Acta Math. Hungar., **123 (3)** (2009), 223-228. DOI: 10.1007/s10474-009-8088-z First published online January 27, 2009

FURTHER REMARKS ON δ - AND θ -MODIFICATIONS*

Á. CSÁSZÁR 1 and E. MAKAI ${\rm Jr.}^2$

¹ Department of Analysis, Eötvös Loránd University, H-1117 Budapest, Pázmány P. sétány 1/C
² Alféd Rényi Institute of Mathematics, 1053 Budapest, Reáltanoda u. 13–15.

(Received April 29, 2008; revised September 10, 2008; accepted October 29, 2008)

Abstract. In generalizing constructions of N.V. Veličko, the paper starts from two generalized topologies μ and μ' on a set X and introduces two more generalized topologies $\delta(\mu, \mu')$ and $\theta(\mu, \mu')$ with the examination of their properties.

0. Introduction

In the paper [5], the first author has generalized the construction of δ and θ -modifications of topologies, introduced in [7], by replacing the topology used in [7] by a generalized topology in the sense of [1]; we recall that a subset μ of the power set exp X of a set $X \neq \emptyset$ is said to be a *generalized topology* (briefly GT) iff $\emptyset \in \mu$ and every union of elements of μ belongs to μ . In the paper [5], given a GT μ on X, two other GT's $\delta(\mu)$ and $\theta(\mu)$ were constructed and their properties examined.

^{*}Research (partially) supported by Hungarian Foundation for Scientific Research, grant Nos. T 49786, T 046846, K 68398.

Key words and phrases: $\delta(\mu, \mu')$, $\theta(\mu, \mu')$, (μ, ν) -continuous napping, $r(\mu, \mu')$ -open set, $\gamma(\mu, \mu')$, $\bar{\gamma}(\mu, \mu')$.

²⁰⁰⁰ Mathematics Subject Classification: 54A05.

In the present paper, we generalize the above constructions in the following way. We use two GT's μ and μ' on X and define two more GT's $\delta(\mu, \mu')$ and $\theta(\mu, \mu')$ in such a way that, in the case $\mu = \mu'$, we have $\delta(\mu, \mu) = \delta(\mu)$ and $\theta(\mu, \mu) = \theta(\mu)$. Our purpose is to discuss the properties of $\delta(\mu, \mu')$ and $\theta(\mu, \mu')$ (involving the results in [5] in the case $\mu = \mu'$).

1. Preliminaries

Let μ be a GT on X. We call μ -open the elements of μ , their complements μ -closed. If $A \subset X$ then $i_{\mu}A$ denotes the largest μ -open set contained in A and $c_{\mu}A$ the smallest μ -closed set containing A (see e.g. [3]). Then both i_{μ} and c_{μ} are operations, i.e. mappings from exp X to exp X, monotonic (where β : exp $X \to \exp X$ is said to be monotonic when $A \subset B$ implies $\beta A \subset \beta B$; for an operation β we write βA for $\beta(A)$), idempotent (where β is idempotent iff $\beta\beta A = \beta A$) and $c_{\mu}(X - A) = X - i_{\mu}A$ (see [3]). If β and β' are operations, we write $\beta\beta'$ for $\beta \circ \beta'$. According to [5],

(*) if $A \subset X$ and $x \in X$, then $x \in c_{\mu}A$ iff $x \in M \in \mu$ implies $M \cap A \neq \emptyset$.

We say that the GT μ is strong iff $X \in \mu$ (see [2]) and a quasi-topology (briefly QT) iff $A \in \mu$ and $B \in \mu$ implies $A \cap B \in \mu$ (see [4]). Clearly the GT μ is a topology on X iff it is a strong quasi-topology.

If μ is a GT on X and ν is a GT on Y then the mapping $f: X \to Y$ is said to be (μ, ν) -continuous iff $N \in \nu$ implies $f^{-1}(N) \in \mu$ (see [1]).

2. $\delta(\mu, \mu')$ and $\theta(\mu, \mu')$

We consider two (not necessarily distinct) GT's μ and μ' on X. For the sake of brevity, in what follows we write i, c, i', c' for $i_{\mu}, c_{\mu}, i_{\mu'}, c_{\mu'}$ respectively.

Let $\delta(\mu, \mu')$ be composed of the sets $A \subset X$ such that $x \in A$ implies the existence of a μ' -closed set Q satisfying $x \in iQ \subset A$.

Similarly, $\theta(\mu, \mu')$ is composed of all sets $A \subset X$ such that $x \in A$ implies the existence of a set $M \in \mu$ satisfying $x \in M \subset c'M \subset A$.

Then clearly $\delta(\mu, \mu) = \delta(\mu)$ and $\theta(\mu, \mu) = \theta(\mu)$ (see [5]). If possible, we shall simply write δ and θ instead of $\delta(\mu, \mu')$ and $\theta(\mu, \mu')$, respectively.

PROPOSITION 2.1. δ is a GT on X.

PROOF. $\emptyset \in \delta$ is evident. If $A = \bigcup_{i \in I} A_i \subset X$ and $A_i \in \delta$ for every $i \in I$ then $x \in A$ implies $x \in A_i$ for some $i \in I$ and then there is a μ' -closed set Q such that $x \in iQ \subset A_i \subset A$. Hence $A \in \delta$. \Box

Acta Mathematica Hungarica 123, 2009

PROPOSITION 2.2. θ is a GT on X.

PROOF. Clearly $\emptyset \in \theta$. If $A = \bigcup_{i \in I} A_i \subset X$ and $A_i \in \theta$ for $i \in I$ then $x \in A$ implies $x \in A_i$ for some $i \in I$ and then there is $M \in \mu$ such that $x \in M \subset c'M \subset A_i \subset A$. Hence $A \in \theta$. \Box

PROPOSITION 2.3. If μ is a strong GT then the same is true for δ .

PROOF. $X \in \delta$ since $x \in X$ implies that X is μ '-closed (as $\emptyset \in \mu'$), moreover $X \in \mu$ by hypothesis so that $x \in iX = X \subset X$. \Box

PROPOSITION 2.4. If μ is a strong GT then the same holds for θ .

PROOF. $X \in \theta$ since $x \in X$ implies $x \in X = c'X \subset X$, and $X \in \mu$ by hypothesis. \Box

LEMMA 2.5. If μ is a QT and $P, Q \subset X$ then

$$i(P \cap Q) = iP \cap iQ.$$

PROOF. As *i* is monotonic, $i(P \cap Q) \subset iP \cap iQ$. On the other hand, $iP \cap iQ \in \mu$ by hypothesis and $iP \cap iQ \subset P \cap Q$ so that $iP \cap iQ \subset i(P \cap Q)$. \Box

PROPOSITION 2.6. If μ is a QT then δ is a QT as well.

PROOF. Assume $A, B \in \delta$. Then $x \in A \cap B$ implies the existence of μ' closed sets P and Q such that $x \in iP \subset A$ and $x \in iQ \subset B$. By 2.5 $i(P \cap Q)$ $= iP \cap iQ$ so that $x \in i(P \cap Q) = iP \cap iQ \subset A \cap B$, moreover $P \cap Q$ is μ' closed. Hence $A \cap B \in \delta$. \Box

PROPOSITION 2.7. If μ is a QT then the same holds for θ .

PROOF. Assume $A, B \in \theta$. If $x \in A \cap B$ then there are $M, N \in \mu$ satisfying $x \in M \subset c'M \subset A$ and $x \in N \subset c'N \subset B$. By hypothesis $M \cap N \in \mu$. Hence $x \in M \cap N \subset c'(M \cap N) \subset c'M \cap c'N \subset A \cap B$. \Box

THEOREM 2.8. If μ is a topology then the same is true for $\delta(\mu, \mu')$ and $\theta(\mu, \mu')$.

PROOF. By 2.3, 2.4, 2.6, 2.7 both δ and θ are strong QT's. Theorem 2.9. $\theta \subset \delta \subset \mu$.

PROOF. Assume $A \in \theta$ and $x \in A$. Then there is $M \in \mu$ such that $x \in M \subset c'M \subset A$. Choose Q = c'M. Then Q is μ' -closed and $M \subset Q$ implies $M \subset iQ$. Hence $x \in M \subset iQ \subset Q \subset A$.

Now let $A \in \delta$, $x \in A$. Then there is a μ' -closed set Q_x such that $x \in iQ_x \subset A$. As $iQ_x \in \mu$ and clearly A is the union of these sets iQ_x , we have $A \in \mu$. \Box

In general, $\theta \neq \delta$, even if $\mu = \mu'$ is a topology. In fact, let $X = \{a, b, c\}$, $\mu = \mu' = \{\emptyset, \{a\}, \{b\}, \{a, b\}, X\}$ (see [5], 4.6). Then $\theta = \{\emptyset, X\}$ by [5], 4.6. However, $A = \{a\} \in \delta$ as $Q = \{a, c\}$ is μ -closed and $a \in iQ = \{a\} \subset A$.

Let us consider another GT μ_0 on X and write i_0 and c_0 for i_{μ_0} and c_{μ_0} , respectively.

Acta Mathematica Hungarica 123, 2009

PROPOSITION 2.10. If $\mu' \subset \mu_0$ then $\delta(\mu, \mu') \subset \delta(\mu, \mu_0)$.

PROOF. Let $A \in \delta(\mu, \mu')$ and $x \in A$. Then there is a μ' -closed set Q such that $x \in iQ \subset A$. By hypothesis, Q is μ_0 -closed so that $A \in \delta(\mu, \mu_0)$. \Box

Now consider another set Y and two GT's ν and ν' on Y. Consider also a mapping $f: X \to Y$. The following proposition shows the functoriality of θ .

PROPOSITION 2.11. If f is (μ, ν) -continuous and (μ', ν') -continuous then it is $(\theta(\mu, \mu'), \theta(\nu, \nu'))$ -continuous as well.

PROOF. Let $B \in \theta(\nu, \nu')$ and $y \in B$. Then there exist sets $G \in \nu$ and $Y - F \in \nu'$ such that $y \in G \subset F \subset B$. For the set $A = f^{-1}(B) \subset X$, consider $x \in A$. Then $y = f(x) \in B$ and there are $G \in \nu$ and $Y - F \in \nu'$ as above. Therefore $x \in f^{-1}(G) \subset f^{-1}(F) \subset A$ and $G \in \nu$ implies $f^{-1}(G) \in \mu$, $Y - F \in \nu'$ implies $X - f^{-1}(F) = f^{-1}(Y - F) \in \mu'$ so that $A \in \theta(\mu, \mu')$. \Box

COROLLARY 2.12. If ν and ν' are two GT's on X and $\nu \subset \mu$, $\nu' \subset \mu'$ then $\theta(\nu, \nu') \subset \theta(\mu, \mu')$.

PROOF. Consider Y = X, f = id. \Box

3. Properties of $\delta(\mu, \mu')$

Let us say that a set $R \subset X$ is $r(\mu, \mu')$ -open iff R = ic'R. If there is no confusion, we simply call these sets r-open.

LEMMA 3.1. If Q is μ' -closed then iQ is r-open.

PROOF. Define R = iQ. Then $R \subset c'R \subset Q$ and, as $R \in \mu$, $R \subset ic'R \subset iQ = R$. Thus R = ic'R. \Box

THEOREM 3.2. δ coincides with the collection of all unions of r-open sets.

PROOF. Let R be r-open, i.e. R = ic'R. Then Q = c'R is μ' -closed and $x \in R$ implies $x \in iQ = R$ so that $R \in \delta$.

By 2.1 each union of r-open sets belongs to δ .

Now let $D \in \delta$ and $x \in D$. Then there is a μ' -closed set Q_x such that $x \in iQ_x \subset D$. By 3.1 iQ_x is r-open and clearly D is the union of all these sets. \Box

THEOREM 3.3. If $A \subset X$ and $x \in X$, we have $x \in c_{\delta}A$ iff every r-open set R such that $x \in R$ fulfils $R \cap A \neq \emptyset$.

PROOF. $x \in c_{\delta}A$ iff $x \in D \in \delta$ implies $D \cap A \neq \emptyset$ iff $x \in R$, R = ic'R implies $R \cap A \neq \emptyset$ by 3.2. \Box

Acta Mathematica Hungarica 123, 2009

226

4. Properties of $\theta(\mu, \mu')$

Let us introduce an operation $\gamma(\mu, \mu') = \gamma$ by $x \in \gamma A$ iff $x \in M \in \mu$ implies $c'M \cap A \neq \emptyset$ $(A \subset X)$.

LEMMA 4.1. The operation $\gamma : \exp X \to \exp X$ is monotonic.

PROOF. If $A \subset B$ and $x \in \gamma A$ then $x \in M \in \mu$ implies $c'M \cap A \neq \emptyset$, hence $c'M \cap B \neq \emptyset$ and $x \in \gamma B$. \Box

LEMMA 4.2. $A \subset X$ implies $A \subset cA \subset \gamma A$.

PROOF. A is contained in cA (see Section 1). Moreover, $x \in cA$ and $x \in M \in \mu$ imply $M \cap A \neq \emptyset$ (cf. (*)) and a fortiori $c'M \cap A \neq \emptyset$. \Box

THEOREM 4.3. $A \subset X$ is θ -closed iff $A = \gamma A$.

PROOF. A is θ -closed iff $X - A \in \theta$ iff $x \in X - A$ implies the existence of $M \in \mu$ satisfying $x \in M \subset c'M \subset X - A$ iff $x \in X - A$ implies the existence of $M \in \mu$ satisfying $x \in M$ and $c'M \cap A = \emptyset$ iff $x \in X - A$ implies $x \in X - \gamma A$ iff $X - A \subset X - \gamma A$ iff $\gamma A \subset A$ iff $\gamma A = A$ by 4.2. \Box

For the relation of γA and $c_{\theta} A$, we can say:

PROPOSITION 4.4. $A \subset X$ implies $\gamma A \subset c_{\theta} A$.

PROOF. $x \in X - c_{\theta}A$ implies the existence of $T \in \theta$ satisfying $x \in T$ and $T \cap A = \emptyset$ and then of $M \in \mu$ such that $x \in M$ and $c'M \subset T \subset X - A$, implying $x \notin \gamma A$. \Box

However, in general $\gamma A \neq c_{\theta} A$ since γ is not idempotent, not even if $\mu = \mu'$ is a topology (see [5], 4.6 and 4.7 where, for $A = \{a\}$, we have $c_{\theta} A = X$ but $b \notin \gamma A$ as $M = \{b\}$ implies $cM \cap A = \emptyset$).

In order to obtain a more precise connection, let us define an operation γ^{α} for each ordinal number α and $A \subset X$. Define $\gamma^{0}A = A$ and $\gamma^{\alpha+1}A = \gamma\gamma^{\alpha}A$, $\gamma^{\alpha}A = \bigcup_{\beta < \alpha} \gamma^{\beta}A$ for a limit ordinal α . (Clearly $\gamma^{\beta}A$ stabilizes for a sufficiently large ordinal α , see [6].) Then define $\bar{\gamma}A = \bigcup_{\alpha} \gamma^{\alpha}A$ for all ordinals α . Clearly

$$(**) A \subset \bar{\gamma}A \subset X.$$

THEOREM 4.5. $A \subset X$ implies $c_{\theta}A = \bar{\gamma}A$.

PROOF. $c_{\theta}A$ is the minimal θ -closed set B containing A, i.e. by 4.3 the minimal set B such that

$$A \subset B = \gamma B$$

Thus

$$(***) A \subset c_{\theta}A = \gamma c_{\theta}A$$

(cf. 4.3) while

$$(****) \qquad B \subset X, \quad A \subset B = \gamma B \Rightarrow c_{\theta} A \subset B.$$

Acta Mathematica Hungarica 123, 2009

228 Å. CSÁSZÁR and E. MAKAI Jr.: FURTHER REMARKS ON δ - AND θ -MODIFICATIONS

From (***) and 4.1 it follows by transfinite induction that $\gamma^{\alpha}A \subset c_{\theta}A$ for each ordinal α . Hence

 $(*****) \qquad \bar{\gamma}A \subset c_{\theta}A.$

However $\gamma \bar{\gamma} A = \bar{\gamma} A$ and thus by (**) and (****) we get $c_{\theta} A \subset \bar{\gamma} A$. Consequently by (*****) $c_{\theta} A = \bar{\gamma} A$. \Box

References

- Á. Császár, Generalized topology, generalized continuity, Acta Math. Hungar., 96 (2002), 351-357.
- [2] Á. Császár, Extremally disconnected generalized topologies, Annales Univ. Sci. Budapest., Sectio Math., 47 (2004), 91–96.
- [3] Á. Császár, Generalized open sets in generalized topologies, Acta Math. Hungar., 106 (2005), 53-66.
- [4] Å. Császár, Further remarks on the formula for γ -interior, Acta Math. Hungar., 113 (2006), 325–332.
- [5] Å. Császár, δ and θ -modifications of generalized topologies, Acta Math. Hungar., **120** (2008), 275–279.
- [6] H. Herrlich and M. Hušek, Categorical topology, in: Recent Progress in Gen. Top. (Eds. M. Hušek, J. van Mill), North Holland (Amsterdam-London-New York-Tokyo, 1992), pp. 369-403.
- [7] N. V. Veličko, *H*-closed topological spaces, *Mat. Sbornik*, **70(112)** (1966), 98–112.