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ABSTRACT. A point set P C R% is separated if the minimum distance between any
two points in P is at least 1. For d # 4,5, we determine, for every t1,t2 > 1, and
for n at least a suitable ng, the maximum number of point pairs in a separated
n-element point set in R%, with distances in the set [t1,t1 + 1] U [t2,t2 + 1]. For
d = 4,5 we establish a weaker, similar asymptotic estimate. Recently N. Frankl
and A. Kupavskii have generalized this result to unions of k£ > 2 intervals. We also
determine the maximum number of point pairs in an n-element point set in R, whose
distances belong to the union of k > 2 intervals of the form [t;,t;(1+¢)], where t; > 0
and € > 0 is small.

§1. INTRODUCTION

Around 1945, Paul Erd6s found two interesting applications of extremal com-
binatorics. One is related to an algebraic question of Littlewood and Offord [19],
and the other one is in geometry. In [6], he applied Sperner’s lemma to give a tight
upper bound on the number of subsets of a set of n real numbers, whose absolute
values are at least 1, and whose sums fall into a given interval of length 1. In [7],
Erdés addressed the following question: At most how many times can the same dis-
tance occur among n points in R?? More precisely, what is the maximum number
of unordered point pairs that determine the same distance?

Erdés modified the second question in the spirit of the first one, cf. [12]. At
most how many unordered pairs {p, ¢} of distinct points can be selected from an
n-element point set P C R? so that all distances d(p, q) are nearly the same, in the
sense that they fall into the same unit interval? To avoid the degenerate situation
where all points are very close to each other and, hence, all distances are nearly
0, we consider only separated point sets P. That is, we assume that the distance
between any two points of P is at least 1. To give an answer to the last question,
we recall Turdn’s theorem [26, 1]. For n,k > 1 integers, define the Turdn number
T(k,n), as the maximum number of edges that a graph on n vertices can have
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without containing a complete subgraph Kj on k vertices. According to Turdn’s
theorem, for a fixed k, we have

T(k,n):n; (1-%) +0,€(1)g%2 (bﬁ).

Moreover, the only Kj-free graph for which this maximum is attained is the so-
called Turan graph. This is a complete (k — 1)-partite graph whose classes are as
equal as possible, i.e., each class consists of [n/(k—1)| or [n/(k —1)] points.

Theorem A. ([12], Theorem 5) For any d > 2, there exist positive constants
cq,ng such that for every t > 1, every separated set P C R® with n > ng elements
the following holds. The set P has at most T(d+ 1,n) unordered point pairs whose
distances belong to the interval [t,t + cdnl/d]. This bound is best possible for every
d and every n > ng.

To see that the bound T'(d + 1,n) can be attained, we write R? as R?~! x R,
and let q1,...,qq € R¥! be the vertices of a regular (d — 1)-simplex of edge length
t. Write n as a sum, n = ny + ...+ ng, where n; = |n/d] or [n/d] for every i.
Let P :={¢; +jeq:1<i<d, 1<j<n;}, where ¢4 = (0,...,0,1). If ¢ is
large enough (depending on n), then all distances between two points in distinct
sets P;(1) and P;) belong to the interval [t,t + 1], and the number of such pairs is
T(d+1,n).

Originally, Theorem A was stated for unit intervals [¢, ¢ + 1], but its proof easily
extends to this case. (See the paragraph after Lemma 3.1 in [12].)

We say that a set determines a distance t > 0 if it has two points at distance ¢
from each other. It is our goal to extend Theorem A and obtain an upper bound
for the number of pairs whose distances fall into the union of £ > 2 unit, or
short, intervals. In [9], we made the first step in this direction by providing an
asymptotically tight bound in the plane.

Theorem B. ([9], Theorem 2) For any k > 2 and € > 0, there exist positive
constants cy . and ng e such that for every ti,...,ty > 1, for every separated set
P C R? with |P| = n > ny.., the following holds.

The number of unordered point pairs from P that determine a distance belonging
to the set UK_ [t;,t; + ck’enl/Q], s at most

n? 1 1 n

2 k+1 )"
This statement is asymptotically tight: it does not remain true if we replace the last
expression by T'(k +2,n) — 1.

An example of an n-element point set with T'(k + 2,n) pairs whose distances
are nearly equal to one of k numbers, t1,...,t; is the following. Let t; := it, for
1<i<k,and let n =n; + ...+ ngy1, where the ny’s, for 1 < h < k+ 1, are as
equal as possible. Let P, = {((h —1)t,5) : 1 < j < np} and P = UL P, If, for
a given n, t is large enough, then every distance between two points belonging to
distinet Py’s lies in UF_ [t;, t; + 1].

To generalize Theorem B to higher dimensions, we need a definition.
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Definition 1. For any positive integers d and k, we call a finite subset of R? a
k-distance set if it determines at most k distinct (positive) distances. Let m(d, k)
denote the maximum cardinality of a k-distance set in R?. (This exists by Ramsey’s
theorem.) If k = 2, we write m(d) := m(d, 2), for simplicity.

Estimating the value of m(d, k) is equivalent to Erdés’s distinct distances problem
[6, 7] and has a huge literature. In particular, it is known [2, 3] that

(d‘kf 1) < m(d,k) < (d;’“). (1.1)

This implies that for a fixed k and d — oo, we have m(d, k) = (d*/k!) (1 + 0x(1)),
while for a fixed d and k — oo, we have m(d, k) < (k%/d!) (1 + 04(1)). The asymp-
totically best upper bounds for m(2, k) and m(d, k) for d > 3 have been established
by Guth and Katz [16] and by Solymosi and Vu [25], resp.

For our purposes, the case k£ = 2 will be relevant. For the maximum cardinality
m(d) = m(d,2) of a 2-distance set in R%, it is known that

{ m(1) =3, m(2) =5 [8], m(3) =6 [5], m(4) = 10, (1.2)
m(5) = 16, m(6) = 27, m(7) =29, m(8) = 45 [18]. '
In particular,

for all d > 2, we have m(d —1) > d. (1.3)

Our main result is the following generalization of the special case £k = 2 of
Theorem B to higher dimensions.

Theorem 1. For any integer d > 2, d # 4,5, there exist positive constants
cq,ng such that for any t1,to > 1, for every separated point set P C R with
n > ng elements, the following holds. The number of unordered point pairs in P
that determine a distance belonging to the set [t1,t1 + cdnl/d] U [to, to + cdnl/d], is
at most

T(m(d—1)+1 n)—”—2<1—#)+0 (1)
(m( AN m(d —1) .

For d =4 or 5, for any € > 0, there exist positive constants cq.e,nq such that
for any ti,ta > 1, for every separated point set P C R® with n > ng.e elements,
the following holds. The number of unordered point pairs in P that determine a
distance belonging to the set [t1,t; + cq.(logn)Y/ | U [ta, t2 + cq.(logn)t/9] is at

most
" 1 1 + e
2 m(d—1) '

These upper bounds cannot be reduced to T (m(d — 1) + 1,n) — 1, for any d and

We also study a closely related problem, where two distances are considered
nearly equal if they fall into an interval [¢,¢(1 + €)], for some small ¢ > 0. To
formulate our result we need to extend Definition 1, as follows.

Definition 2. For any € > 0 and integers d, k > 1, we call a finite subset of R¢
a (k,e)-distance set if all distances determined by it lie in the union of k intervals
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of the form [t1,t1(1+¢)],..., [tk, tx(1 +€)], for some t1,... ¢ > 0. Let m(d, k,¢)
denote the maximal cardinality of a (k, )-distance set in R?. (This is finite for every
e > 0. In fact, by applying Ramsey’s theorem, it is enough to see that m(d, 1,¢) is
finite, and this follows from a volume argument.)

Obviously, a (k, 0)-distance set is a k-distance set and m(d, k,0) = m(d, k).

Theorem 2. For any fizved integers d,k > 1 there exists €4 > 0 such that for
0 < e <eqp the following two statements hold.
(A) For the maximum cardinality of a (k,¢)-distance set in R, we have

m(d, k,e) = (d+1)*.

(B) For any set P C R% of n > 1 points, and for any t1,... ,tx > 0, the following
holds. The number of unordered pairs in P that determine a distance belonging to
the set Ué?:l [tj,t;(1+¢€)], is at most the Turdn number T ((d+ 1)¥ +1,n). This
upper bound cannot be reduced to T ((d + 1)k 41, n) — 1, for any d,k and n, and
any € > 0.

It follows from Theorem 2 (A) and (1.1) that, for k fixed and d — oo,

m(d, k) ~ m(d,k) 1
~ lmm(d ke~ (d+DF K +on(L).

Observe that in Definition 2 and Theorem 2, the assumption that P is separated
is not required. (Actually, the concept of a (k, €)-distance set is similarity invariant,
so we could have required this property as well.)

The rest of this paper is organized as follows. In §2, we describe several con-
structions showing the tightness of Theorems 1 and 2. §3 and §4 contain the proofs
of Theorems 1 and 2, resp. In §5, we make some concluding remarks.

The present paper is a minimally edited version of a manuscript written in the
early 1990s. We posted it on arXiv in January 2019 [10]. A somewhat weaker
version of Theorem 1 was announced in [21] in 2002. Our proofs use simple Turdn-
type results and elementary geometric observations. The first inequality of Theorem
1 has been generalized by Noéra Frankl and Andrey Kupavskii to unions of k > 2
intervals, for any d > d(k) for some d(k) ([14] Theorem 1.2 and [15] Theorem 13).

Moreover, they proved in [15] Theorem 12 the following. Let us fix any d, k >
2. Then there exists a natural number Nj(d), such that the following holds.
For any ¢ > 0, there exists a natural number n(d,k,¢), such that for all n >
n(d, k, ) the following is valid. The maximum number of unordered pairs of points,
from any n points in R?, whose distances lie in the union of k intervals, lies in

[T(Ny(d),n), T(N(d),n) + en?].

§2. CONSTRUCTIONS

The aim of this section is to describe the constructions showing the tightness of
Theorems 1 and 2.

Construction 1. We regard R%~! as the hyperplane of R? spanned by the first
d—1 usual basic unit vectors. Let Q C R?~! be a finite point set, with all distances
sufficiently large, and let m := |@Q|. Suppose that the distances determined by
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@ all lie in the union of k£ intervals of length £ each, where 0 < ¢ < 1. Let
Q={q1,---,qm}. Let n =n3 + ...+ n,,, where each n; is |[n/m] or [n/m]. We
construct a point system P = P(Q) of n points in R? = R4~ x R as follows. We
let

P(Q):={q¢ +jea:1<i<m, 1 <j<n},

where ey is the d-th usual unit basic vector in R?. If, for given n, all distances
determined by () are large enough, then the following holds. The distances of all
pairs of points g;(1) + j(1)eq, G2y + j(2)eqa € P(Q) with i(1) # i(2) lie in the
union of &k unit intervals (or of k arbitrarily small intervals, provided ¢ can be made
arbitrarily small). The number of these pairs of points is (n?/2)(1—1/m)+O04x(1) <
(n?/2)(1 — 1/m), for n — oo.

We present two particular cases of Construction 1.

Construction 1’. The case k = 2 of this construction will show the tightness
of Theorem 1.

Let k be fixed and d — oo. In Construction 1, we choose Q C R4! as a k-
distance subset of maximum cardinality m(d — 1, k), with all distances sufficiently

large. By (1.1),
k

QI =mld ~ 1,8) = - (1+ 04(1))

Then the set P(Q) determines

n2

S?(“W)

distances, taken with multiplicity, that lie in the union of k intervals of arbitrarily
small length.

Construction 1”. Let d be fixed and k — co. We construct a set Q C R ! as
follows. Let k = k1+...+kq—1, where each k; is |k/(d—1)] or [k/(d—1)]. We write
{e1,...,eq} for the usual basic unit vectors in R Letn < \j € Ao <K ... <€ g1
and let

d—1
Q = {237)\161 17 € {0, 1,... ,k‘l}}
=1

Then the distance between any two distinct points, Z?:_ll Ji(n)Ai€i, Zf:_ll Ji2)Ai€i
€ @, is very close to one of the distances \;, 2\, ..., k;\;, where ¢ is the largest
index £ € {1,...,d—1} such that j,1) # je2). The total number of these distances
is k1 + ...+ kq_1 = k, and we have |Q| = H?:_ll(ki + 1). Hence, for a fixed d and
k — oo, we have

1 k+d— 1)t
T (1 ou(1) < ( (;_WL

Using that n < A1, the number of distances determined by P(Q) that lie in the
union of k intervals of arbitrarily small length is

”; <1 _ ﬁ) + Og,i(1) < %2 (1 - (k(jl—;i)cll;‘l) '

Q=
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It is somewhat surprising that for a fixed d > 3 and any € > 0, a point set in
R41 in which all distances are at least 1 and belong to k intervals of length &,
can be much larger than the conjectured maximum size of a point set in R4! in
which every point pair determines one of k specific distances. (The conjectures are
m(2,k) = © (k(logk)'/?), and d — 1 > 3 = m(d — 1,k) = O4(k\?~1/2), see [7].)
This is in sharp contrast with Theorem 1.1 in [14], and Theorem 1 in [15], stating
that if k is fixed, d > dj, and € € (0,4,), then these two quantities coincide.

Construction 2. We construct, for any d,k > 1 and any ¢ € (0,1), a (k,¢&)-
distance set in R?, of cardinality (d+ 1)*. This will show the tightness of Theorem

2, (A).

Let us choose, for some small £; € (0, 1), positive numbers s, ... , s, satisfying
Si/Sit1 < €1 for every i € {1,...,k—1}. Fix k regular simplices centred at 0, with
circumradii sq,... , sk, and with vertices

{v;:1<i<d+1},... {op, 1 <i<d+1}.
Define the set of (d + 1)* vectors,

For any different vy ;1) +- .. + Vg i), V1,j01) + -+ k) €5, let h be the largest
index ¢ € {1,...,k} such that i(¢) # j(¢). Then their distance equals

d(v1i(1) + -+ Vhi(h), V151) o+ VR n)) €

[d(vh,i(h)a Uh,j(h)) - 28h_1 i 281, d(vh,i(h)a Uh,j(h)) + 23h—1 + ...+ 281] =
(2014 1/d) s — 2sp_1 — ... — 251, (2(1 + 1/d)? s, + 28n_1 + ... + 2s1].
If ; is sufficiently small, then for any h € {1,...,k} the quotient of the maximum

and the minimum of the last interval lies in [1,1 + €]. Hence, S is a (k, £)-distance
set, with

th = (2(1 4+ l/al))l/2 Sp—28p—1—...— 281 forany h € {1,... k}.

Construction 3. We construct, for any d,k > 1, any € > 0 and any n, a set
{p1,...,pn} of n points in R% with the following property. The number of point
pairs determining a distance that belongs to Ué?:l [tj,t;(1+¢)], for some tq,... ,tx >
0, is equal to T’ ((d + 1)k 41, n) . This will show the tightness of Theorem 2, (B).

The points py,...,p, are divided into (d 4+ 1)* classes, with Ln/(d—i— 1)"’J or
[n/(d+ 1)*] points in each class, so that the distance between any two points in
different classes belongs to U§:1 [tj,t;(1+e¢)]. Each of the (d+ 1)* classes of points
is chosen in the I-neighbourhood of one of the (d + 1)* points of the set S as in
Construction 2, where we also assume that 1/s; < e;. Like in Construction 2, the
distance between any two points in different classes belongs to the interval

(2014 1/d) Y s —28p_1—...— 251 =2, (2(1 + 1/d)* sp, + 281 +. .. +2s1 +2].

Here, h is the largest index ¢ € {1,...,k} such that i({) # j(£), with vy ;1) +
oo+ Uk k) and vy 1) + ... + Vg k) being the elements of S in Construction 2,
associated with the classes of the two points. If e; is sufficiently small, then for
any h € {1,...,k}, the quotient of the maximum and the minimum elements of
the last (displayed) interval lies in [1,1 4 €]. Thus we can choose

thi= (20 +1/d)"? s — 2541 —...— 251 =2, forany h e {1,... k}.
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§3. PROOF OF THEOREM 1

We first agree on some notation and terminology. We denote the vertex set
of a graph G by V(G). Throughout this paper, the term subgraph will always
stand for induced or spanned subgraph. Let d(p,q) denote the distance between
two points p,q € RY. The norm of p € R? is denoted by |p||. We write S9!
for the unit sphere in R%. For any set P C R?, we write diam P, aff P and lin P
for the diameter, affine hull, and linear hull of P, resp. The wvolume (Lebesgue
measure) of a set in R? is denoted by V(-), while the (d — 1)-volume is denoted

by Vi_1(+). For z1,...,24 € R? denote by det (z1,...,zq) the determinant with
columns x1,...,xq. For any 1 < ¢ < d+ 1 and any affinely independent vectors
r1,...,20 € R let S(z1,...,x,) stand for the (£ —1)-dimensional simplex spanned

by these vertices.

Throughout, we suppose that t; < ... < t;. The interval [t,, t, + cgn'/? will be
referred to as the k-th interval. The symbols consty, Cy, Dy, cq will denote positive
constants depending on d (or on other parameters in the subscript). At different
places, consty; may stand for different constants. We always assume that n is
sufficiently large in terms of all fixed parameters.

In the rest of this section, we present the proof of Theorem 1. The proof falls into
eight simple steps marked as Step 1, Step 2, etc. For d # 4,5, we give the proof
in full detail. The treatment of the cases d=4.,5 requires only minor modifications
which are described in Step 7 below.

Proof of Theorem 1. Step 1. The tightness of Theorem 1 was shown by
Construction 1’. Therefore, we only have to prove the upper bounds. Let P =

{p1,---,pn}-

Lemma 1. It is sufficient to prove Theorem 1 under the following assumptions.

(1) The intervals [t1, t,+cqn'/ 4] and [ta, ta+cqn'/?) are disjoint, and both contain
at least one distance between two points of P.

(2) We have ty > t; > C’dnl/d, where Cq > 1 can be chosen arbitrarily large.

(3) The ratio of any two distances that belong to the k-th interval (k = 1,2) lies
in [(1+cq) 1,1+ cq]. Hence, it lies in an arbitrarily small neighbourhood of 1,
provided that we choose cq > 0 sufficiently small.

Proof. (1) If [ty,t1 + can'/ ¥ N [ta, ta + cqn'/?] # 0, then the length of the union
of the two intervals is at most 2cgn'/¢. Hence, if ¢4 > 0 is sufficiently small,
Theorem A yields the following. The number of pairs {p;(1), pi(2)} Whose distances
belong to the union of the two intervals is at most T'(d + 1,n). By (1.3), we have
T(d+1,n) <T(m(d—1)+1,n), and Theorem 1 follows.

The same argument applies if one of the intervals does not contain any distance
d(?i(l):?i@))-

(2) Suppose that t; < Cygn'/? for an arbitrarily large constant C,;. By our
assumptions, the open balls of radius 1/2 centred at the points p; are disjoint.
Thus, by volume considerations, for any fixed p;), the number of p;9)’s with
d(pi(1), Pi(2)) € [t1,t1+can*/ ] is at most consty- [(t1 +cqn'/4+1/2)1— (¢, —1/2)7].
Hence, the number of all pairs {p;(1), pi(2)}, Where d(p;(1), pi(2)) belongs to the first
interval, is at most

consty-[n ((tl +egn/?+1/2)% — (¢, — 1/2)d)] < n-constg- (t;+cqn*/?) 4 t.cqnt/d
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< n - consty - (Cdnl/d + cdnl/d)d_1 ceqn'® = n? . consty - (Cq + cd)d_lcd < é6n?,

provided that we choose ¢4 > 0 so small compared to consty and C; that consty -
(Cq + Cd)d_lcd < ¢ holds.

By Theorem A, the number of pairs {p;n),pi(2)} Wwith d(p;qy,pi2)) € [t2,t2 +
can'/? is at most T(d + 1,n) = (n?/2) (1 — 1/d) 4+ O4(1). Hence, the number of
pairs for which d(p;(1), pi(2)) belongs to the union of the two intervals in question
is at most (n?/2)(1 — 1/d + 25) + O4(1). In view of (1.3), the last expression is
bounded from above by

n? 1
T —1 1 =—|1-—7- 1
(md = 1)+ 1m) =" (1= L) 0ut),
provided that 20 < 1/d —1/(d+ 1) <1/d —1/m(d — 1) and n is sufficiently large.
Thus, in the case t; < Cyn'/?, Theorem 1 is true.
(3) It follows from part (2) that

1/d 1/d 1/d 1/d
ta + can §t1+cdn Scdn + car :1+ﬁ§1+0d,
to (3] Cynt/d Ca

which proves (3). O

Proof of Theorem 1, continuation. Step 2. In the rest of the proof, we assume
that conditions (1), (2), and (3) of Lemma 1 are satisfied. Consider the graph G
with vertex set {p1,... ,pn}, where p;c1y and p;2) are connected by an edge if and
only if d(pi1), pi(2)) belongs to one of the two intervals in question.

Suppose, in order to obtain a contradiction, that the number of edges of G
is greater than 7' (m(d — 1) + 1,n). By [1], Ch. 6, G contains a subgraph G; =
K(1,1,...,1, |consty - n|), that is, a complete (m(d — 1) + 1)-partite graph with
1,1,...,1, |consty - n]| points in its parts called primary colour classes. (So here we
consider the vertices coloured.) Obviously, it makes sense to speak about the j-th
primary colour class of any (spanned) subgraph of Gy, for 1 < j < m(d —1) + 1.
This is the intersection of the j-th primary colour class of G; with the vertex set
of the subgraph. For the subgraphs considered later in this proof, these primary
colour classes are always non-empty.

Define the secondary colouring of the edges of G, as follows. Assign to each edge
the symbol L and R, according to whether the length of the corresponding segment
lies in the first or in the second interval. Since the two intervals are disjoint (cf.
Lemma 1 (1)), the secondary colouring is uniquely determined.

At least half of the points of the (m(d — 1) 4 1)-st primary colour class of G; =
K(1,1,...,1, |consty - n]) are joined by edges of the same secondary colour L or
R to the unique point in the first primary colour class. By induction, the unique
points in the 1st, 2nd, ..., m(d — 1)-st primary colour classes of GG; and some
|consty - n] points in the (m(d — 1) + 1)-st primary colour class of G; satisfy the
following. The secondary colour of an edge between any two of these points only
depends on the primary colour classes the endpoints of the edge belong to. We
denote the subgraph induced by all these points by G7.
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From now on, we will consider G7 rather than G;. We will show that such a
graph ] cannot exist, for ¢4 > 0 a sufficiently small constant. This contradiction
will prove that the number of pairs {p;(1),pi(2)}, whose distances lie in the union
of our two intervals, is at most as large as is stated in Theorem 1.

Step 3. Let Dy > 2 be a sufficiently large constant. We distinguish two cases:

Case I to/(t1 + cdnl/d) < Dy,
Case II:  to/(t1 + cdnl/d) >Dg>2.

In Case I, we use two-distance sets in R%~1. The proof will be presented in Step
4, and will be completed using Lemma 2.

In Case II, the two types of distances, i.e., those belonging to the first interval
and to the second one, can be treated separately. The segments corresponding
to different types of distances will turn out to be “almost orthogonal”. We will
describe the structure of our edge coloured graph. The proof in this case will be
carried out in Step 5 and completed by Lemma 9.

Step 4. First, we analyze Case I. The proof of the following lemma consists of
six easy parts (enumerated as A, B, ..., F).

Lemma 2. The upper estimate of Theorem 1 holds in Case I.
Proof. A. In Case I, we have by Lemma 1 (3), for ¢4 > 0 sufficiently small

to + cdnl/d B to + cdnl/d to t1 + cdnl/d
1 n to t1 + Cdnl/d t1

< (14 ¢q)*Dg < constyq - Dy.

Thus, in Case I, the quotient of any two distances lying in the union of our two
intervals is at most consty - Dy. Therefore, these quotients lie between two positive
bounds, namely (constg - Dd)_1 and consty - Dy. In particular, this holds for the
distances between the endpoints of the edges of the graph G7.

B. Definition 3. Let m > d be any integer, and let z1,..., 2, Tmi1 € R?
be any distinct points in R%. Let A(x1,...,Zm, Tmy1) be the maximum absolute
value of all determinants whose columns are any d vectors from the set

{(z1 — &my1)/d(@1, 2mia)s o (T = Tingr) d(@y Tga)} C ST

Clearly, A(z1,... ,Tm41) is invariant under simultaneous similarity transforma-
tions of x1,...,2pm41. Furthermore, it is nonnegative, and equals 0 if and only if
Z1,...,ZTmy1 lie in an (affine) hyperplane. Thus, it can be considered as a measure
of “non-hyperplanarity of x1,...,x,,11”7. We will apply the above definition for
the case m :=m(d — 1) (recall (1.3)).

C. Claim 1. Let q1,-.. ,qma—1)+1 be vertices of GT, one from each respective
primary colour class. (Thus, q1,... ,qmn—1) are fixed, but g,,(4—1)41 can assume
[consty - n| values, i.e., points.) Then A(qu, ..., @m(d—1)+1) 18 at least some positive
constant, provided that cq > 0 is sufficiently small.

Proof. Suppose, for contradiction, that ¢q > 0 is very small, i.e., we have c§ <
1/N, say, for a large integer IV, but A(qi, ..., gm(a—1)+1) can get arbitrarily close to
0. That is, A(q1, - Gm(a—1)+1) < 1/N, say, for some choice q1',. .. ,qﬁ(d_l)ﬂ of
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the points q1, ..., ¢mn(i—1)+1- (Actually, only the last point can vary.) We apply to
eachof ¢V, ..., qnl\{ (d—1)+1> simultaneously, a similarity transformation ®, with ratio
A > 0 such that the following holds. We have diam {®,qd, ... ,@Aq%(d_l)ﬂ} =1
and {®yql, ... ’@Aq%(d—l)—kl} lies in the unit ball of R?. Then, by A, the minimal
distance in {®,q¥, ... ,@Aq%(d_l)ﬂ} is at least 1/(consty - Dg) > 0.

Now let N — oco. Then, for a certain subsequence N (v) of the N’s, the following
four statements are true:
(i) for each 1 < j < m(d — 1) + 1, we have that lim, @A(qjv(y)) exists;
(ii) these limit points have pairwise distances at least 1/(consty - Dg);
(iii) for any j(1) # j(2), the distance d(CIDA(q;\(]Y)j)),(I))\(qﬁéI)'))) lies in [At, At +
can'/4)] for some x € {1,2}.

o N(v N(v
<1V) lim, o A <Q1 ( )7 cee ’qmgd)—l)—H) =0.

By (ii), <lim,,_>oo @A(qi\](”)), o limy, oo @A(qn]\iés)_l)ﬂ)) belongs to the domain
of definition of the function A(wx1,. .., Zym@—1)41)-

By (iii), Lemma 1 (3) and cg(y) < 1/N(v), we have that any two numbers that

belong to the same new interval [At., A(t, + can'/?)], for x € {1,2}, have a ratio in
(14 )1 14 c [+ (1/N@) ™, 1+ (1/N(v))]. Thus, this ratio lies
in an as small neighbourhood of 1, as we want. Therefore, for v — 0o, both our
new x-th intervals converge to degenerate intervals, i.e., to points. In particular,
the second new interval converges to {1}.

By the similarity invariance of A(-) and (iv), we have

. N(v) . N(v) )
A (Jim @3, Jim 010

— lim A(@,\q{w”),... DN ):0.

e m(d—1)+1

N(v)

That is, the points lim, o Prg; 7, ..., limy, @AqN(y)

m(d—1)+1
plane of R?, their number is m(d — 1) + 1, and they determine only two distinct
distances. This contradiction ends the proof of Claim 1. O

lie in some hyper-

D. Let us fix some ¢y, (4—1)+1 in the (m(d — 1) + 1)-st primary colour class of
G7. By Claim 1, among the m(d — 1) > d unit vectors

Ul(qm(d—1)+1) = (q1 — Qm(d—l)—l—l)/d(QbQm(d—1)+1)7 SR

U (d—1) (@m(d=1)+1) = (@m(d=1) = Gn(d—1)+1)/A(q1, Gm(d—1)+1)s

there are w;(1)(@m(d—1)+1)s - - - » Uj(d)(@m(a—1)+1) such that

et (wj(1) (Gm(d—1)+1)s - - - > Uj(a) (@m(d—1)+1)) | = consty > 0.

Since there are only consty choices for these d-tuples, still for |consty - 7| many
choices of ¢y, (4—1)41 this d-tuple is the same, {u;q), ..., ujq)}, say. We will write
Crn(d—1)+1 for the set of these [constq-n| points ¢, g—1)+1 in the (m(d —1) + 1)-st
primary colour class of G7. Thus,

|det (uj(l), e ,uj(d)) | > consty > 0.
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Hence, we have a d-dimensional simplex S(q;(1), - - - » @j(d), dm(d—1)+1), and a (d—1)-
dimensional simplex S(q;(1),-- - ;qj(d))-
From the set of unit vectors wuy,. .. , Uy (q—1), we will consider only wu;(),. ..,

uj(q)- Further, from among all consty - n points g, (g—1)+1 in the (m(d — 1) + 1)-st
primary colour class of G, we will restrict our attention to the subset Cy,g—1)+1-
We write G’ for the induced subgraph of G, containing all (single) vertices of G5
in its first m(d — 1) primary colour classes, and Cy,q—1y41 from its last primary
colour class.

E. Recall from Step 2 of the proof of Theorem 1 the following. For any
h=1,...,d, either
(1) for any choice of the vertex g, (q—1)41,; of the (m(d — 1) + 1)-st primary colour
class of G7, the distance d(q;(n), Gm(d—1)+1,:) lies in the first interval, or
(2) for any choice of the vertex gy, (q—1)41,; of the (m(d — 1) + 1)-st primary colour
class of G7, the distance d(q;(n), @m(a—1)+1,:) lies in the second interval. In partic-
ular, this holds for the subgraph G7’ of Gi. This means that

Con(a—1)+1 C Nfi—155(n) (3.1)

where Sj(1),...,Sjq) are spherical shells with centres q;(1), ... ,q;(q), inner radii
either t; or to, and outer radii either ¢; + cqnt?® or to + cdnl/d, resp. For each
of these spherical shells, the quotient of the difference of the outer and inner radii
and of the inner radius is cdnl/d/t,i < cdnl/d/(Cdnl/d) =¢q/Cq < ¢4, by Lemma 1
(2). Hence, this quotient is in an arbitrarily small neighbourhood of 0, if ¢4 > 0 is
chosen sufficiently small.

We are going to show that, for ¢4 > 0 sufficiently small, the inclusion (3.1) is
impossible, yielding the desired contradiction.

Before this, we have to introduce some notations. Observe that aff {g;(1), ...

j(q)} is a hyperplane of symmetry of ﬂszlSj(h), which will be identified with the
hyperplane 24 = 0. (As S(gjq1),---,qj@)) is (d — 1)-dimensional, so is its affine
hull.) Let H™ and H~ denote the closed half-spaces x4 > 0 and x4 < 0, resp. One
of them contains at least half of the points of C,,4—1)+1. We may suppose this is
H. Thus

H™ contains |consty - n] points of Crn(d—1)+1-

Let us fix a point Gm(d—1)+1,1 € Cm(d—l)—|—1 NHT.

For any h € {1,...,d}, define the slab S;(h)’ as follows. Let S;.(h) be bounded
by two hyperplanes, both orthogonal to q;4) — Gm(i—1)+1,1- Further, they inter-
sect the half-line from g;(j), passing through g,,(4—1)+1,1, at points with distances
d(Qj(h)an(d—l)H,l) + cqn*/? and d(Qj(h)va(d—l)—l—l,l) — 2¢qn!/ from dj(h)- (By
Lemma 1 (2), this difference is positive, for ¢4 > 0 sufficiently small.) We need the
following

Claim 2. If ¢4 > 0 s sufficiently small, then
(NF_1Sjm) NHT C:=nf_, hy-

This holds both in Case I and in Case I1.

This statement appears to be intuitively clear, but we have been unable to show
it by a simple geometric argument. We provide a proof in the original version of



12 P. ERDOS, E. MAKAI, JR., J. PACH

our paper [10], on arXiv; see parts 810 of the proof of Theorem 1, pp. 9-13. Tt
uses elements of the algebraic topology of Euclidean spaces [17].

F. Again, we handle both Cases I and II. The set IT in Claim 2 is a parallelepiped,
and is circumscribed about a ball of diameter 3cqn!/<. Its volume is (3c4/2)%n times
the volume of its homothetic copy II' circumscribed about the unit ball. Moreover,

V(Hl) = 2d/|det (uj(l),17 e 7U’j(d),1)|7

with the denominator at least consty; > 0, by D. (The easiest way to see this
volume formula is as follows. The polar body (IT!)* of II' is a cross-polytope,
with V ((II')*) = (2%/d")|det (wj(1),1,-- -, uj(a),1)]- Simultancously, the product
V(M) V ((I1')*) of the two volumes is invariant under linear maps. Hence, it equals

41/d!, as can be calculated from the case when II; is the unit cube. Cf. [20], pp.
165, 169.) All these imply that

V(IT) < (3cq/2)n2%/consty .

Now a standard volume consideration finishes the proof of Lemma 2. Consider
the open balls of unit diameter, with centres at all |constq-n] points ¢,q—1)4+1,i €
Cr(a-1)+1 N HT C II. These are pairwise disjoint open balls contained in a con-
centric homothetic copy II' of I, with inradius 3cgn/?/2 4+ 1/2. However,

V(IT') < constg - cin.

So, if ¢4 > 0 is sufficiently small, then the volume of IT’ is not large enough to contain
|consty - n| disjoint open balls of unit diameter. This contradiction completes the
proof of Lemma 2 and, hence, Theorem 1 in Case I (see Step 3). O

Next, we turn to the proof of Theorem 1 in Case II.

Proof of Theorem 1, continuation. Step 5. Now we assume that to/(t; +
can'/?) > D4 > 2, where Dy is a sufficiently large constant (Case II).

We investigate the secondary (edge) colourings of the graph G%’ from Step 2
of the proof of Lemma 2. Each edge is coloured either by L or by R. Each edge
coloured by R has length at least 5, and each edge coloured by L has length at
most t1 + cqn'/?. By to/(t1 + cqn/?) > 2, any edge coloured by R is more than
twice as long as any edge coloured by L.

This implies that one can define an equivalence relation ~ on the vertices of G7’
as follows.

Definition 4. For any two vertices q;(1), gj(2) of G?', we write qi(1) ~ 2y if
either g;(1) = g;(2), or the edge ¢;(1)gj(2) is coloured by L.

Recall from Step 2 and the proof of Lemma 2, D, that the colour of an edge of
G?' between vertices of two primary colour classes does not depend on the vertices
chosen from the primary colour classes. (This is equivalent to its special case when
one of the primary colour classes is the (m(d — 1) 4 1)-st primary colour class.)

Therefore, we may consider the relation ~ as defined

alternatively on the set of primary colour classes of G7’.
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Whether we consider it on the set of vertices, or on the primary colour classes, will
be clear from the context. Let ¢ denote the number of ~-equivalence classes.

Let us choose for each of the ¢ ~-equivalence classes of primary colour classes
of G}’ one vertex g; from their union; let these be 71,72,... ,7r,. By Lemma 1 (3),
edges coloured the same way have a ratio in an as small neighbourhood of 1 as we
want, provided cg > 0 is sufficiently small. Note that any edge among r1,... ,r/ is
coloured by R. Therefore the quotients of the lengths of these edges are in an as
small neighbourhood of 1 as we want, for ¢4 > 0 sufficiently small. Hence, for ¢4 > 0
sufficiently small, we have ¢ < d+ 1. Namely, for d 4+ 2 points in R? the quotient of
the maximum and the minimum distances is at least some constant strictly greater
than 1. (Cf. Schiitte [24], Satz 3, which gives the sharp lower bound, which is
(1+2/d)*/?, for d even and [1 +2(d +2)/ (d(d + 2) — 1)]'/?, for d odd.) The same

argument shows that rq,... 7, cannot lie in an affine (¢ — 2)-plane, thus determine
an (¢ — 1)-simplex, namely S(r1,...,7¢).
Our goal is to show that the simplex S(ry,...,r.) is “close” to a regular (¢ —1)-

simplex of edge length t,. Similarly, the vertices of G}’ in single ~-equivalence
classes are “close” to the vertices of regular simplices of edge length ¢1, of dimensions
at most d — ¢ + 1, with affine hulls nearly orthogonal to aff{ri,...,r¢}. The
number of primary colour classes of G}’ is maximum if all of the last simplices have
dimension d — ¢ + 1.

Lemma 3. In Case II, the number { of the ~-equivalence classes is at least 2,
provided cq > 0 1s sufficiently small.

Proof. If £ = 1, then all distances between the vertices of G%/ lie in [t1, t,+cqn'/?],
contradicting Lemma 1 (1). This proves Lemma 3. O

Lemma 4. In Case II, let g; € V(G7') be in the ~-equivalence class of m €
V(G7') such that q; # 1. Further, let ro € V(G7') be in another ~-equivalence
class, as r1. Then |<qjrire — /2| is as small as we want, for Dq sufficiently large
and cq > 0 sufficiently small. (Here 19 exists by Lemma 3.)

Proof. We are going to estimate from above
| cos(<tgjrira)| = |d(r1,72)* + d(r1,¢;)* — d(gj,r2)?| / (2d(r1, m2)d(r1, ;)

= |(d(r1,72) + d(gj, r2)) (d(r1,72) — d(gj,72)) + d(r1, ;)|
/(2d(r1,m9)d(r1, q;)) < [2(t2 + can/Dean™? + (t1 + cqnt/ 2]/ (2t1t2) -

By Lemma 1 (3), any two numbers from the same interval [t,t, + cqn'/?] have
quotients as close to 1 as we want, for ¢y > 0 sufficiently small. Thus, we suppose
t1 4+ cgnt/? < 2t; and to + cgnt/?d < 2to, for ¢4 > 0 sufficiently small. Then

| cos(<tqjrira)| < [2- 2ty - cqnt/? + 413]/ (2t1t2) =

QCdnl/d/tl + Qtl/tg < QCd/Cd + Q/Dd < 2cq+ 2/Dd,

by Lemma 1 (2), and by to/t; > to/(t; +cqn'/?) > Dy (Case I1). If Dy is sufficiently
large and ¢4 > 0 is sufficiently small, then this last expression, and hence also
| cos(<tg;rir2)| is as small as we want. This proves Lemma 4. O
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Lemma 5. In Case II, the number { of the ~-equivalence classes is at most d,
for Dy sufficiently large and cq > 0 sufficiently small.

Proof. We already know that ¢ < d 4+ 1 (cf. Step 5), so we have to exclude
¢ =d+1 only.

Suppose £ = d + 1. At the beginning of Step 5, we selected points rq,...,r; =
T4+1, one from the union of each ~-equivalence class of the primary colour classes of
V(G7'). By Lemma 1 (3), for ¢4 > 0 sufficiently small, we have that the quotients
of any two distances among these points are in an as small neighbourhood of 1 as
we want. This also implies that any three of these points determine a triangle with
angles as close to m/3 as we want.

Let v, := (r, — ras1)/d(ry,may1) € S47L for p=1,...,d. Let V denote the
d x d matrix with columns vq,...,v4. We have

|det (v1,...,vq)| = |det V| = [det (V’V)]l/2 = [det ((Uu(l),vu(2)>>]1/2,

where V' is the transposed matrix of V. Moreover, ((v,(1),Vu(2))) is a d x d matrix
for which (v, 1), vu1)) =1, and p(1) # u(2) implies that (v,(1), vu(2)) is as close to
cos(m/3) = 1/2 as we want. Hence, |det (v1,...,vq)| is as close to [det ((1+

5#(1)u(2))/2)]1/2 as we want, for Dy sufficiently large and ¢4 > 0 sufficiently small.
Here [det ((1+ 8,(1),(2))/2)]"/? equals the absolute value of the determinant whose
columns are the unit vectors pointing from a vertex of a regular d-simplex to all

other vertices. Thus it is a non-zero constant. All this implies that |det (v, ... ,vq)]
1$ greater than a non-zero constant. In particular, vy,...,vq are linearly indepen-
dent.

By (1.3), m(d — 1) +1 > d+ 1 for d > 2, hence some of the { = d + 1 ~-
equivalence classes must contain at least two vertices g; of G}’. Assume without
loss of generality that r44; belongs to such a class and ¢; is one of its elements
different from rgz41. In view of Lemma 4, the scalar product of the vector v :=
(qj — ra+1)/d(qj,mas1) € S¥! with any v, 1 < p < d, is as close to 0 as we
want, provided that D, is sufficiently large and c4 > 0 is sufficiently small. In
other words, maxi<,<q[(v,v,)| is as small as we want, for Dq sufficiently large
and cq > 0 sufficiently small.

By the linear independence of vq,...,vq, we have v = ZZ:1 Ay, for some
Au € R. Consider this as a system of equations for A,, and note that the absolute
value of any coordinate of v and any v,, is at most 1. Then we have by Cramer’s rule

for A, and by |det (v1,...,v4)| > constg, that |A,| < constg/|det (v,)| < constg.
Hence
d
1= Z)\ v,,) Z (v,v,) <
< .
d- 121a§d|>\ | - max, |(v v,)| < consty - 11£3;<d|(v,vu)|

This contradicts the fact that maxi<,<q|(v,v,)| is as small as we want, for Dy
sufficiently large and ¢y > 0 sufficiently small. This completes the proof of Lemma
5. 0

Lemma 6. In Case II, for Dy sufficiently large and cq > 0 sufficiently small,
any ~-equivalence class contains at most d — £ + 2 points q;.
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Proof. Let q; be any vertex in the ~-equivalence class of ry, say, and let g; # 7.
(If such a vertex did not exist, then this ~-equivalence class would have 1 < d—/¢+2
points, by Lemma 5.) Then, by Lemma 4, | cos(<g;rer1)], . .. , | cos(<tgjrere—1)| are
as small as we want, for Dy sufficiently large and cg > 0 sufficiently small. Let w’ :=
(qj —re)/d(gq;,me) € S1, and, for p=1,...,0—1,let w, := (r, —710)/d(r,,7¢) €
S9=1. Then we have that |[(w?,w,)| is as small as we want, for Dq sufficiently
large and cq > 0 sufficiently small. Suppose ry, = 0, and let (w’)’ be the orthogonal
projection of w? to the linear (¢ — 1)-subspace aff {ry,... ,r;} =1lin{ry,... N 1}
Then wy, ..., we_1, (w?) € lin{ry,... ,7_1}. Moreover, |(( 3 wy,)| = |<w W)
1s as small as we want, for Dy sufficiently large and cq > 0 sufficiently small.

Now we proceed in the linear subspace lin {rq,... ,r,_1}, as we proceeded in R?
in the proof of Lemma 5. We have |det (wy, ... ,wp_1)| > consty > 0. (Observe that
¢ can assume only finitely many values. This is why we could write here consty > 0.)
Moreover, (w’)’ = Zf;ll Ay w,,, where now by Cramer’s rule |\,| < constq- ||(w?)’].
Then

1

{—
=D Al wy)

1Y% = ((w?)', (w?)') = ((w?) ZA W)

<d- max Ao max (@) w,)

1<p<i-1 1<pu<i-1
< . IV . 7y .
< consty - (@) max (), w,)

Hence,
. - ‘/
(Y| < = consta+ | max[((w)' )
and here n s as small as we want, for Dy sufficiently large and cq > 0 sufficiently
small.

Suppose that the equivalence class of ry contains d — ¢+ 2 other points, gg41, ... ,
dd+2, besides ry (any of which could be identical with the point denoted by g;
at the beginning of the proof of the lemma). Let ¢ = ¢ := ry = 0. Further,
let g7, 1, -, Q) o denote the orthogonal projections of gg11, ... ,qat2 to the linear
(d — £ + 1)-subspace which is the orthocomplement of lin{ry,...,r,—1}. Then we
have for distinct j(1),7(2) € {¢,£+1,...,d+ 2} that

d(q;(l), Q;(z)) < d(qj1), q(2)) <t + cqnt/?,

On the other hand, for j(1) € {£,£+1,...,d+2}, the orthogonal projection of g;1)
tolin{ry,...,re_1}is q;() —q;(l). Here for j(1) > £+1 we have qj(1) = qj(1) —7¢ =
d(q;(1), ro)w’ M), hence its orthogonal projection to lin {ry,... ,r,_1} is qj(l)—q;’f(l) =
d(g;(1y, re) (w? D). Therefore, we have d(g(1): GG1y) = gy, 7e) - [(wI W) <
d(gj(1),7e)n and, analogously, d(qj(g),q;’f@)) < d(qj(2),m¢)n. For j(1) = £, we have
d(g;(1), q;’f(l)) = 0 < d(gjq),7e)n = 0 and, analogously for j(2) = /.

These imply by Lemma 1 (2), for D, sufficiently large and ¢4 > 0 sufficiently
small, that for j(1),j(2) € {¢,+1,...,d+ 2} we have (both for j(x) = ¢, and for
j(k) > £) that

A1y 4j2)) = A(g50): 452) — Ay 4iry) — UGGy ai2)) =
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ty —n-d(gjay,me) —n-d(qj2),me) > t1 — 2n(t1 + cdnl/d) > t1 — 4nty.

Let D, be sufficiently large and ¢q > 0 be sufficiently small. Then cqn'/¢ /t1 is
sufficiently small (Lemma 1 (2)), and also 7 is sufficiently small. Therefore, each
d(q;(l),q;’f@)) lies in an interval, whose maximum and minimum have a quotient
that is as close to 1 as we want. Thus, there are d — £+ 3 points, ¢;, g7, 1, @ o
with this property in a (d — ¢ + 1)-dimensional linear subspace of R¢; namely in
the orthocomplement of lin{ry,...,r,—1}. This is impossible by the theorem of
Schiitte [24], cited at the beginning of Step 5, for D, sufficiently large and ¢4 > 0
sufficiently small. O

Lemma 7. In Case II, for d > 6, the upper estimate of Theorem 1 holds.

Proof. By Lemma 6, the number of all primary colour classes of G}, i.e. m(d —
1)+ 1, is at most £ - (d — € +2) < [((d+2)/2)°|. Hence, by (1.1), we have
dd—1)/24+1 <m(d—1)+1< |[((d+2)/2)?|. Thus, d(d—1)/2+1 < ((d +2)/2)?,
implying d < 6. That is, for d > 7 we have a contradiction.

For d = 6, by (1.2) we have 17 = m(d—1)+1 < £(d—(+2) < [((6 +2)/2)*] = 16,
a contradiction.

At the beginning of Step 2, we assumed, in order to obtain a contradiction, that
Theorem 1 was false. This led to a contradiction for every d > 6. U

Lemma 8. In Case II, for d = 2,3, the upper estimate of Theorem 1 holds.
Proof. By (1.2), for d = 2 we have

A=m(d-1)+1<Ld-0+2)<|((d+2)/2)7°] =4,
implying ¢ = 2, while for d = 3 we have
6=m(d—1)+1<0(d—0+2)<[((d+2)/2)°] =6,

implying ¢ € {2,3}. For both d = 2 and 3, equality in the first inequality implies
that each of the ¢ ~-equivalence classes contains maximally many, i.e., d — ¢ + 2
primary colour classes of G7'.

First, let d = 2. Then ¢ = d — ¢ + 2 = 2. Let the ~-equivalence classes on the
primary colour classes of G}’ be represented by the vertices {q1,¢s} and {g2,q4}.
Here all ¢;’s belong to distinct ones among the four primary colour classes of G}/,
which have 1,1, 1, |const - n| vertices, resp. (Thus, these vertices form a subgraph
of G}’ which is a four-clique — in particular, each distance determined by them
lies in [t1,t1 + cdnl/d] U [ta, ta + cdnl/d].) Further, the secondary colour of an edge
only depends on the primary colour classes the edge endpoints belong to. Up to
notation, we may assume that g4 belongs to the last one of these primary colour
classes (it plays the role of g, (4—1)41 from part E of the proof of Lemma 2). By
Lemma 4, <(q2q4qs is close to w/2. Fix g1, q2,qs, and vary g4 in its own primary
colour class in G7’, so that it assumes |const - n| values (points). Then all these
points lie in the intersection of two circular shells (defined analogously as in part E
of the proof of Lemma 2). These have centres g2 and g3, inner radii some ¢,;’s, and
outer radii the respective (t, 4 cgn'/?)’s. Moreover, the unit vectors pointing from
d4 to g2 and to g3 enclose an angle close to /2. Then Claim 2 and the arguments
in part F of the proof of Lemma 2 yield a contradiction, for Dy sufficiently large
and cq > 0 sufficiently small.
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Second, let d = 3. We copy the proof of the case d = 2. Then either ¢/ = 2 and
d—0+2 =3,or{ =3 and d—{+2 = 2. Let the ~-equivalence classes on the primary
colour classes of G'f’ be represented either by the vertices {q1,q3,¢5}, {42, 44, 9},
or by the vertices {qi1,q4}, {g2,95}, {g3,q6}, resp. Here, all ¢;-s belong to distinct
primary colour classes of G7’, which have 1,1,1,1,1, |const - n] vertices, resp. Up
to notation, in both cases we may assume that g belongs to the last one of these
primary colour classes. By Lemma 4, for ¢ = 2, both <(q2qsq3 and <(qsqeqs are close
to 7/2, while for ¢ = 3, both <ig3gsqs and <g3gegs are close to w/2. Moreover, by
Lemma 1 (3), £ = 2 implies that <(g2qsq4 is close to 7/3, while £ = 3 implies that
<1q4969s5 is close to /3. Fix q1,...,¢s, and vary ¢g in its own primary colour class
in G7', so that it assumes |const - n| values (points). Then all these points lie in
the intersection of three spherical shells. These have centres ¢, q4, q3 for £ = 2,
and centres ¢3, q4, q5 for £ = 3. Moreover, their inner radii are some t,’s, and the
outer radii are the respective (¢, + cgn'/?)’s. Further, for £ = 2 (and 3), the angles
enclosed by the unit vectors pointing from ¢ to g2, s, qs (and to gs, g4, g5, resp.,)
are close to /3, m/2, /2. Then Claim 2 and the arguments in part F of the proof
of Lemma 2 yield a contradiction, for D, sufficiently large and ¢4 > 0 sufficiently
small. O

Proof of Theorem 1, continuation. Step 6. By Step 1 (about tightness) and
Lemmas 2, 7 and 8, the proof of Theorem 1 for d # 4,5 follows.

Step 7. Now we give the differences in the proof of Theorem 1 for the cases
d = 4,5. Recall that the proof for Case I already has been given in Lemma 2, so
we need to investigate Case II only (cf. Step 3).

Analogously, as at the beginning of §3, we will have several positive constants,
now depending on d and ¢, like consty ., etc. Of these, Cy ., Dg. will be fixed large
constants, and ¢4 . will be a sufficiently small positive constant, in terms of the
already fixed values of all the other constants.

As in Step 2 of the proof of Theorem 1, suppose, in order to obtain a contradic-
tion, that the number of edges of G is greater than (n?/2)(1—1/m(d—1)+¢). Then
by [1], Ch. 6, now G contains a subgraph Gy = K (|constg - logn], ..., |[constg. -
logn]), which is a complete (m(d — 1)+ 1)-partite graph, with |constq. - logn|
points in each colour class. (For the dependence of consty. on d and ¢ in this
statement, the best known bound is given in [4].)

The primary (vertex) colouring and the secondary (edge) colouring of G2 are
defined as for G in Step 2. (Each edge of G5 is coloured by L or R.) Analogously
to the definition of the subgraph G7 of G in Step 2, for any j, where 1 < 5 <
m(d—1)+1, we define an induced subgraph G3 ; of G2 with the following properties.
Each primary colour class of G, except the j-th one, has exactly one point in G5 ;.
Further, still |constq . - logn| points of the j-th primary colour class of G2 belong
to G5 ;. Moreover, the secondary colour L or R of an edge in G5 ; depends only on
the primary colour classes the edge endpoints belong to.

Analogously to how we have defined the subgraph G’ of G7 in part D of the
proof of Lemma 2, now we define the subgraph (G3 ;)" of G5 ;. In what follows, we
will deal with the graphs (G ;)’, for 1 <j <m(d —1) + 1.

We want to show that for some 1 < j < m(d — 1) + 1 such a graph (G7 ;)’
cannot exist, for cq . > 0 a sufficiently small constant. This contradiction will show
that the number of pairs {p;(1), pi(2)}, whose distances lie in the union of our two
intervals, is at most as large as stated in Theorem 1.
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Lemma 9. In Case II, for d = 4,5, the upper estimate of Theorem 1 holds.

Proof. Suppose that none of the ¢ ~-equivalence classes of the primary colour
classes of (G5, j)’ contains d — ¢ + 2 primary colour classes (cf. Lemma 6). Then we
have m(d—1)+1 < £(d—¢+1) < |((d+1)/2)?]. Thus, by (1.2), for d = 4 we have
7=m(3)+ 1 <6, and for d =5 we have 11 =m(4) +1 <9, i.e., in both cases we
get a contradiction. Therefore, one of the ~-equivalence classes of primary colour
classes, C, say, contains maximally many, v.e., d — € + 2 primary colour classes of
(G3,)"

Let us choose from C' one primary colour class, the j(0)-th one, say, where
1 < j(0) < m(d — 1)+ 1, and consider (G5 ;). We use the notation r1,... 7
introduced in Step 5.

Let the d — £ 4 2 primary colour classes in C' contain d — ¢ + 2 points as follows.
One of them is 7(0), and the others are gg11,...,qq41. Now consider the d — £+ 1
vectors (q; — 7j(0))/d(qj,mj(0)) € S, for j € {{+1,...,d+ 1}, and the £ — 1
vectors (rj1y — 5(0))/d(rj1). Tj(0)) € S, for j(1) € {1,..., 3\ {j(0)}. Let M
be the d x d matrix formed by the above (d —¢+ 1)+ (¢ —1) = d column vectors, in
the above order. Then |det M| = [det (M'M)]'/?, where M' is the transpose of M.
The entries of M'M are the cosines of the angles formed by the d column vectors
of M. The diagonal entries of M’M are equal to 1. Outside the diagonal, in the
intersection of the first d — £ 4+ 1 rows and the first d — £ 4+ 1 columns, as well as in
the intersection of the last £ — 1 rows and the last £ — 1 columns, by Lemma 1 (3),
the entries of M’'M are close to 1/2. By Lemma 4, the remaining entries of M'M
are close to 0.

Let Ny denote the dxd matrix, with the exact entries 1,1/2 and 0 at its respective
positions. Then det (M’M) is close to det Ny, hence

|det M| = [det (M'M)]*/? is close to [det (Ny)]*/2 (€ [0, 0)). (3.2)

Now we define a d x d matrix My (it will not be unique) as follows. Its first
d — ¢ + 1 column vectors are the edge vectors of a regular (d — ¢ + 1)-simplex of
unit edge lengths in the coordinate subspace spanned by the first d — ¢ + 1 basic
unit vectors, pointing from some of its vertices to all its other vertices. Moreover,
its last £ — 1 column vectors are the edge vectors of a regular (¢ — 1)-simplex of
unit edge lengths in the coordinate subspace spanned by the last ¢ — 1 basic unit
vectors, pointing from some of its vertices to all its other vertices. Then all these d
column vectors form a base of R?, hence |det My| is some positive constant constq g,
independently of the choice of M. Since ¢ can assume only finitely many values
(cf. Lemma 5), therefore |det My| > consty > 0. Moreover, the entries of MM, are
the cosines of the angles formed by the d column vectors of M. Hence, we have
M{My = Ny, which implies

[det (N)]Y/2 = [det (M} My)]/? = |det Mo| > const g > 0. (3.3)
By (3.2) and (3.3), also
|det M| > consty > 0, provided Dy . is

sufficiently large and cq . > 0 is sufficiently small.



TWO NEARLY EQUAL DISTANCES IN R¢ 19

On the other hand, the [consty. - logn]| points of (G5 ;)" in its j(0)-th primary
colour class should be contained in an intersection of d spherical shells (called S
in part E of the proof of Lemma 2). These have centres qoy1,...,qar1 and ()
for j(1) € {1,...,¢}\ {j(0)}, inner radii some t,, and outer radii (differently from
part E of the proof of Lemma 2) the respective t,, + cq.(log n)t/d.

Moreover, the unit vectors pointing from r;) to the above centres, are the
column vectors of a d X d matrix, having a determinant of absolute value bounded
from below by a positive number. Then the slabs S;(h) in Claim 2 will be replaced
by new slabs. More exactly, (o) replaces ¢,,(4—1)+1,1, the present d centres replace
(1) - - - »j(ay in part D of the proof of Lemma 2, logn replaces n, and a suitable
half-space replaces H' (in part E of the proof of Lemma 2). Then IT in Claim 2
of the proof of Lemma 2 will be replaced by a parallelepiped, circumscribed about
a ball of diameter 3cq . (log n)'/. Moreover, I’ in part F of the proof of Lemma 2
will be replaced by a parallelepiped, with inradius 3cq . (logn)'/¢/2 + 1/2, hence of
volume at most

consty ¢ - cg’e log n.

Thus, with these changes, the analogue of Claim 2 of the proof of Lemma 2 (with
the same proof as cited after Claim 2) and the arguments in part F of the proof
of Lemma 2 yield a contradiction. Namely, for cq4. > 0 sufficiently small, we have
the following. The parallelepiped replacing I’ has not enough volume in order to
contain |consty . - logn| disjoint open balls of unit diameter. O

Proof of Theorem 1, continuation. Step 8. By Step 1 (about tightness) and
Lemmas 2 and 9, the proof of Theorem 1 for d = 4,5 follows.
Together with Step 6, this completes the proof of Theorem 1. 0

§4. PROOF OF THEOREM 2

In this section, we present the proof of Theorem 2. The proof falls into five
simple steps marked as Step 1, Step 2, etc.

Proof of Theorem 2. Step 1. Recall that the tightness of Theorem 2 (A) and
(B) was shown by Constructions 2 and 3. It remains to establish that (d + 1)* in
(A) and T ((d + 1)* + 1,n) in (B) are upper bounds for the respective quantities.
For (B), this follows from (A), by Turdn’s theorem.

Step 2. We need to show that, for 0 < € < g4, where g4, > 0 is sufficiently
small, any (k,¢)-distance set P in R? has a cardinality at most (d + 1)*. We use
induction on k.

For k = 1, this statement is valid for 1 +¢& < (1 4 2/d)'/? (for d even), or for
14+ < [1+2(d+2)/(d(d+2) —1)]*/? (for d odd), resp. (cf. Schiitte [24], Satz 3).

Now let £k > 2. We may suppose without loss of generality that ¢; < ... < t.
(If two of these numbers are equal, then the statement follows by induction.) We
may and will suppose ¢ < 1.

Let Dg > 0 be a sufficiently large constant. We distinguish two cases:

Case L: ty/t; < Da,

Case II: tk/tl > Dd,k-

Step 3. In Case I, we prove
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Lemma 10. If t;/ty < Dgy, then the upper estimate stated in Step 2 is valid.

Proof. The ratio of any two distances determined by P is at most t5(1+¢)/t; <
2D, . Then, for sufficiently small € > 0, we get

|P| < m(d, k),

by using the analogues of the compactness considerations from the proof of Lemma
2, Claim 1. (Actually, only (i), the analogue of (ii) with 1/(2Dg 1), and (iii) from
Claim 1 are needed.)

Further, by (1.1) we have

d+k d+1 d+k d d &
< = — == P < :
m(d,k)_( i ) . k <1+1) <k+1)_(d+1)

Hence,
|P| <m(d, k) < (d+1)F,

as claimed in Step 2. O
Step 4. In Case I, we prove
Lemma 11. If t;/t1 > Dg, then the upper estimate from Step 2 holds.

Proof. In Case II, there exists an integer j € {1,...,k — 1} such that t;41/t; >
Dcli’/k(k_l). We consider a colouring of the edges of the complete graph on the
vertex set P with k colours. Namely, every edge {p;(1),pi(2)} gets a colour j with
d(pi(1), Pic2)) € [tj,t;(1 +€)]. (Such a colouring is not necessarily unique, but this
makes no difference.)

Let us call a distance d(p;1), pi(2)) small if its colour is at most j, and large if

its colour is at least j + 1. The quotient of any large and any small distance is

at least tj41/ (t;(14+¢)) > D}i’/kgk_l)/(l +e) > D}i’/kgk_l)/Q =: D}, where Dy, is

a large constant. In particular, we will assume that D&, i > 1, which implies that
(0,t;(1 +¢)] N [tjy1,00) = @. Thus, the length d(p;(1), pi(2)) uniquely determines
whether it is a small or a large distance. From now on, we also assume that
Déi,k > 2. This yields that every large distance is more than twice as large as every
small distance.

This implies that we can define an equivalence relation ~ on the points p;(1),
pi(2) € P.

Definition 5. For p;(1),pi2) € P we write p;1) ~ pj(2) if either i(1) = i(2), or
d(pi(l),pi(g)) is a small distance. By the last italicized text, ~ is an equivalence
relation on P.

In each ~-equivalence class of the points p; € P, each edge has a colour at most
j. Thus, each ~-equivalence class is a (j, ¢)-distance set. Since j < k — 1, by the
induction hypothesis we have, for € > 0 sufficiently small, that the cardinality of
any ~-equivalence class is at most (d + 1)7.

Now consider a set of representatives from each ~-equivalence class. In this
set, each edge has a colour at least j + 1, so it is a (k — j,¢)-distance set. Since
k —j < k — 1, by the induction hypothesis we have, for ¢ > 0 sufficiently small,
that the cardinality of this set is at most (d + 1)*~7.
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Using the results of the last two paragraphs, we obtain the following. For ¢ > 0
sufficiently small, |P| is at most the number of ~-equivalence classes times the
maximum cardinality of a ~-equivalence class. That is,

[P| < (d+1)*7(d+ 1) = (d+1)",

as asserted in Step 2. O
Step 5. Now Theorem 2 follows from Steps 1, 2, and Lemmas 10 and 11. [

§5. CONCLUDING REMARKS

1. Suppose that neither £ nor d is much larger than the other. It seems likely that
in this case one can obtain reasonably good constructions for ¢ in Construction 1
the following way. Suppose that d = d(1)+...+d(h) and k = k(1)+...4+k(h), where
all d(g) and k(g), for 1 < g < h, are natural numbers. Then R% = R4 +--+d(h) —
R @ ... @RI, In each RU9), for 1 < g < h, we take a subset Q4. Here,
each Q4 is one of the examples from Construction 1’ or Construction 1”, with all
distances in @), lying in the union of k(g) intervals of arbitrarily small lengths. We
scale Q1,...,Qp in such a way that for each 1 < g < h — 1, the maximal distance
in Q4 is much smaller than the minimal distance in (441. Moreover, all distances
in Qg still belong to the union of k(g) intervals of arbitrarily small lengths. Let
Q= EBZZng. For any two distinct points ¢(1) = @hzlqg(l), q(2) = @Zzlqg(g) €Q,
there is a largest g € {1,..., h} such that qg(1) # qg(2). Then the distance between
q(1) and ¢(2) is arbitrarily close to the distance between g,(1) and gg4(2). Therefore,
all distances determined by @ lie in the union of k(1) + ...+ k(h) = k intervals of
arbitrarily small length.

2. A related question was studied by Pach, Radoi¢i¢ and Vondrak [22], [23].
They proved that for any d > 2 and any 0 < v < 1/4, the following statement
holds. Suppose that in an n-element separated point set P C R there are at least
yn? point pairs whose distances differ by at most 1. Then the diameter of P is at
least constg,, - n?/(d=1) " Apart from the value of the constant, this bound is tight
forall d > 2 and all 0 <y < 1/4.

3. Another related question is treated in [11]. Suppose that in a separated n-
element point set P in the plane, the number of pairs that determine a distance
nearly equal to one of t; < ... < t is maximal. Does it follow that then we have,
“approximately,” to = 2t1,...,tx = kt; (as in the example after Theorem B)?
In this direction, they proved the following. Let 6 > 0 and suppose that for any
1 <i(1) <i(2) <i(3) <k, the inequality |t;3)/(ti(1) + ti2)) — 1| > 6 holds. Then,
for n > ny_ s, the number of unordered pairs that determine a distance belonging
to [t1,t1+ 1] U. ..U [tk, tx + 1], is at most n?/4 + consty, s - n. This bound is sharp,
up to the value of consty s > 0. It is easy to see that if t;3) = #;1) + ¢;(2) holds
for some (1) <i(2) < i(3), then the number of pairs with the above property can
attain [n?/3].

4. We pose the following

Question. What would be the results analogous to our Theorem 2, for unions
of intervals of the form [t1,#; 7] U ... U [tg, t,7¢], for e > 07
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