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Abstract. Let d ≥ 2 and let K ⊂ R
d be a convex body containing the origin 0 in

its interior. Let, for each direction ω, the (d − 1)–volume of the intersection of K

and an arbitrary hyperplane with normal ω attain its maximum if the hyperplane

contains 0. Then K is symmetric about 0. The proof uses a linear integro–differential

operator on Sd−1, whose null–space needs to be, and will be determined.

1. Introduction

Let d ≥ 2 and let K ⊂ R
d be a centred convex body. Then the Brunn–Minkowski

inequality ([Schneider, 1993]) readily implies that for any hyperplane H and the
hyperplane H ′ parallel to H and passing through 0 we have Vd−1(K ∩ H ′) ≥
Vd−1(K ∩H) (Vd−1 is the (d− 1)–volume). Conversely, we prove that if d ≥ 2 and
a convex body K ⊂ R

d, containing the origin 0 in its interior, has the property
that for every hyperplane H the hyperplane H ′ parallel to H and passing through
0 satisfies Vd−1(K ∩ H ′) ≥ Vd−1(K ∩ H), then this convex body K is centred.
(Thus this property is a characterization of centredness.) Actually we will prove
the analogous implication for star bodies, with positive Lipschitz radial functions,
and for k–dimensional sections, where 1 ≤ k ≤ d − 1. The statement in the case
k = 1, K a convex body, has been proved by [Hammer, 1954].

This question has been posed by the second named author in another context,
see [Martini, 1994] and also [Gardner, 1995], Problem 8.8 (p. 302). An applica-
tion of this result is contained in [Makai–Martini, 1996]: if each of the measures
maxx∈Rd Vd−1(K ∩ (H + x)) and Vd−1(K ∩H ′) is constant for all hyperplanes H,
then K is necessarily a ball.

There is also a physical motivation for the study of the measureH 7→ maxx∈Rd Vd−1(K∩
(H + x)). Several properties of metals, like e.g. electric or heat conductivity, are
explained in terms of the so called Fermi surface of the metal, that describes the
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position of the free electrons of the metal in the velocity space. The explanation is
quantum mechanical, cf. [Mackintosh, 1963], [Shoenberg, 1960]. By Pauli’s exclu-
sion principle, the same place in the velocity space can be occupied by at most one
free electron of given spin, so by at most two free electrons (of opposite spins). So
even in principle at absolute zero temperature all free electrons cannot have veloc-
ity 0, but, in case of unit volume, their velocities occupy a certain domain in the
velocity space, whose boundary is called the Fermi surface. The free electrons tend
to occupy positions in the velocity space so that their total energy is minimized.
As a metal crystal lattice cannot have spherical symmetry, the Fermi surface is not
a sphere. There are several ways of obtaining information about the Fermi surface,
and one is via the above measure H 7→ maxx∈Rd Vd−1(K ∩ (H + x)), where K is
the domain of the velocity space bounded by the Fermi surface (K is not convex).
This measure can be determined by the so called de Haas–van Alphen effect, and
in honour of these names this measure is often called the HA–measurement of the
body K.

We prove our result by using a new Radon–type transformation, which can be
considered as a common generalization of partial differential operators and Radon–
type transformations. To the authors’ knowledge, this result is the first attempt to
the extension of the theory of classical Radon transformations into this direction.

Our integro–differential transformation lets to correspond to a sufficiently nice
function f :Sd−1 → R the function R(1)f :Sd−1 → R, where (R(1)f)(ω) is the
integral over the large Sd−2 of Sd−1, with pole ω, of the derivative of f in the
direction ω. To prove our theorem we establish that the null–space of this operator
R(1) consists of the even functions in the domain of R(1).

For the proof of our theorem we use spherical harmonics and the Funk–Hecke
theorem. The third named author has found another proof, by explicit inversion
formulas. For not integral geometers it is interesting to observe that the even
and odd dimensional inversion formulas for our integro–differential transformation
are different in their nature. If the dimension of the base space is even then the
inversion formulas are local ones, while if the base space is odd dimensional then
the inversion formulas are global ones.

For general analytical background we refer to the books [Tricomi, 1957], [Adams,
1975] and [Ziemer, 1989].

Some words about the proof of Corollary 3.2, that is the main result of the
paper, are in order. First the first and second named authors proved (with some
heuristics) an infinitesimal variant of this theorem, for bodies near the unit ball.
Second, independently, the last named author proved the general case.

2. Preliminaries

As usual, R
d denotes the d–dimensional Euclidean space which is endowed with

the standard inner product and norm | · | structure. We will suppose d ≥ 2.
The origin is denoted by 0 and Vd−1 is the (d − 1)–dimensional volume on the
hyperplanes.

Let Sd−1 denote the unit sphere with centre 0; its variable point will be denoted
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by ω, ξ or η. For ω ∈ Sd−1 and t ∈ R let H(ω, t) be the hyperplane given by the
equation 〈x, ω〉 = t. We write ω⊥ for H(ω, 0). Often we will use a polar coordinate
system on Sd−1, with (”north”) pole some ξ ∈ Sd−1. That is, any ω ∈ Sd−1 can
be written as

(1) ω = ξ sinψ + η cosψ, where η ∈ Sd−1 ∩ ξ⊥ and − π/2 ≤ ψ ≤ π/2

(thus ψ is the geographic latitude, which will be more convenient for us than the
costumarily used ϕ = π/2 − ψ); then we write

(2) ω = (η, ψ) .

In particular,

(3) (η, 0) = η .

A real function defined on Sd−1 is called even (odd), if for all ω ∈ Sd−1 we have
f(−ω) = f(ω) (f(−ω) = −f(ω)).

Let K be a convex body which contains the origin 0 in its interior. Let

Q(K,ω) = max
t∈R

Vd−1(K ∩H(ω, t))

be the maximum of the (d − 1)–dimensional volumes of the intersections of the
convex body K and the hyperplanes parallel to ω⊥. We call Q(K,ω) the inner
quermass (or HA–measurement) of K relative to the hyperplane ω⊥.

A set A ⊂ R
d is centred , if it is symmetric with respect to the origin.

For x ∈ R
d, K ⊂ R

d we say that K is a star body with respect to x, if K is of
the form x + {µω | ω ∈ Sd−1, 0 ≤ µ ≤ ̺(ω)}, where ̺ :Sd−1 → R is a positive
continuous function that is called the radial function of K with respect to x. For
x = 0 we just say star body and radial function.

We turn to spherical harmonics, which are higher–dimensional generalizations
of the trigonometric functions cos(nx), sin(nx) (these are obtained for d = 2).
Standard references are [Müller, 1966], [Seeley, 1966], [Erdélyi et al., 1953] and, for
d = 3 in more detail, [Sansone, 1959]; further references, with some geometrical
applications, are e.g. [Funk, 1913], Kap. 2, [Alexandroff, 1937], [Petty, 1952], Cor.
1.31, [Ungar, 1954], [Blaschke, 1956], §23, Anhang, [Petty, 1961], §4, [Schneider,
1967], [Schneider, 1969], [Schneider, 1970], [Falconer, 1983], [Gardner, 1995], Ap-
pendix C, and also the survey paper [Groemer, 1993] and the books [Schneider,
1993], pp. 428–432, as well as [Groemer, 1996], which contain ample further bibli-
ography. Some further papers in geometry, related to the topic of our paper, are
[Funk, 1916], [Lifshitz–Pogorelov, 1954].

A polynomial f : Rd → R is harmonic, if
d
∑

i=1

(∂/∂xi)
2
f = 0. (This is invari-

ant under the choice of an orthonormal base.) For an integer n ≥ 0 a spherical
harmonic (of degree n) in d dimensions is the restriction of a homogeneous har-
monic polynomial f : Rd → R (of degree n) to Sd−1. (Since d will be fixed, later
we will not refer to the dimension.) The spherical harmonics of degree n form
a finite dimensional vector space. Choosing from this subspace an orthonormal
base {Yni | 1 ≤ i ≤ N(d, n)} (orthonormality meant in the space L2(Sd−1), for
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the Lebesgue measure on Sd−1), their union for each n ≥ 0 is a complete or-
thonormal system in L2(Sd−1). Thus each f ∈ L2(Sd−1) has a Fourier expansion
∞
∑

n=0

(

N(d,n)
∑

i=1
cniYni

)

. Here we will write
N(d,n)
∑

i=1
cniYni = Yn(f), thus the Fourier

expansion of f is
∞
∑

n=0
Yn(f).

The spherical harmonics are the eigenfunctions of many linear operators com-
muting with rotations. For example, the Funk–Hecke theorem ([Seeley, 1966], The-

orem 3) says the following. Let F be measurable on [−1, 1], with
1
∫

−1

|F (t)|(1 −

t2)(d−3)/2dt <∞. Then any spherical harmonic Yn of n–th degree is an eigenfunc-
tion of the integral operator f 7→ g = g(ξ) =

∫

Sd−1

F (〈ξ, η〉)f(η)dη, that is

∫

Sd−1

F (〈ξ, η〉)Yn(η)dη = λnYn(ξ) ,

where the eigenvalue λn equals

λn = Vd−2(S
d−2)Cn(1)−1

1
∫

−1

F (t)Cn(t)(1 − t2)(d−3)/2dt .

Here Vd−2 means (d− 2)–dimensional volume, and Cn(t) = C
(d−2)/2
n (t) is the n’th

Gegenbauer polynomial, of order (d−2)/2, that is a non–zero polynomial of degree
n, satisfying for 0 ≤ n < m the orthogonality relations

1
∫

−1

Cn(t)Cm(t)(1 − t2)(d−3)/2dt = 0 .

There holds Cn(1) 6= 0, [Seeley, 1966], (3). For n odd (even) Cn is an odd (even)
function [Erdélyi et al., 1953], §10.9, (16). References to Gegenbauer polynomials
are [Erdélyi et al., 1953] and [Tricomi, 1955].

For suitable measures or distributions on [−1, 1] a formula similar to the Funk–
Hecke theorem holds, cf. for example Lemma 3.7.

3. Concurrent maximal sections and centredness

Rather than considering convex bodies K ⊂ R
d, d ≥ 2, with 0 ∈ int K, we

will consider more generally star bodies K ⊂ R
d, d ≥ 2, with radial functions

̺ :Sd−1 → R positive and Lipschitz. (We use on Sd−1 the geodesic metric, and
Lipschitz is meant with respect to it.) This is actually a generalization. Namely,
it is easily seen that, for a convex body K ⊂ R

d, with 0 ∈ int K, and with radial
function ̺, where 0 < ̺0 ≤ ̺(ω) ≤ ̺1 for ω ∈ Sd−1, we have the following: ̺
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satisfies the Lipschitz condition, with a Lipschitz constant L(̺) dominated by a
function of ̺0 and ̺1 only. (Easy 2–dimensional local arguments give the sharp

upper bound L(̺) ≤ ̺2
1̺

−1
0

√

1 − ̺2
0̺

−2
1 .)

Denoting by Vk the k–dimensional volume (=Lebesgue measure), we have the fol-
lowing theorem, that for K a convex body and k = 1 has been proved by [Hammer,
1954], Theorem 1.

Theorem 3.1. Let d ≥ 2, and let K ⊂ R
d be a star body, having a positive

Lipschitz radial function ̺ :Sd−1 → R. Let 1 ≤ k ≤ d − 1 be an integer, and let
for any linear k–subspace Lk ⊂ R

d the function y 7→ Vk(K ∩ (Lk + y)) have a local
extremum at y = 0. Then K is centred.

Corollary 3.2. Let d ≥ 2 and let 1 ≤ k ≤ d − 1 be an integer. Then a convex
body K ⊂ R

d with 0 ∈ int K is centred if and only if, for any linear k–subspace
Lk ⊂ R

d, the function y 7→ Vk(K ∩ (Lk + y)) attains its maximum at y = 0.

To prove this theorem and its corollary we need some lemmas.

Lemma 3.3. Let ̺ : [−π/2, π/2] → R be a Lipschitz function, with 0 < ̺0 ≤ ̺(ψ)
for ψ ∈ [−π/2, π/2], and with Lipschitz constant at most L > 0. Then there is
a number t0 = t0(̺0, L) ∈ (0, ̺0), such that the following holds. The function
ψ 7→ ̺(ψ) sinψ, where ψ ∈ [−π/2, π/2], assumes each value t ∈ [−t0, t0] exactly for
one ψ; moreover the inverse function t 7→ ψ, t ∈ [−t0, t0], also is Lipschitz, with
Lipschitz constant dominated by a function of ̺0, L only.

Proof. Let f(ψ) = ̺(ψ) sinψ. By t(−π/2) ≤ −̺0 < ̺0 ≤ t(π/2), each value
t ∈ [−̺0, ̺0] is attained for some ψ ∈ [−π/2, π/2].

For sufficiently small t0 ∈ (0, ̺0), let t1, t2 ∈ [−t0, t0]. Suppose −π/2 ≤ ψ1 <
ψ2 ≤ π/2 and f(ψi) = ti. By t0 ≥ |ti| = |f(ψi)| ≥ ̺0| sinψi| we have | sinψi| ≤
t0/̺0. We may suppose t0/̺0 ≤ 1/

√
2 and Lt0/̺0 ≤ ̺0/(2

√
2). Then we have

f(ψ2)−f(ψ1) = t2− t1 = (̺(ψ2)−̺(ψ1)) sinψ2 +̺(ψ1)(sinψ2− sinψ1) ≥ −L(ψ2−
ψ1)t0/̺0 + ̺0(ψ2 − ψ1)/

√
2 ≥ ̺0(ψ2 − ψ1)/(2

√
2) > 0. Therefore each value t ∈

[−t0, t0] is attained by f at most for one ψ ∈ [−π/2, π/2], thus for exactly one ψ =

ψ(t) ∈ [−π/2, π/2]; moreover we have 0 < ψ(t2)−ψ(t1) = ψ2−ψ1 ≤ (t2−t1)2
√

2/̺0.

Corollary 3.4. Let d ≥ 2, and let K ⊂ R
d be a star body, having a positive

Lipschitz radial function ̺ :Sd−1 → R, with 0 < ̺0 ≤ ̺(ξ) for ξ ∈ Sd−1, and with
Lipschitz constant at most L > 0. Then, for ξ ∈ Sd−1 and |t| ≤ t0(̺0, L) (from
Lemma 3.3), we have that K∩H(ξ, t) is a star body in H(ξ, t) = {x ∈ R

d | 〈x, ξ〉 =
t} with respect to tξ.

Proof. By Lemma 3.3 each ray from tξ, lying in H(ξ, t), intersects bd K exactly
once. Furthermore, by compactness of (bd K) ∩ H(ξ, t), this intersection point,
tξ + r(ξ, η, t)η, say, depends continuously on the direction vector η ∈ Sd−1 ∩ ξ⊥

of the ray considered. Moreover ξt ∈ int K, while far points on these rays lie in
R
d \ K. This implies that the star body in H(ξ, t), with respect to tξ, and with

radial function η 7→ r(ξ, η, t) equals K ∩H(ξ, t).
We recall from (1), (2) and (3) the representation in polar coordinates ω = (η, ψ)

for ω = ξ sinψ + η cosψ, where η ∈ Sd−1 ∩ ξ⊥ and −π/2 ≤ ψ ≤ π/2. Thus, in the
following lemma (∂̺/∂ψ)(η) = (∂̺/∂ψ)(η, 0) means the angular derivative of ̺ at
η, along the meridian passing through η.
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Lemma 3.5. Let d ≥ 2, and let K ⊂ R
d be a star body, having a positive Lipschitz

radial function ̺ :Sd−1 → R. Then, for almost all ξ ∈ Sd−1, the function t 7→
Vd−1(K ∩H(ξ, t)) is differentiable at t = 0, and its derivative at t = 0 is equal to

∫

Sd−1∩ξ⊥

̺(η)d−3 ∂̺

∂ψ
(η)dη

((∂̺/∂ψ)(η) existing almost everywhere on Sd−1 ∩ ξ⊥, and the integral existing).

Proof. By [Whitney, 1957], Ch. IX, Theorem 11A, Lipschitz functions Sd−1 → R

are almost everywhere differentiable.
Now we consider the Stiefel–manifold S2,d−2 = {(ξ, η) | ξ, η ∈ Sd−1, 〈ξ, η〉 = 0}.

This is an Sd−2–bundle over Sd−1, via either projection π1: (ξ, η) 7→ ξ, π2: (ξ, η) →
η. Applying locally the Fubini theorem to both π2 and π1, we gain in turn
that V2d−3({(ξ, η) ∈ S2,d−2 | ̺ is not differentiable at η}) = 0, and Vd−1({ξ ∈
Sd−1 | {η ∈ Sd−1∩ξ⊥ | ̺ is not differentiable at η} does not have (d−2)–Lebesgue
measure 0}) = 0 (Vi denoting here invariant Lebesgue type measure in the re-
spective spaces). In other words: for almost all ξ ∈ Sd−1 we have for almost all
η ∈ Sd−1 ∩ ξ⊥ that ̺ is differentiable at η. In the following we assume that ξ has
this property.

Using Corollary 3.4 and the notations ̺0, L and r(ξ, η, t) from its statement and
proof we have

Vd−1(K ∩H(ξ, t)) =

∫

Sd−1∩ξ⊥

r(ξ, η, t)d−1dη

/

(d− 1)

for |t| ≤ t0(̺0, L). Using polar coordinates with pole ξ, for t(ξ, η, ψ) = ̺(η, ψ) sinψ
we have (∂t/∂ψ)(ξ, η, 0) = ̺(η) ≥ ̺0 > 0. Therefore at points (η, 0) of differentia-
bility of ̺ we have by r(ξ, η, t(ξ, η, ψ)) = ̺(η, ψ) cosψ that

(

∂

∂t
r(ξ, η, t)d−1

)∣

∣

∣

∣

t=0

=

(d− 1)r(ξ, η, 0)d−2 · ∂r
∂ψ

(ξ, η, 0)

/

∂t

∂ψ
(ξ, η, 0) =

(d− 1)̺(η)d−3 · ∂̺
∂ψ

(η) .

Let, furthermore, ̺(ξ) ≤ ̺1 for ξ ∈ Sd−1. Then, for |t| ≤ t0(̺0, L), the function
t 7→ r(ξ, η, t)d−1 is Lipschitz, with Lipschitz constant dominated by some function of
̺0, ̺1, L. Namely, it is the composition of the functions t 7→ [the unique ψ with t(ξ, η, ψ) =
t], ψ 7→ ̺(η, ψ) cosψ and r 7→ rd−1, each of these functions satisfying the analogous
statement, by the hypotheses and Lemma 3.3. Therefore for 0 < |t| ≤ t0(̺0, L) and
t → 0 we have that (r(ξ, η, t)d−1 − r(ξ, η, 0)d−1)/t is a continuous function of η, is
uniformly bounded, and for points (η, 0) of differentiability of ̺, thus by assumption
almost everywhere on Sd−1 ∩ ξ⊥, it converges to (d− 1)̺(η)d−3(∂̺/∂ψ)(η). Then
this limit function is measurable, and Lebesgue’s dominated convergence theorem
(with an integrable majorant some constant function) finishes the proof.
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Let d ≥ 2. We denote by Lip(Sd−1) the set of all Lipschitz functions f :Sd−1 →
R. Let −π/2 ≤ ψ ≤ π/2, f ∈ Lip(Sd−1) and ξ ∈ Sd−1. Using polar coordinates

with pole ξ, we define the integro–differential transform R
(1)
ψ f of f by

(4) (R
(1)
ψ f)(ξ) =

∫

Sd−1∩ξ⊥

∂f

∂ψ
(η, ψ)dη ,

provided that the right–hand side exists. Here, like in 3.5, we use representation in
polar coordinates ω = (η, ψ) for ω = ξ sinψ+η cosψ (η ∈ Sd−1 ∩ ξ⊥, −π/2 ≤ ψ ≤
π/2), and (∂f/∂ψ)(η, ψ) means angular derivative of f at (η, ψ) along the meridian
passing through η. For ψ = 0 we drop the lower index.

Lemma 3.6. Let d ≥ 2, −π/2 ≤ ψ ≤ π/2 and f, g ∈ Lip(Sd−1). Then, for
almost all ξ ∈ Sd−1 we have for almost all η ∈ Sd−1 ∩ ξ⊥ that (∂f/∂ψ)(η, ψ)

exists, and, for almost all ξ ∈ Sd−1, the integral defining (R
(1)
ψ f)(ξ) exists. We

have R
(1)
ψ f ∈ L∞(Sd−1), and R

(1)
ψ is symmetric, i.e.,

∫

Sd−1

(R
(1)
ψ f)(ξ)g(ξ)dξ =

∫

Sd−1

f(ξ)(R
(1)
ψ g)(ξ)dξ.

Proof. The claimed existence of ∂f/∂ψ for ψ = ±π/2 follows from [Whitney,
1957], cited in Lemma 3.5, and otherwise follows like in 3.5, using the manifold
{(ξ, ω) | ξ, ω ∈ Sd−1, 〈ξ, ω〉 = sinψ}. For almost all ξ ∈ Sd−1 we have that the
function η 7→ (∂f/∂ψ)(η, ψ) is the almost everywhere limit of the continuous func-
tions

η 7→ (f(η, ψ + ε) − f(η, ψ))/ε

with absolute value below a constant depending of f . Therefore the function η 7→
(∂f/∂ψ) (η, ψ) is integrable and R

(1)
ψ f is bounded, for almost all ξ. Also R

(1)
ψ f is

measurable, since by Lebesgue’s dominated convergence theorem it is the almost
everywhere limit of the (uniformly bounded set of) continuous functions

ξ 7→
∫

Sd−1∩ξ⊥

(f(η, ψ + ε) − f(η, ψ)) ε−1dη .

Hence R
(1)
ψ f ∈ L∞(Sd−1).

Further, we have
∫

Sd−1

(R
(1)
ψ f)(ξ)g(ξ)dξ =

lim
ε→0







∫

Sd−1







∫

Sd−1∩ξ⊥

f(η, ψ + ε)dη






g(ξ)dξ −

∫

Sd−1







∫

Sd−1∩ξ⊥

f(η, ψ)dη






g(ξ)dξ







/

ε =

lim
ε→0







∫

Sd−1







∫

Sd−1∩ξ⊥

g(η, ψ + ε)dη






f(ξ)dξ −

∫

Sd−1







∫

Sd−1∩ξ⊥

g(η, ψ)dη






f(ξ)dξ







/

ε =
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∫

Sd−1

(R
(1)
ψ g)(ξ)f(ξ)dξ .

Here the middle equality follows from Fubini’s theorem for the manifold {(ξ, η) | ξ, η ∈
Sd−1, 〈ξ, η〉 = sinψ (or sin(ψ + ε))}, respectively for ψ = ±π/2 it is evident. (We
note that the middle equality — without the limit sign, and for both summands
separately — has already been proved by [Schneider, 1969], in another way.)

We define analogously R
(0)
ψ by

(R
(0)
ψ f)(ξ) =

∫

Sd−1∩ξ⊥

f(η, ψ)dη .

Then we have the following lemma, whose statement for m = 0 and d = 3 is due
to [Radon, 1917], while for m = 0 and general d it is due to [Schneider, 1969], cf.
formula (5) of his paper. Our proof of the statement for m = 0 is different from
Schneider’s.

Lemma 3.7. Let d ≥ 2, m ∈ {0, 1}, −π/2 ≤ ψ ≤ π/2, and let Yn:S
d−1 → R

be a spherical harmonic of degree n. Then Yn is an eigenfunction of R
(m)
ψ , i.e.,

R
(m)
ψ Yn = λnYn, with

λn = Vd−2(S
d−2)C(d−2)/2

n (1)−1

(

d

dψ

)m

C(d−2)/2
n (sinψ) .

Proof. The Funk–Hecke theorem (§2), applied to F (t), the characteristic function
of [−1, sinψ] (−π/2 < ψ < π/2), gives

∫

{ω∈Sd−1|〈ξ,ω〉≤sinψ}

Yn(ω)dω =

Vd−2(S
d−2)Cn(1)−1

sinψ
∫

−1

Cn(t)(1 − t2)(d−3)/2dt · Yn(ξ) .

Differentiation with respect to ψ gives

cosd−2 ψ ·
∫

Sd−1∩ξ⊥

Yn(η, ψ)dη =

∫

{ω∈Sd−1|〈ξ,ω〉=sinψ}

Yn(ω)dω =

Vd−2(S
d−2)Cn(1)−1Cn(sinψ) cosd−2 ψ · Yn(ξ) ,

that yields our statement for m = 0 (for ψ = ±π/2 passing to limit). From this
case differentiation with respect to ψ proves the statement for m = 1.

The statement corresponding to the case m = 0, ψ = 0 in the following theorem
is the Funk integral theorem (for f ∈ C(Sd−1)), cf. [Funk, 1913], Kap. 2, [Lifshitz–
Pogorelov, 1954], [Schneider, 1969], [Helgason, 1980], Ch. 3, §1.B and [Helgason,
1984].
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Theorem 3.8. Let d ≥ 2 and −π/2 ≤ ψ ≤ π/2. Then the null–space of the oper-

ator R
(1)
ψ :Lip(Sd−1) → L∞(Sd−1) equals {f ∈ Lip(Sd−1) | the Fourier expansion

∞
∑

n=0
Yn(f) of f satisfies that (d/dψ)C

(d−2)/2
n (sinψ) 6= 0 implies Yn(f) = 0}. In par-

ticular, for ψ = 0 the null–space of R(1) = R
(1)
0 equals {f ∈ Lip(Sd−1) | f is even}.

Proof. For the first statement we proceed analogously to [Alexandroff, 1937], [Petty,
1961], [Schneider, 1969], [Schneider, 1970], [Falconer, 1983]. Let f ∈ Lip(Sd−1).

Then, by 3.6, we have R
(1)
ψ f ∈ L∞(Sd−1) ⊂ L2(Sd−1). Moreover, by completeness

of spherical harmonics, R
(1)
ψ f = 0 holds a.e. if and only if for each n ≥ 0, and each

spherical harmonic Yn of degree n we have 0 = 〈R(1)
ψ f, Yn〉, where 〈 , 〉 now denotes

scalar product in L2(Sd−1). Letting
∞
∑

n=0
Yn(f) be the Fourier expansion of f , we

have by 3.6 and 3.7 that

〈R(1)
ψ f, Yn〉 = 〈f, R(1)

ψ Yn〉 = λn〈f, Yn〉 =

Vd−2(S
d−2)Cn(1)−1 d

dψ
Cn(sinψ) · 〈Yn(f), Yn〉 .

For fixed n and Yn arbitrary this is 0 if and only if (d/dψ)Cn(sinψ) · Yn(f) = 0.
This implies the first statement.

For the second statement first observe that for ψ = 0 and f even by 3.6 we have
for almost all ξ ∈ Sd−1 that for almost all η ∈ Sd−1 ∩ ξ⊥ both (∂f/∂ψ)(η, 0) and
(∂f/∂ψ)(−η, 0) exist and then have sum 0, thus (R(1)f)(ξ) = 0 a.e.

Then for the second statement it remains to show that conversely R(1)f = 0
implies that f is even. Let R(1)f = 0 and let n be odd. Then Cn is odd, hence
Cn(0) = 0, and, since {C0, C1, ...} is a system of orthogonal polynomials, Cn only
has simple zeros ([Erdélyi et al., 1953], p.158), thus C′

n(0) 6= 0. Therefore by

the first statement Yn(f) = 0, so f =
∞
∑

k=0

Y2k(f) is even a.e., so by continuity

everywhere.

Proof of Theorem 3.1. It suffices to prove the statement for k = d − 1. Namely,
for any linear (k + 1)–subspace Lk+1, we have that K ∩ Lk+1 also satisfies the
hypotheses of the theorem; furthermore, if each K ∩ Lk+1 is centred, then K is as
well.

Let therefore k = d − 1. Then, for any linear (d− 1)–subspace ξ⊥ (ξ ∈ Sd−1)
for which the function t 7→ Vd−1(K ∩H(ξ, t)) is differentiable at t = 0, thus by 3.5
for almost all ξ, we have that the derivative of this function at t = 0 is 0. Letting
f = ̺d−2/(d− 2) for d ≥ 3, and f = log ̺ for d = 2, we have f ∈ Lip(Sd−1), and,
by 3.5, the above derivative at t = 0 is equal to (R(1)f)(ξ) for almost all ξ. Then
3.8 yields that f , and thus ̺, is even, so K is centred.

Proof of Corollary 3.2. The maximum property implies centredness by Theorem 3.1
and the remarks preceding it, while the converse follows from the Brunn–Minkowski
theorem.

Since Corollary 3.2 directly implies an affirmative answer to Problem 8.8 from
[Gardner, 1995] (see also [Martini, 1994]), we give an additional corollary in terms
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of that problem. For doing this, we add two notions: that of the intersection body
IK (introduced in [Lutwak, 1988], see also [Gardner, 1995], Definition 8.1.1) and
that of the cross–section body CK (introduced in [Martini, 1992], see also [Gardner,
1995], Definition 8.3.1) of a convex body K ⊂ R

d.
Let d ≥ 2. The body IK, for K with the origin as interior point, is the star

body with (necessarily continuous) radial function ω 7→ Vd−1(K ∩ ω⊥), where ω
runs through Sd−1. On the other hand, CK is the star body with (necessarily
continuous) radial function ω 7→ Q(K,ω), i.e., the inner (d− 1)–quermass, or HA–
measurement of K defines the boundary of CK.

Moreover, Theorem 1 from [Makai–Martini, 1996] implies that if d ≥ 2, 0 ∈ intK
and IK and CK are homothets, then they even coincide.

Together with Corollary 3.2 above, this implies

Corollary 3.9. Let d ≥ 2 and let K ⊂ R
d be a convex body with 0 ∈ intK. If IK

and CK are homothets, then K is centred.

Essentially the same statement has already been given in [Makai–Martini, 1996],
Theorem 2; we have included it here since its proof becomes complete (as already
mentioned in [Makai–Martini, 1996]) only by our Corollary 3.2.

More generally, we pose

Problem 3.10. Let d ≥ 2, and let K ⊂ R
d be a convex body with 0 ∈ int K.

Let ω ∈ Sd−1, and let 1 ≤ ℓ ≤ d− 2. Then, if K is centred, the quermassintegrals
Wℓ((K ∩ H(ω, t)) − tω) (considered in ω⊥) attain their maximum for t = 0, by
the Alexandroff–Fenchel inequalities (see [Schneider, 1993], §6.3). (By the same
argument, the same holds for the mixed volumes V ((K ∩ H(ω, t)) − tω, . . . , (K ∩
H(ω, t))− tω,M1, . . . ,Mℓ), where Mi ⊂ ω⊥ are fixed centred convex bodies.) Our
question is: do such properties characterize centredness of K?

Remark. Let d ≥ 2. Then for any integer m ≥ 1 one can define analogously

an integro–differential transform R
(m)
ψ f for those functions f :Sd−1 → R, whose all

partial derivatives of order at most m−1 exist and are Lipschitz functions. Namely,
we put

(R
(m)
ψ f)(ξ) =

∫

Sd−1∩ξ⊥

∂mf

∂ψm
(η, ψ)dη ,

provided that the right–hand side exists — where −π/2 ≤ ψ ≤ π/2, ξ ∈ Sd−1,
we use polar coordinates with pole ξ, and differentiation is meant as in (4). Then
analogues of 3.6 and 3.7 hold, and a certain analogue of 3.8 holds as well. These
we published in a separate paper [Makai–Martini–Ódor 2001].
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