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Abstract. For any positive integer k and ǫ > 0, there exist nk,ǫ, ck,ǫ > 0 with the following

property. Given any system of n > nk,ǫ points in the plane with minimal distance at least 1

and any t1, t2, . . . , tk ≥ 1, the number of those pairs of points whose distance is between

ti and ti + ck,ǫ
√

n for some 1 ≤ i ≤ k, is at most n2

2

(

1 − 1
k+1 + ǫ

)

. This bound is

asymptotically tight.

1. Introduction

Almost fifty years ago the senior author [E1] raised the following problem: Given n

points in the plane, what can be said about the distribution of the
(

n
2

)

distances determined

by them? In particular, what is the maximum number of pairs of points that determine

the same distance? Although a lot of progress has been made in this area, we are still

very far from having satisfactory answers to the above questions (cf. [EP], [MP], [PA] for

recent surveys).

Two distances are said to be nearly the same if they differ by at most 1. If all points of

a set are close to each other, then all distances determined by them are nearly the same

(nearly zero). Therefore, throughout this paper we shall consider only separated point

sets P , i.e., we shall assume that the minimal distance between two elements of P is at

least 1. In [EMPS] we have shown that the maximum number of times that nearly the

same distance can occur among n separated points in the plane is ⌊n2/4⌋, provided that

n is sufficiently large. In fact, a straightforward generalization of our argument gives the

following.

Theorem 1. There exists c1 > 0 and n1 such that, for any set {p1, p2, . . . , pn} ⊆ R
2

(n ≥ n1) with minimal distance at least 1 and for any real t, the number of pairs {pi, pj}
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whose distance d(pi, pj) ∈ [t, t+ c1
√

n] is at most [n2/4]. (Evidently, the statement is false

with, say, c1 = 2.)

The aim of the present note is to establish the following result.

Theorem 2. Given any positive integer k and ǫ > 0, one can find a function c(n)

tending to infinity and an integer n0 satisfying the following condition. For any set

{p1, p2, . . . , pn} ⊆ R
2 (n ≥ n0) and for any reals t1, t2, . . . , tk, the number of pairs {pi, pj}

whose distance

d(pi, pj) ∈
k
⋃

r=1

[tr, tr + c(n)]

is at most n2

2 (1 − 1
k+1 + ǫ).

To see that this bound is asymptotically tight, let P = {(iN, j): 0 ≤ i ≤ k, 1 ≤ j ≤
n

k+1}, where N is a very large constant. Now |P | ≤ n, and the distance between any two

points of P with different x-coordinates is nearly iN for some 1 ≤ i ≤ k. Hence, there are

at least n2

2 (1− 1
k+1 + o(1) ) point pairs such that all distances determined by them belong

to the union of the intervals [iN, iN + 1], 1 ≤ i ≤ k.

Let K
(m)
k+2 denote a (k+2)-uniform hypergraph, whose vertex set can be partitioned into

k + 2 parts V (K
(m)
k+2) = V1 ∪ V2 ∪ · · · ∪ Vk+2, |Vi| = m (1 ≤ i ≤ k + 2), and K

(m)
k+2 consists

of all (k + 2)-tuples containing exactly one point from each Vi. Our proof is based on the

following two well-known facts from extremal (hyper)graph theory.

Theorem A [L, Ch. 10, Ex. 40]. Any graph with n vertices and n2

2
(1− 1

k+1
+ ǫ) edges

has at least ǫ( n
k+2)k+2 complete subgraphs on k + 2 vertices.

Theorem B [E2]. Any (k + 2)-uniform hypergraph with n vertices and at least

nk+2−(1/m)k+1

hyperedges contains a subhypergraph isomorphic to K
(m)
k+2.

In the last section we are going to show that Theorem 2 is valid with c(n) = ck,ǫ
√

n,

for a suitable constant ck,ǫ > 0. Our main tool will be a straightforward generalization

of Szemerédi’s Regularity Lemma. Given a graph G whose edges are colored by k colors,
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and two disjoint subsets V1, V2 ⊆ V (G), let er(V1, V2) denote the number of edges of color

r with one endpoint in V1 and the other in V2. The pair {V1, V2} is called δ-regular if
∣

∣

∣

∣

er(V
′
1 , V ′

2)

|V ′
1 | · |V ′

2 |
− er(V1, V2)

|V1| · |V2|

∣

∣

∣

∣

< δ for every 1 ≤ r ≤ k ,

and for every V ′
1 ⊆ V1, V ′

2 ⊆ V2 such that |V ′
1 | ≥ δ|V1|, |V ′

2 | ≥ δ|V2|. We say that the sizes

of V1 and V2 are almost equal if | |V1| − |V2| | ≤ 1.

Theorem C [Sz]. Given any δ > 0 and any positive integers k, f , there exist F =

F (δ, k, f) and n0 = n0(δ, k, f) with the property that the vertex set of every graph G with

|V (G)| > n0, whose edges are colored by k colors, can be partitioned into almost equal

classes V1, V2, . . . , Vg such that f ≤ g ≤ F and all but at most δg2 pairs {Vi, Vj} are

δ-regular.

2. Proof of Theorem 2

The proof is by induction on k. For k = 1 the assertion is true (Theorem 1). So we can

assume that k ≥ 2, ǫ > 0, and that we have already proved the theorem for k − 1 with an

appropriate function ck−1,ǫ(n) → ∞.

Fix a set P = {p1, p2, . . . , pn} ⊆ R
2 with minimal distance 1, and suppose that there

are reals t1, t2, · · · , tk such that the number of pairs {pi, pj} with

d(pi, pj) ∈
k
⋃

r=1

[tr, tr + c(n)]

is at least n2

2 (1 − 1
k+1 + ǫ). We are going to show that one can specify the function

c(n) ≤ ck−1,ǫ(n) tending to infinity so as to obtain a contradiction if n is sufficiently large.

Lemma 2.1. If c(n) = o(
√

n), then min1≤r≤k tr/
√

n → ∞ as n tends to infinity.

Proof. Assume that e.g. tk ≤ C
√

n. For any pi, the number of points pj with d(pi, pj) ∈

[tk, tk+c(n)] is at most 100(tk+c(n))c(n). Hence the number of point pairs whose distances

belong to
⋃k−1

r=1 [tr, tr + ck−1,ǫ(n)] ⊇
⋃k−1

r=1 [tr, tr + c(n)] is at least

n2

2

(

1 − 1

k + 1
+ ǫ

)

− 50n (tk + c(n)) c(n) >
n2

2

(

1 − 1

k
+ ǫ

)

,
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provided that n is sufficiently large. This contradicts the induction hypothesis. �

Lemma 2.2. One can choose disjoint subsets Pi ⊆ P (1 ≤ i ≤ k + 2) such that |Pi| >

bk,ǫ(log n)1/(k+1) for a suitable constant bk,ǫ > 0, and the following condition holds. For

any 1 ≤ i 6= j ≤ k + 2, there exists 1 ≤ r(i, j) ≤ k such that

d(pi, pj) ∈ [tr(i,j), tr(i,j) + c(n)] for all pi ∈ Pi , pj ∈ Pj .

Proof. Let G denote the graph with vertex set P , whose two vertices are connected by an

edge if and only if their distance belongs to
⋃k

r=1[tr, tr + c(n)]. By Theorem A (in the

Introduction), we obtain that G contains at least ǫ
(

n
k+2

)k+2

complete subgraphs Kk+2

on k+2 vertices. Since for a random partition {P1, ..., Pk+2} of P the number of the above

Kk+2’s meeting each Pi in one point is at least d(k)ǫ (n/(k + 2))
k+2

, where d(k) > 0 we

can suppose this inequality for a fixed partition {P1, ..., Pk+2} of P .

Let Kk+2 be such a subgraph with vertices ps1
, ps2

, . . . , psk+2
(1 ≤ s1 < s2 < · · · <

sk+2 ≤ n). Then for any 1 ≤ i 6= j ≤ k + 2, there exists 1 ≤ r(i, j) ≤ k such that

d(psi
, psj

) ∈ [tr(i,j), tr(i,j) + c(n)]. The symmetric array (r(i, j))1≤i6=j≤k+2 is said to be the

type of Kk+2. Since the number of different types is at most k(k+2
2 ), we can choose at least

ǫ
k(k+2)2

nk+2 complete subgraphs Kk+2 having the same type. Applying Theorem B to the

(k + 2)-uniform hypergraph H formed by the vertex sets of these complete subgraphs, we

obtain that H contains a subhypergraph isomorphic to K
(m)
k+2 with m ≥ b′k,ǫ(log n)1/(t+2),

for a suitable constant b′k,ǫ > 0. From this the assertion readily follows. �

In what follows, we shall analyze the relative positions of the sets Pi (1 ≤ i ≤ k + 2)

described in Lemma 2.2. Consider two sets, P1 and P2 (say), and assume that all distances

between them belong to the interval [t1, t1 + c(n)]. For any p, p′ ∈ P1, all elements of

P2 must lie in the intersection of two annuli centered at p and p′. If d(p, p′) < 2t1,

c(n) = o(
√

n), then (by Lemma 2.1) the area of this intersection set is at most

20t21c
2(n)

d(p, p′)
√

4t21 − d2(p, p′)
,
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and, using the notation m(n) = bk,ǫ(log n)1/(t+1), we have

m(n) ≤ |P2| ≤
50t21c

2(n)

d(p, p′)
√

4t21 − d2(p, p′)
.

Assuming that c(n) = o(
√

m(n)), this immediately implies that d(p, p′)/t1 is either close

to 0 or close to 2. More exactly,

d(p, p′) ∈ [1,
50c2(n)

m(n)
t1] ∪ [(2 − 50c2(n)

m(n)
)t1, 2t1 + 2c(n)]

for any p, p′ ∈ P1, provided that n is large enough.

Pick now any point q ∈ P2. P1 must be entirely contained in the annulus around q,

whose inner and outer radii are t1 and t1 +c(n), respectively. Thus, if P1 has two elements

with d(p, p′) ≥ (2 − 50c2(n)
m(n) )t1, then all other points of P1 must lie in the union of the two

circles of radius 50c2(n)
m(n) t1 centered at p and p′. In any case, there is an at least m(n)

2 -element

subset P ′
1 ⊆ P , whose diameter

diam P ′
1 ≤ 50c2(n)

m(n)
t1 = o(1)t1 .

Repeating this argument (k + 2 times), we obtain the following

Lemma 2.3. Let m(n) = bk,ǫ(log n)1/(k+1), c(n) = o(
√

m(n)). Then one can choose

disjoint subsets Qi ⊆ P , |Qi| ≥ m(n)/2 (1 ≤ i ≤ k + 2) such that the following conditions

are satisfied.

(i) For any 1 ≤ i 6= j ≤ k + 2, there exists 1 ≤ r(i, j) ≤ k such that

d(pi, pj) ∈ [tr(i,j), tr(i,j) + c(n)] for all pi ∈ Qi , pj ∈ Qj ;

(ii) For any 1 ≤ i ≤ k + 2,

diam Qi = o(1) min
j 6=i

tr(i,j) ;

(iii) There is a line ℓ such that the angle between ℓ and any line pipj (pi ∈ Qi, pj ∈ Qj,

i 6= j) is o(1).
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Proof. We only have to prove part (iii). Fix two subsets Qi and Qj (i 6= j). By (ii),

max(diam Qi, diam Qj) = o(1)tr(i,j) ,

so the angle between any two lines pipj and p′ip
′
j (pi, p

′
i ∈ Qi; pj , p

′
j ∈ Qj ; i 6= j) is o(1).

Let qi and q′i be wo elements of Qi whose distance is maximal. Clearly, for any j 6= i,

√

m(n)

10
≤ d(qi, q

′
i) = diam Qi ≤ o(1)tr(i,j) .

It is sufficient to show that, for any pj ∈ Qj , the lines qiq
′
i and qipj are almost perpendic-

ular. Indeed.

| cos(∠ q′iqipj)| =

∣

∣

∣

∣

(d(qi, pj) − d(q′i, pj))(d(qi, pj) + d(q′i, pj)) + d2(qi, q
′
i)

2d(qi, pj) d(qi, q′i)

∣

∣

∣

∣

≤
c(n)(2tr(i,j) + 2c(n))

2tr(i,j)(
√

m(n)/10)
+

d(qi, q
′
i)

2tr(i,j)
= o(1) . �

We need the following key property of the sets Qi constructed above.

Lemma 2.4. Let s ≥ 3 be fixed, and suppose that

diam(Q1 ∪ Q2 ∪ · · · ∪ Qs) = d(p1, p2) for some p1 ∈ Q1 , p2 ∈ Q2 .

Then, for any 1 ≤ i 6= j ≤ s, r(i, j) = r(1, 2) if and only if {i, j} = {1, 2}.

Proof. Suppose, in order to obtain a contradiction, that there are two points p′i ∈ Qi,

p′j ∈ Qj , 2 ≤ i 6= j ≤ s such that

d(p′i, p
′
j) ∈ [tr(1,2), tr(1,2) + c(n)] .

By Lemma 2.1 and Lemma 2.3 (iii), all points of Q2 ∪ Q3 ∪ . . . ∪ Q5 lie in a small sector

(of angle o(1)) of the annulus around p1, whose inner and outer radii are
√

n and d(p1, p2),

respectively. Obviously, the diameter of this sector is d(u, v), where u (resp. v) is the
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intersection of one (the other) boundary ray with the inner (outer) circle of the annulus.

But then we have

d(p1, p2) − d(p′i, p
′
j) ≥ d(p1, p2) − d(u, v) = d(p1, v) − d(u, v)

=
2d(p1, u) d(p1, v) cos(∠ up1v) − d2(p1, u)

d(p1, v) + d(u, v)

≥ d(p1, u) cos(∠ up1v) − d2(p1, u)

2d(p1, v)

≥
√

n(1 − o(1)) − n

2tr(1,2)
>

√
n

2
> c(n) ,

the desired contradiction. �

Now we can easily complete the proof of Theorem 2. For the sake of simplicity we

assume the intervals are disjoint, but the same arguments work in the general case as

well. Assume without loss of generality that the diameter of Q = Q1 ∪ Q2 ∪ · · · ∪ Qk+2

is attained between a point of Q1 and a point of Qj1 , for some j1 > 1. By Lemma 2.4,

no distance determined by the set Q′ = Q2 ∪ Q3 ∪ · · · ∪ Qk+2 belongs to the interval

[tr(1,j1), tr(1,j1) + c(n)]. Suppose that the diameter of Q′ is attained between a point of

Q2 and a point of Qj2 , j2 > 2. Applying the lemma again, we obtain that none of the

distances determined by Q′′ = Q3 ∪ Q4 ∪ · · · ∪ Qk+2 is in [tr(2,j2), tr(2,j2) + c(n)], where

r(21 j2) 6= r(11 j1). Proceeding like this, we can conclude that no distance determined by

Qk+1 ∪ Qk+2 belongs to
k
⋃

i=1

[

tr(i,ji), tr(i,ji) + c(n)
]

,

where {r(i, ji): 1 ≤ i ≤ k} = {1, 2, · · · , k}. In other words, there exists no integer r(k +

1, k + 2) satisfying the condition in Lemma 2.3 (i). This contradiction completes the

proof of Theorem 2 for any function c(n) = o( (logn)1/(2k+2)). In fact, our argument

also shows that there is a small constant ck,ǫ > 0 such that the theorem is true with

c(n) = ck,ǫ(log n)1/(2k+2).
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3. Strengthening of Theorem 2

In this section we are going to modify the above arguments to show that Theorem 2 is

valid for any function c(n) = o(
√

n). Notice that in the previous section we have not really

used the fact that all distances between Qi and Qj (in Lemma 2.3) belong to the interval

[tr(i,j), tr(i,j) + c(n)]. It is sufficient to require that many distances have this property, and

there are much larger subsets Qi (1 ≤ i ≤ k + 2) satisfying this weaker condition. As a

matter of fact, we can assume that |Qi| ≥ m(n) = b∗k,ǫn for a suitable constant b∗k,ǫ > 0,

and follow essentially the same argument as before for any c(n) = o(
√

m(n)) = o(
√

n).

In the following we shall assume that k, ǫ and δ < (
ǫ

100k
)k+5 are fixed, c(n) = o(

√
n),

and n is very large. We want to apply Theorem C (in the Introduction) to the graph G

on the vertex set P , whose two points p, p′ are connected by an edge of color r whenever

d(p, p′) ∈ [tr, tr + c(n)] , 1 ≤ r ≤ k ,

and r is minimal with this property. Then Lemma 2.3 can be replaced by the following.

Lemma 3.1. There is a constant b = b(k, ǫ, δ) such that one can find disjoint subsets

Qi ⊆ P , |Qi| > bn (1 ≤ i ≤ k + 2) satisfying the following conditions.

(i) For any 1 ≤ i 6= j ≤ k + 2, there exists 1 ≤ r(i, j) ≤ k such that

er(i,j)(Qi, Qj)

|Qi| · |Qj|
≥ ǫ

20k
;

(ii) For any 1 ≤ i ≤ k + 2,

diam Qi = o(1) min
j 6=i

tr(i,j) ;

(iii) There is a line ℓ such that the angle between ℓ and any line pipj (pi ∈ Qi, pj ∈ Qj,

pipj ∈ E(G)) is o(1).

Proof. Consider a partition V (G) = P = V1 ∪ V2 ∪ · · · ∪ Vg meeting the requiremens

of Theorem C with f = ⌈10/ǫ⌉. Let G∗ denote the graph with vertex set V (G∗) =

{V1, V2, . . . , Vg}, where Vi and Vj are joined by an edge if {Vi, Vj} is a δ-regular pair and

(1)
er(i,j)(Vi, Vj)

|Vi| · |Vj |
≥ ǫ

10k
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for some 1 ≤ r(i, j) ≤ k. Clearly,

n2

2

(

1 − 1

k + 1
+ ǫ

)

≤ |E(G)| ≤
(

|E(G∗)| + δg2 +

(

g

2

)

ǫ

10

)

⌈n

g
⌉2 + g

(⌈n/g⌉
2

)

,

whence

|E(G∗)| ≥ g2

2

(

1 − 1

k + 1
+ ǫ/2

)

.

By Theorem A (or by Turán’s theorem [T]), this implies that G∗ has a complete subgraph

on k + 2 vertices, say, V1, V2, . . . , Vk+2.

Assume without loss of generality that r(1, 2) = 1, t1 = minj 6=1 tr(1,j), and let Gr denote

the subgraph of G consisting of all edges of color r. By (1), at least ǫ
10k

|V1|·|V2| edges of G1

run between V1 and V2. Therefore, we can pick a point p2 ∈ V2 connected to all elements

of a subset P1 ⊆ V1, |P1| ≥ ǫ
10k

|V1|. Clearly, P1 lies in an annulus centered at p2 with inner

radius t1 and outer radius t1 + c(n). Using the fact that {V1, V2} is a δ-regular pair, it

can be shown by routine calculations that there are
(

ǫ
100k

)4 |P1|2 pairs {p1, p
′
1} ⊂ P1 such

that p1 and p′1 have at least ( ǫ
100k )2|V2| ≥ 1

F (δ,k,f)

(

ǫ
100k

)2
n common neighbors in G1. As

in the proof of Lemma 2.3, we can argue that, for any such pair,

d(p1, p
′
1) = o(1)t1 or d(p1, p

′
1) = (2 − o(1))t1 .

Hence, we can find a point p1 ∈ P1 such that

|{p′1 ∈ P1: d(p1, p
′
1) = o(1)t1}| ≥

( ǫ

100k

)4

|P1|,

or

|{p′1 ∈ P1: d(p1, p
′
1) = (2 − o(1))t1}| ≥

( ǫ

100k

)4

|P1|.

Let Q1 ⊆ P1 denote the larger of these two sets. Then

(2) |Q1| ≥ (
ǫ

100k
)4|P1| > (

ǫ

100k
)5|V1| ≥

1

F (δ, k, f)
(

ǫ

100k
)5n ,

and diam Q1 = o(1)t1. Repeating the same argument for every Vi (1 ≤ i ≤ k + 2), we

obtain Qi ⊆ Vi satisfying conditions (i) and (ii).
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To establish (iii), notice that the angle between any two lines pipj and p′ip
′
j (pi, p

′
i ∈ Qi;

pj , p
′
j ∈ Qj ; i 6= j) is o(1). Using the fact that {V1, Vj} is δ-regular for all 2 ≤ j ≤ k + 2,

one can recursively pick pj ∈ Qj so that

|{q ∈ Q1: qpj ∈ E(Gr(i,j)) for all 2 ≤ j ≤ k + 2}|

≥
( ǫ

100k

)k+1

|Q1| ≥
( ǫ

100k

)k+6

|V1|

≥ 1

F (δ, k, f)

( ǫ

100k

)k+6

n .

Thus, two elements of this set, q1 and q′1 (say), are relatively far away from each other:

√

1

F (δ, k, f)
(

ǫ

100k
)k+6n/10 ≤ d(q1, q

′
1) ≤ diam Q1 = o(1) min

j 6=1
tr(1,j) .

This in turn implies, in the same way as in the proof of Lemma 2.3 (iii), that

| cos(∠ q′1q1pj)| = o(1) (2 ≤ j ≤ k + 2) ,

i.e., every line p1pj (p1 ∈ Q1, pj ∈ Qj, j 6= 1) is almost perpendicular to the line q1q
′
1.

Applying the same argument for Q2, Q3, . . . (instead of Q1), we obtain (iii). �

Using Lemma 3.1, (i) and |Qi| > (ǫ/100k)5|V1| ≥ δ|Vi| we can see (using induction),

that there are const(k, ǫ, δ)nk+2 (k + 2)-tuples (q1, ..., qk+2), with qi ∈ Qi, such that

d(qi, qj) ∈ [tr(i,j), tr(i,j) + c(n)].

(For details cf. [PA].) Fix one of them. Then repeating the considerations of Lemma 2.4

for this (k + 2)-tuple only, we get that the assertion of Lemma 2.4 is valid also now. Then

the proof of Theorem 2 can be completed in exactly the same way as in the previous section

with any function c(n) = o(
√

n). As a matter of fact, in order to apply our argument, it

is sufficient to assume that c(n) ≤ ck,ǫ
√

n for a suitable constant ck,ǫ > 0.
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[EMPS] P. Erdős, E. Makai, J. Pach and J. Spencer: Gaps in difference sets and the graph

of nearly equal distances, in: Applied Geometry and Discrete Mathematics, The Victor

Klee Festschrift (P. Gritzmann, B. Sturmfels, eds.), DIMACS Series, Vol. 4, AMS–ACM,

1991, 265–273.
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