (which
are bounded by arcs of great and small circles). Then take every second point
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of division on each meridian, beginning from the ones on the equal sides of
our isosceles triangle and connect them by (shorter) arcs of large circles, like
in the schematic Fig. 1.

Figure 1

Proceeding similarly for each of the spherical triangles of angles 72◦, 60◦,
60◦ in our tiling we obtain a new tiling consisting of spherical triangles.
Replacing each spherical triangle of this new tiling by a planar triangle having
the same vertices we obtain a polyhedron. This is Kitrick’s polyhedron. The
number of its faces is m = 60n2.

We have not shown yet that this polyhedron is convex. However this will
follow from η ≤ 2 sin 36◦ <

√
2 (cf. Proposition 2). Namely by elementary

geometry η <
√
2 implies that each face of the polyhedron is an acute triangle,

which in turn implies that the polyhedron, which is inscribed in a sphere, is
convex.

Proposition 2. We have for Kitrick’s polyhedra, defined above, for every
integer n ≥ 1 (and with em as defined in the Theorem) e60n2 ≤ η = length of
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maximal edge / length of minimal edge = 2 sin 36◦ cos
[(
arccos(cot 36◦/

√
3)
)
/2n

]
=

2 sin 36◦ cos
(
(37.37◦ . . .)/2n

)
< 2 sin 36◦. Consequently we have lim inf

m→∞
em ≤

2 sin 36◦.
More exactly the maximal (minimal) edges of these polyhedra are the bases

(equal sides) of the faces (corresponding to the shaded spherical triangle in
Fig. 1) which are isosceles triangles and contain the vertices with angle 72◦

of our subdivided spherical triangles.

Proof. 1) First we show lim
n→∞

η = 2 sin 36◦.

1.1) Consider the isosceles spherical triangle in Fig. 1. It is cut by the
equator in two right spherical triangles of angles 36◦, 60◦, 90◦. The sides
of these triangles opposite to these angles will be denoted by a, b, c. We
have by spherical trigonometry cos a = 1/(2 sin 36◦), cos b = cos 36◦/(

√
3/2),

cos c = cot 36◦/
√
3. Because of symmetry it suffices to consider the edges of

the subdivision lying in the upper right triangle (which will be denoted by
T ) or intersecting the side a.

We number the meridians in Fig. 1 consecutively by the numbers 0, . . . , n,
the 0th one being the (degenerate) one passing through the vertex with angle
36◦, the nth one being the one containing the side b. Similarly we number
the parallels in Fig. 1 meeting the upper right triangle T consecutively by
the numbers 0, . . . , n the 0th one being the equator, the nth one being the
(degenerate) one passing through the vertex with angle 60◦. Let us denote
the point of intersection of the ith meridian and the jth parallel (in T ) by
Pi,j (0 ≤ j ≤ i ≤ n).

There are two kinds of edges: those lying on meridians and those which
are diagonals of the symmetric quadrangles (bounded by arcs of great and
small circles) in Fig. 1. (The edges on the side c will be counted to the second
mentioned edges.) These two kinds of edges will be called meridional and
diagonal edges, respectively. We will show that among the edges of both
kinds asymptotically the maximal and minimal ones are those corresponding
to the Euclidean edges mentioned in Proposition 2. That is, if we express the
lengths of the edges incident to Pi,j in the form f(i/n, j/n) · (1/n)+ terms of
order smaller than 1/n, then for both cases the function f(i/n, j/n) will only
assume values between the two values assumed for the edges of the shaded
spherical triangle. In view of the fact that (asymptotically) the lengths of
the edges are determined by the directional derivatives of a continuously
differentiable function – via the mean value theorem – this will imply the
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equality lim
n→∞

η = 2 sin 36◦ asserted above.

1.2) Our spherical triangle T is cut by the ith meridian in two parts. One
of the parts is a right triangle. Its side lying on the side c of T has length
(i/n)c, and we denote the lengths of its sides on the side a of T and on the
ith meridian by ai and bi, respectively. We have tan ai = tan((i/n)c) ·cos 36◦,
sin bi = sin((i/n)c) · sin 36◦. Consequently

ai+1 − ai ∼
cos 36◦

cos2
(
i
n
c
)
+ sin2

(
i
n
c
)
· cos2 36◦

·
c

n
,

bj+1 − bj ∼
cos

(
j

n
c
)
· sin 36◦√

cos2
(
j

n
c
)
+ sin2

(
j

n
c
)
· cos2 36◦

·
c

n
.

The point Pi,j lies on the side of length bi of the triangular part of T at a
distance bj from the equator.

The sides of the shaded spherical triangle have lengths c/n and 2b1 ∼
2 sin 36◦ ·c/n. Thus we have to show that the edge lengths are asymptotically
between c/n and 2 sin 36◦ · c/n.

1.3) We first consider the meridional edges. These are of the form Pi,j−1Pi,j+1

(Pi,−1 being the mirror image of Pi,1 w.r.t. the equator). The squares of their
lengths are

∼ (bj+1 − bj−1)
2 ∼

4 sin2 36◦

1 + tan2
(
j

n
c
)
· cos2 36◦

·
( c

n

)2

.

Here the coefficient of (c/n)2 is a monotonically decreasing function of (j/n)c,
hence

4 sin2 36◦ ≥
4 sin2 36◦

1 + tan2
(
j

n
c
)
· cos2 36◦

≥
4 sin2 36◦

1 + tan2 c · cos2 36◦
.

Thus the upper estimate of the length of the meridional edges is proved.
For the lower estimate observe that because of cos c = cot 36◦/

√
3 we have

4 sin2 36◦/(1 + tan2 c · cos2 36◦) = 1. Thus both asymptotic inequalities are
proved in the case of the meridional edges.

Now we turn to the diagonal edges. These have the form Pi,jPi+1,j+1 or
Pi+1,jPi,j+1. However on account of symmetry the lengths of both are the
same and their squares are ∼ cos2 bj · (ai+1 − ai)

2 + (bj+1 − bj)
2 ∼

∼

[
cos2 36◦ · cos2

(
j

n
c
)

[
1− sin2

(
i
n
c
)
· sin2 36◦

]2 +
sin2 36◦

1 + tan2
(
j

n
c
)
· cos2 36◦

]
·
( c

n

)2

.
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Here again the coefficient of (c/n)2 is a monotonically decreasing function of
(j̄/n)c. Recalling that 0 ≤ j ≤ i (≤ n) we have to show that substituting
(j̄/n)c = (i/n)c, or (j/n)c = 0, resp., the coefficient of (c/n)2 will be at least
1, or at most 4 sin2 36◦, resp. However substituting (j/n)c = (i/n)c means
calculating asymptotically the lengths of the (spherical) edges Pi,iPi+1,i+1,
which are by the very definition of Kitrick’s polyhedra equal to c/n. Thus
the lower estimate of the length of the diagonal edges is proved.

Now we turn to the upper estimate for the diagonal edges. Substituting
(j/n)c = 0 in the coefficient of (c/n)2 gives

cos2 36◦
[
1− sin2

(
i
n
c
)
· sin2 36◦

]2 + sin2 36◦.

This is a monotonically increasing function of (i/n)c (in the interval [0, c]),
thus its largest value is attained for (i/n)c = c, and we have to show it is
≤ 4 sin2 36◦.

Taking into consideration that cos c = cot 36◦/
√
3 this last inequality

reduces to the inequality 3/4 ≤ 4 sin2 36◦ ·cos2 36◦ = sin2 72◦, which is in fact
valid. Thus both asymptotic inequalities are proved for the diagonal edges
as well as for the meridional edges. As stated above this proves lim

n→∞
η =

2 sin 36◦.

2) Now we will follow the above asymptotic calculations by exact calcu-
lations valid for each n ≥ 1 and will show that the edges P1,−1P1,1/P0,0P1,1 of
the face corresponding to the shaded spherical triangle are actually the maxi-
mal and minimal edges of Kitrick’s polyhedron. The quotient P1,−1P1,1/P0,0P1,1

of their Euclidean lengths is sin b1/ sin(c/2n) = 2 sin 36◦ · cos(c/2n).
2.1) We will consider the meridional edges Pi,j−1Pi,j+1 and instead of

all diagonal edges all segments Pi,jPi+1,j+1 (these have equal lengths on ac-
count of symmetry). We will show that for given i the lengths of Pi,j−1Pi,j+1

(Pi,jPi+1,j+1, resp.) are actually – i.e. not only asymptotically – decreasing
functions of j.

First we consider the edges Pi,j−1Pi,j+1. Let us denote their arc measures
(i.e. the smaller angles subtended by them at the centre of the sphere) by

˜Pi,j−1Pi,j+1. (A similar notation will be applied for other edges and segments
as well.) We will show the decreasing of these arc measures. We have 0 ≤
j ≤ i − 1. Now consider j as a real variable in the above given interval,
Pi,j meaning the point of T on the ith meridian, having a spherical distance
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bj = arcsin(sin((j/n)c) · sin 36◦) from the equator. We show ˜Pi,j−1Pi,j+1 is
decreasing in that interval. In fact

d

dj
˜Pi,j−1Pi,j+1 =

sin 36◦√
1 + tan2

(
j+1
n
c
)
· cos2 36◦

−
sin 36◦√

1 + tan2
(
j−1
n
c
)
· cos2 36◦

,

which is non-positive because of
∣∣((j + 1)/n)c

∣∣ ≥
∣∣((j − 1)/n)c

∣∣. Evidently

the same considerations show that for 0 ≤ j ≤ i− 1, we have that ˜Pi,jPi,j+1

is a decreasing function of j.
Now we turn to the segments Pi,jPi+1,j+1. We show Pi,jPi+1,j+1 < Pi,jPi+1,j−1 =

Pi,j−1Pi+1,j (1 ≤ j ≤ i). In fact the points P on the unit sphere satis-
fying PPi+1,j+1 = PPi+1,j−1 form a great circle perpendicular to the ith
meridian and meeting the ith meridian at midpoint P ∗ of its smaller arc
Pi+1,j−1Pi+1,j+1. However because of Pi+1,j−1Pi+1,j > Pi+1,jPi+1,j+1 the point
P ∗ lies on the arc Pi+1,j−1Pi+1,j.

Hence by projecting on the plane spanned by the (i+1)st meridian we see
the entire jth parallel (thus also Pi,j) lies nearer to Pi+1,j+1 than to Pi+1,j−1.

2.2) Now we prove the upper and lower estimates for the meridional edges.

The upper estimate follows from the fact that ˜Pi,j−1Pi,j+1 is a monotonically

decreasing function of j, therefore ˜Pi,j−1Pi,j+1 ≤ ˜Pi,−1Pi,1 = ˜P1,−1P1,1.
For the lower estimate observe that by the same monotonity property
˜Pi,j−1Pi,j+1 = ˜Pn,j−1Pn,j+1 ≥ ˜Pn,n−2Pn,n. Now consider the spherical triangle

Pn,n Pn,n−2 Pn−1,n−1. Its angle at Pn,n is 60◦, and we have ˜Pn,nPn−1,n−1 =

c/n. Since ˜Pi,jPi+1,j+1 is a monotonically decreasing function of j, we have

˜Pn,nPn−1,n−1 < ˜Pn,n−1Pn−1,n−2 = ˜Pn,n−2Pn−1,n−1. Since in spherical triangles
larger sides are opposite to larger angles, we have ∢Pn,nPn,n−2Pn−1,n−1 < 60◦.
Since the sum of the angles of our spherical triangle is > 180◦, this implies

∢Pn,nPn−1,n−1Pn,n2
> 60◦. This implies in turn that the side ˜Pn,nPn,n−2

is greater than the side ˜Pn,nPn−1,n−1 = c/n. Thus we have ˜Pi,j−1Pi,j+1 ≥
˜Pn,n−2Pn,n > c/n.

2.3) Last we show the upper and lower estimates for the diagonal edges.

The lower estimate follows from the fact that ˜Pi,jPi+1,j+1 is a monotonically

decreasing function of j, hence ˜Pi,jPi+1,j+1 ≥ ˜Pi,iPi+1,i+1 = c/n.
For the upper estimate observe that by the same monotonity property
˜Pi,jPi+1,j+1 ≤ ˜Pi,0Pi+1,1. We have from the right spherical triangle
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Pi,0Pi+1,0Pi+1,1 cos ˜Pi,0Pi+1,1 = cos ˜Pi+1,0Pi+1,1 · cosPi,0Pi+1,0 = cos P̃1,0P1,1 ·
cos ˜Pi,0Pi+1,0. We will show that for 0 ≤ i ≤ n− 1, we have that ˜P1,0Pi+1,1 is
an increasing function of i. In view of the last formula it suffices to show the

increasing of ˜Pi,0Pi+1,0. For this consider i as a real variable in the given in-
terval, Pi meaning the point of T on the equator, having a spherical distance
ai = arctan(tan((i/n)c) · cos 36◦) from P0,0. We have

d

di
˜Pi,0Pi+1,0 =

cos 36◦

1− sin2
(
i+1
n
c
)
· sin2 36◦

−
cos 36◦

1− sin2
(
i
n
c
)
· sin2 36◦

> 0,

hence in fact ˜Pi,0Pi+1,0 is increasing.

Therefore also ˜Pi,0Pi+1,1 is increasing, thus ˜Pi,0Pi+1,1 ≤ ˜Pn−1,0Pn,1. It

remains to show ˜Pn−1,0Pn,1 ≤ ˜P1,−1P1,1.
Consider for a positive integer l the nlth Kitrick polyhedron (i.e., the

side c is divided into nl equal parts). The analogues of the points Pi,j for
this new polyhedron will be denoted by P ′

i,j (0 ≤ j ≤ i ≤ nl). We have
Pn−1,0 = P ′

(n−1)1,0, Pn,1 = P ′
nl,l. In view of the triangle inequality we have

˜Pn−1,0Pn,1 = ˜P ′
(n−1)1,0P

′
nl,l ≤

l−1∑
r=0

˜P ′
(n−1)l+r,r

P ′
(n−1)l+r+1,r+1.

Because of the monotonity of the length of the diagonal edges (shown

in part 2.1) of the proof) ˜P ′
(n−1)l+r,r

P ′
(n−1)l+r+1,r+1 ≤ ˜P ′

(n−1)l+r,0P
′
(n−1)l+r+1,1.

However these last edges have monotonically increasing lengths, as shown

in the last paragraph, hence ˜P ′
(n−1)l+r,0P

′
(n−1)l+r+1,1 ≤ P ′

nl−1,0P
′
nl,1. From the

last three inequalities we obtain ˜Pn−1,0Pn,1 ≤ l · ˜P ′
nl−1,0P

′
nl,1.

As calculated in part 1.3) of the proof for nl large we have asymptotically

˜P ′
nl−1,0P

′
nl,1 ∼

√
cos2 36◦

[1− sin2 c · sin2 36◦]2
+ sin2 36◦ ·

c

nl
.

Using this asymptotical equality we pass in the last inequality to the limit
l → ∞. Thus we obtain the inequality

˜Pn−1,0Pn,1 ≤

√
cos2 36◦

[1− sin2 c · sin2 36◦]2
+ sin2 36◦ ·

c

n
=: 2λ ·

c

n

(where the last equality holds by definition) valid for our actual n (not only
asymptotically).
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It has remained to show that ˜Pn−1,0Pn,1 ≤ ˜P1,−1P1,1. In virtue of the in-

equality showed in the last paragraph it suffices to show 2λ·c/n ≤ ˜P1,−1P1,1 =
2b1 = 2 arcsin(sin(c/n) · sin 36◦), or equivalently (because of λ · c/n ≤ λc <
90◦) sin(λ·c/n)

/
sin(c/n) ≤ sin 36◦. However in view of λ (= 0.5488 . . .) < 1

we have that sin(λx)/ sin x is monotonically increasing for 0 < x ≤ 90◦, fur-
ther c/n ≤ c = 37◦22′ . . .; thus sin(λ · c/n)

/
sin(c/n) ≤ sin(λc)/ sin c =

0.5773 . . . < sin 36◦ = 0.5878 . . .. This ends the proof of the upper estimate
of the diagonal edges. Since all the other estimates have been already proved
above, this completes the proof of the proposition.

References

[1] Clinton, J. D., NASA contractor report (NASA CR-1734), Advanced
structural geometry studies, I. Polyhedral subdivision concepts for struc-
tural applications, NASA, Washington, D. C., 1971.

[2] Clinton, J. D., Unpublished manuscript, 1978.

[3] Clinton, J. D., (p, q+)ηb,c, Preprint, Kean College, Union, N. J. USA,
1980.
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