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Keywords: Erdős-type problems, separated point sets, nearly equal
distances, k-distance sets, Turán’s theorem, Ramsey’s theorem

Abstract. A point set P ⊂ R
d is separated if the minimum distance between any

two points in P is at least 1. For d 6= 4, 5, we determine, for every t1, t2 ≥ 1, and

for n at least a suitable nd, the maximum number of point pairs in a separated

n-element point set in R
d, with distances in the set [t1, t1 + 1] ∪ [t2, t2 + 1]. For

d = 4, 5 we establish a weaker, similar asymptotic estimate. Recently N. Frankl

and A. Kupavskii have generalized this result to unions of k ≥ 2 intervals. We also
determine the maximum number of point pairs in an n-element point set in R

d, whose

distances belong to the union of k ≥ 2 intervals of the form [ti, ti(1+ε)], where ti > 0

and ε > 0 is small.

§1. Introduction

Around 1945, Paul Erdős found two interesting applications of extremal com-
binatorics. One is related to an algebraic question of Littlewood and Offord [19],
and the other one is in geometry. In [6], he applied Sperner’s lemma to give a tight
upper bound on the number of subsets of a set of n real numbers, whose absolute
values are at least 1, and whose sums fall into a given interval of length 1. In [7],
Erdős addressed the following question: At most how many times can the same dis-
tance occur among n points in R

d? More precisely, what is the maximum number
of unordered point pairs that determine the same distance?

Erdős modified the second question in the spirit of the first one, cf. [12]. At
most how many unordered pairs {p, q} of distinct points can be selected from an
n-element point set P ⊂ R

d so that all distances d(p, q) are nearly the same, in the
sense that they fall into the same unit interval? To avoid the degenerate situation
where all points are very close to each other and, hence, all distances are nearly
0, we consider only separated point sets P . That is, we assume that the distance
between any two points of P is at least 1. To give an answer to the last question,
we recall Turán’s theorem [26, 1]. For n, k ≥ 1 integers, define the Turán number
T (k, n), as the maximum number of edges that a graph on n vertices can have
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2 P. ERDŐS, E. MAKAI, JR., J. PACH

without containing a complete subgraph Kk on k vertices. According to Turán’s
theorem, for a fixed k, we have

T (k, n) =
n2

2

(

1−
1

k − 1

)

+Ok(1) ≤
n2

2

(

1−
1

k − 1

)

.

Moreover, the only Kk-free graph for which this maximum is attained is the so-
called Turán graph. This is a complete (k − 1)-partite graph whose classes are as
equal as possible, i.e., each class consists of ⌊n/(k − 1)⌋ or ⌈n/(k − 1)⌉ points.

Theorem A. ([12], Theorem 5) For any d ≥ 2, there exist positive constants
cd, nd such that for every t ≥ 1, every separated set P ⊂ R

d with n ≥ nd elements
the following holds. The set P has at most T (d+1, n) unordered point pairs whose
distances belong to the interval [t, t+ cdn

1/d]. This bound is best possible for every
d and every n ≥ nd.

To see that the bound T (d + 1, n) can be attained, we write R
d as R

d−1 × R,
and let q1, . . . , qd ∈ R

d−1 be the vertices of a regular (d−1)-simplex of edge length
t. Write n as a sum, n = n1 + . . . + nd, where ni = ⌊n/d⌋ or ⌈n/d⌉ for every i.
Let P := {qi + jed : 1 ≤ i ≤ d, 1 ≤ j ≤ ni}, where ed = (0, . . . , 0, 1). If t is
large enough (depending on n), then all distances between two points in distinct
sets Pi(1) and Pi(2) belong to the interval [t, t+ 1], and the number of such pairs is
T (d+ 1, n).

Originally, Theorem A was stated for unit intervals [t, t+1], but its proof easily
extends to this case. (See the paragraph after Lemma 3.1 in [12].)

We say that a set determines a distance t > 0 if it has two points at distance t
from each other. It is our goal to extend Theorem A and obtain an upper bound
for the number of pairs whose distances fall into the union of k ≥ 2 unit, or
short, intervals. In [9], we made the first step in this direction by providing an
asymptotically tight bound in the plane.

Theorem B. ([9], Theorem 2) For any k ≥ 2 and ε > 0, there exist positive
constants ck,ε and nk,ε such that for every t1, . . . , tk ≥ 1, for every separated set
P ⊂ R

2 with |P | = n ≥ nk,ε, the following holds.
The number of unordered point pairs from P that determine a distance belonging

to the set ∪k
i=1[ti, ti + ck,εn

1/2], is at most

n2

2

(

1−
1

k + 1
+ ε

)

.

This statement is asymptotically tight: it does not remain true if we replace the last
expression by T (k + 2, n)− 1.

An example of an n-element point set with T (k + 2, n) pairs whose distances
are nearly equal to one of k numbers, t1, . . . , tk is the following. Let ti := it, for
1 ≤ i ≤ k, and let n = n1 + . . . + nk+1, where the nh’s, for 1 ≤ h ≤ k + 1, are as
equal as possible. Let Ph = {((h − 1)t, j) : 1 ≤ j ≤ nh} and P = ∪k+1

h=1Ph. If, for
a given n, t is large enough, then every distance between two points belonging to
distinct Ph’s lies in ∪k

i=1[ti, ti + 1].

To generalize Theorem B to higher dimensions, we need a definition.
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Definition 1. For any positive integers d and k, we call a finite subset of Rd a
k-distance set if it determines at most k distinct (positive) distances. Let m(d, k)
denote the maximum cardinality of a k-distance set in R

d. (This exists by Ramsey’s
theorem.) If k = 2, we write m(d) := m(d, 2), for simplicity.

Estimating the value ofm(d, k) is equivalent to Erdős’s distinct distances problem
[6, 7] and has a huge literature. In particular, it is known [2, 3] that

(

d+ 1

k

)

≤ m(d, k) ≤

(

d+ k

k

)

. (1.1)

This implies that for a fixed k and d → ∞, we have m(d, k) = (dk/k!) (1 + ok(1)),
while for a fixed d and k → ∞, we have m(d, k) ≤ (kd/d!) (1 + od(1)). The asymp-
totically best upper bounds for m(2, k) and m(d, k) for d ≥ 3 have been established
by Guth and Katz [16] and by Solymosi and Vu [25], resp.

For our purposes, the case k = 2 will be relevant. For the maximum cardinality
m(d) = m(d, 2) of a 2-distance set in R

d, it is known that

{

m(1) = 3, m(2) = 5 [8], m(3) = 6 [5], m(4) = 10,

m(5) = 16, m(6) = 27, m(7) = 29, m(8) = 45 [18].
(1.2)

In particular,
for all d ≥ 2, we have m(d− 1) > d . (1.3)

Our main result is the following generalization of the special case k = 2 of
Theorem B to higher dimensions.

Theorem 1. For any integer d ≥ 2, d 6= 4, 5, there exist positive constants
cd, nd such that for any t1, t2 ≥ 1, for every separated point set P ⊂ R

d with
n ≥ nd elements, the following holds. The number of unordered point pairs in P
that determine a distance belonging to the set [t1, t1 + cdn

1/d] ∪ [t2, t2 + cdn
1/d], is

at most

T (m(d− 1) + 1, n) =
n2

2

(

1−
1

m(d− 1)

)

+Od(1).

For d = 4 or 5, for any ε > 0, there exist positive constants cd,ε, nd,ε such that
for any t1, t2 ≥ 1, for every separated point set P ⊂ R

d with n ≥ nd,ε elements,
the following holds. The number of unordered point pairs in P that determine a
distance belonging to the set [t1, t1 + cd,ε(logn)

1/d] ∪ [t2, t2 + cd,ε(logn)
1/d] is at

most
n2

2

(

1−
1

m(d− 1)
+ ε

)

.

These upper bounds cannot be reduced to T (m(d− 1) + 1, n)− 1, for any d and
n.

We also study a closely related problem, where two distances are considered
nearly equal if they fall into an interval [t, t(1 + ε)], for some small ε > 0. To
formulate our result we need to extend Definition 1, as follows.

Definition 2. For any ε ≥ 0 and integers d, k ≥ 1, we call a finite subset of Rd

a (k, ε)-distance set if all distances determined by it lie in the union of k intervals
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of the form [t1, t1(1 + ε)], . . . , [tk, tk(1 + ε)], for some t1, . . . , tk > 0. Let m(d, k, ε)
denote the maximal cardinality of a (k, ε)-distance set in R

d. (This is finite for every
ε > 0. In fact, by applying Ramsey’s theorem, it is enough to see that m(d, 1, ε) is
finite, and this follows from a volume argument.)

Obviously, a (k, 0)-distance set is a k-distance set and m(d, k, 0) = m(d, k).

Theorem 2. For any fixed integers d, k ≥ 1 there exists εd,k > 0 such that for
0 < ε < εd,k the following two statements hold.

(A) For the maximum cardinality of a (k, ε)-distance set in R
d, we have

m(d, k, ε) = (d+ 1)k.

(B) For any set P ⊂ R
d of n ≥ 1 points, and for any t1, . . . , tk > 0, the following

holds. The number of unordered pairs in P that determine a distance belonging to
the set ∪k

j=1 [tj, tj(1 + ε)], is at most the Turán number T
(

(d+ 1)k + 1, n
)

. This

upper bound cannot be reduced to T
(

(d+ 1)k + 1, n
)

− 1, for any d, k and n, and
any ε > 0.

It follows from Theorem 2 (A) and (1.1) that, for k fixed and d → ∞,

1 ≥
m(d, k)

lim
εց0

m(d, k, ε)
=

m(d, k)

(d+ 1)k
=

1

k!
+ ok(1).

Observe that in Definition 2 and Theorem 2, the assumption that P is separated
is not required. (Actually, the concept of a (k, ε)-distance set is similarity invariant,
so we could have required this property as well.)

The rest of this paper is organized as follows. In §2, we describe several con-
structions showing the tightness of Theorems 1 and 2. §3 and §4 contain the proofs
of Theorems 1 and 2, resp. In §5, we make some concluding remarks.

The present paper is a minimally edited version of a manuscript written in the
early 1990s. We posted it on arXiv in January 2019 [10]. A somewhat weaker
version of Theorem 1 was announced in [21] in 2002. Our proofs use simple Turán-
type results and elementary geometric observations. The first inequality of Theorem
1 has been generalized by Nóra Frankl and Andrey Kupavskii to unions of k ≥ 2
intervals, for any d ≥ d(k) for some d(k) ([14] Theorem 1.2 and [15] Theorem 13).

Moreover, they proved in [15] Theorem 12 the following. Let us fix any d, k ≥
2. Then there exists a natural number Nk(d), such that the following holds.
For any ε > 0, there exists a natural number n(d, k, ε), such that for all n ≥
n(d, k, ε) the following is valid. The maximum number of unordered pairs of points,
from any n points in R

d, whose distances lie in the union of k intervals, lies in
[T (Nk(d), n), T (Nk(d), n) + εn2].

§2. Constructions

The aim of this section is to describe the constructions showing the tightness of
Theorems 1 and 2.

Construction 1. We regard R
d−1 as the hyperplane of Rd spanned by the first

d−1 usual basic unit vectors. Let Q ⊂ R
d−1 be a finite point set, with all distances

sufficiently large, and let m := |Q|. Suppose that the distances determined by
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Q all lie in the union of k intervals of length ε each, where 0 ≤ ε < 1. Let
Q = {q1, . . . , qm}. Let n = n1 + . . .+ nm, where each ni is ⌊n/m⌋ or ⌈n/m⌉. We
construct a point system P = P (Q) of n points in R

d = R
d−1 × R as follows. We

let
P (Q) := {qi + jed : 1 ≤ i ≤ m, 1 ≤ j ≤ ni},

where ed is the d-th usual unit basic vector in R
d. If, for given n, all distances

determined by Q are large enough, then the following holds. The distances of all
pairs of points qi(1) + j(1)ed, qi(2) + j(2)ed ∈ P (Q) with i(1) 6= i(2) lie in the
union of k unit intervals (or of k arbitrarily small intervals, provided ε can be made
arbitrarily small). The number of these pairs of points is (n2/2)(1−1/m)+Od,k(1) ≤
(n2/2)(1− 1/m), for n → ∞.

We present two particular cases of Construction 1.

Construction 1′. The case k = 2 of this construction will show the tightness
of Theorem 1.

Let k be fixed and d → ∞. In Construction 1, we choose Q ⊂ R
d−1 as a k-

distance subset of maximum cardinality m(d− 1, k), with all distances sufficiently
large. By (1.1),

|Q| = m(d− 1, k) =
dk

k!
(1 + ok(1)) .

Then the set P (Q) determines

n2

2

(

1−
1

|Q|

)

+Od,k(1) =
n2

2

(

1−
1

m(d− 1, k)

)

+Od,k(1)

≤
n2

2

(

1−
1

m(d− 1, k)

)

distances, taken with multiplicity, that lie in the union of k intervals of arbitrarily
small length.

Construction 1′′. Let d be fixed and k → ∞. We construct a set Q ⊂ R
d−1 as

follows. Let k = k1+. . .+kd−1, where each ki is ⌊k/(d−1)⌋ or ⌈k/(d−1)⌉. We write
{e1, . . . , ed} for the usual basic unit vectors in R

d. Let n ≪ λ1 ≪ λ2 ≪ . . . ≪ λd−1

and let

Q :=
{

d−1
∑

i=1

jiλiei : ji ∈ {0, 1, . . . , ki}
}

.

Then the distance between any two distinct points,
∑d−1

i=1 ji(1)λiei,
∑d−1

i=1 ji(2)λiei
∈ Q, is very close to one of the distances λi, 2λi, . . . , kiλi, where i is the largest
index ℓ ∈ {1, . . . , d−1} such that jℓ(1) 6= jℓ(2). The total number of these distances

is k1 + . . .+ kd−1 = k, and we have |Q| =
∏d−1

i=1 (ki + 1). Hence, for a fixed d and
k → ∞, we have

|Q| =
kd−1

(d− 1)d−1
(1 + od(1)) ≤

(k + d− 1)d−1

(d− 1)d−1
.

Using that n ≪ λ1, the number of distances determined by P (Q) that lie in the
union of k intervals of arbitrarily small length is

n2

2

(

1−
1

|Q|

)

+Od,k(1) ≤
n2

2

(

1−
(d− 1)d−1

(k + d− 1)d−1

)

.
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It is somewhat surprising that for a fixed d ≥ 3 and any ε > 0, a point set in
R

d−1 in which all distances are at least 1 and belong to k intervals of length ε,
can be much larger than the conjectured maximum size of a point set in R

d−1 in
which every point pair determines one of k specific distances. (The conjectures are
m(2, k) = Θ

(

k(log k)1/2
)

, and d − 1 ≥ 3 =⇒ m(d − 1, k) = Θd(k
(d−1)/2), see [7].)

This is in sharp contrast with Theorem 1.1 in [14], and Theorem 1 in [15], stating
that if k is fixed, d ≥ dk, and ε ∈ (0, εd,k), then these two quantities coincide.

Construction 2. We construct, for any d, k ≥ 1 and any ε ∈ (0, 1), a (k, ε)-
distance set in R

d, of cardinality (d+1)k. This will show the tightness of Theorem
2, (A).

Let us choose, for some small ε1 ∈ (0, 1), positive numbers s1, . . . , sk, satisfying
si/si+1 ≤ ε1 for every i ∈ {1, . . . , k− 1}. Fix k regular simplices centred at 0, with
circumradii s1, . . . , sk, and with vertices

{v1,i : 1 ≤ i ≤ d+ 1}, . . . , {vk,i : 1 ≤ i ≤ d+ 1}.

Define the set of (d+ 1)k vectors,

S := {v1,i(1) + . . .+ vk,i(k) : 1 ≤ i(1) ≤ d+ 1, . . . , 1 ≤ i(k) ≤ d+ 1}.

For any different v1,i(1)+ . . .+ vk,i(k), v1,j(1)+ . . .+ vk,j(k) ∈ S, let h be the largest
index ℓ ∈ {1, . . . , k} such that i(ℓ) 6= j(ℓ). Then their distance equals

d(v1,i(1) + . . .+ vh,i(h), v1,j(1) + . . .+ vh,j(h)) ∈

[d(vh,i(h), vh,j(h))− 2sh−1 − . . .− 2s1, d(vh,i(h), vh,j(h)) + 2sh−1 + . . .+ 2s1] =

[(2(1 + 1/d))
1/2

sh − 2sh−1 − . . .− 2s1, (2(1 + 1/d))
1/2

sh + 2sh−1 + . . .+ 2s1].

If ε1 is sufficiently small, then for any h ∈ {1, . . . , k} the quotient of the maximum
and the minimum of the last interval lies in [1, 1 + ε]. Hence, S is a (k, ε)-distance
set, with

th := (2(1 + 1/d))
1/2

sh − 2sh−1 − . . .− 2s1 for any h ∈ {1, . . . , k}.

Construction 3. We construct, for any d, k ≥ 1, any ε > 0 and any n, a set
{p1, . . . , pn} of n points in R

d with the following property. The number of point
pairs determining a distance that belongs to ∪k

j=1[tj, tj(1+ε)], for some t1, . . . , tk >

0, is equal to T
(

(d+ 1)k + 1, n
)

. This will show the tightness of Theorem 2, (B).

The points p1, . . . , pn are divided into (d + 1)k classes, with
⌊

n/(d+ 1)k
⌋

or
⌈

n/(d+ 1)k
⌉

points in each class, so that the distance between any two points in

different classes belongs to ∪k
j=1[tj , tj(1+ ε)]. Each of the (d+1)k classes of points

is chosen in the 1-neighbourhood of one of the (d + 1)k points of the set S as in
Construction 2, where we also assume that 1/s1 ≤ ε1. Like in Construction 2, the
distance between any two points in different classes belongs to the interval

[(2(1 + 1/d))
1/2

sh−2sh−1− . . .−2s1−2, (2(1 + 1/d))
1/2

sh+2sh−1+ . . .+2s1+2].

Here, h is the largest index ℓ ∈ {1, . . . , k} such that i(ℓ) 6= j(ℓ), with v1,i(1) +
. . . + vk,i(k) and v1,j(1) + . . . + vk,j(k) being the elements of S in Construction 2,
associated with the classes of the two points. If ε1 is sufficiently small, then for
any h ∈ {1, . . . , k}, the quotient of the maximum and the minimum elements of
the last (displayed) interval lies in [1, 1 + ε]. Thus we can choose

th := (2(1 + 1/d))
1/2

sh − 2sh−1 − . . .− 2s1 − 2, for any h ∈ {1, . . . , k}.
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§3. Proof of Theorem 1

We first agree on some notation and terminology. We denote the vertex set
of a graph G by V (G). Throughout this paper, the term subgraph will always
stand for induced or spanned subgraph. Let d(p, q) denote the distance between
two points p, q ∈ R

d. The norm of p ∈ R
d is denoted by ‖p‖. We write Sd−1

for the unit sphere in R
d. For any set P ⊂ R

d, we write diamP , affP and linP
for the diameter, affine hull, and linear hull of P , resp. The volume (Lebesgue
measure) of a set in R

d is denoted by V (·), while the (d − 1)-volume is denoted
by Vd−1(·). For x1, . . . , xd ∈ R

d, denote by det (x1, . . . , xd) the determinant with
columns x1, . . . , xd. For any 1 ≤ ℓ ≤ d + 1 and any affinely independent vectors
x1, . . . , xℓ ∈ R

d, let S(x1, . . . , xℓ) stand for the (ℓ−1)-dimensional simplex spanned
by these vertices.

Throughout, we suppose that t1 ≤ . . . ≤ tk. The interval [tκ, tκ + cdn
1/d] will be

referred to as the κ-th interval. The symbols constd, Cd, Dd, cd will denote positive
constants depending on d (or on other parameters in the subscript). At different
places, constd may stand for different constants. We always assume that n is
sufficiently large in terms of all fixed parameters.

In the rest of this section, we present the proof of Theorem 1. The proof falls into
eight simple steps marked as Step 1, Step 2, etc. For d 6= 4, 5, we give the proof
in full detail. The treatment of the cases d=4,5 requires only minor modifications
which are described in Step 7 below.

Proof of Theorem 1. Step 1. The tightness of Theorem 1 was shown by
Construction 1′. Therefore, we only have to prove the upper bounds. Let P =
{p1, . . . , pn}.

Lemma 1. It is sufficient to prove Theorem 1 under the following assumptions.
(1) The intervals [t1, t1+cdn

1/d] and [t2, t2+cdn
1/d] are disjoint, and both contain

at least one distance between two points of P .
(2) We have t2 > t1 ≥ Cdn

1/d, where Cd > 1 can be chosen arbitrarily large.
(3) The ratio of any two distances that belong to the κ-th interval (κ = 1, 2) lies

in [(1 + cd)
−1, 1 + cd]. Hence, it lies in an arbitrarily small neighbourhood of 1,

provided that we choose cd > 0 sufficiently small.

Proof. (1) If [t1, t1 + cdn
1/d] ∩ [t2, t2 + cdn

1/d] 6= ∅, then the length of the union
of the two intervals is at most 2cdn

1/d. Hence, if cd > 0 is sufficiently small,
Theorem A yields the following. The number of pairs {pi(1), pi(2)} whose distances
belong to the union of the two intervals is at most T (d+ 1, n). By (1.3), we have
T (d+ 1, n) ≤ T (m(d− 1) + 1, n), and Theorem 1 follows.

The same argument applies if one of the intervals does not contain any distance
d(pi(1), pi(2)).

(2) Suppose that t1 ≤ Cdn
1/d for an arbitrarily large constant Cd. By our

assumptions, the open balls of radius 1/2 centred at the points pi are disjoint.
Thus, by volume considerations, for any fixed pi(1), the number of pi(2)’s with

d(pi(1), pi(2)) ∈ [t1, t1+cdn
1/d] is at most constd ·

[

(t1+cdn
1/d+1/2)d−(t1−1/2)d

]

.
Hence, the number of all pairs {pi(1), pi(2)}, where d(pi(1), pi(2)) belongs to the first
interval, is at most

constd ·
[

n
(

(t1 + cdn
1/d + 1/2)d − (t1 − 1/2)d

)

]

≤ n·constd ·(t1+cdn
1/d)d−1 ·cdn

1/d
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≤ n · constd · (Cdn
1/d + cdn

1/d)d−1 · cdn
1/d = n2 · constd · (Cd + cd)

d−1cd ≤ δn2,

provided that we choose cd > 0 so small compared to constd and Cd that constd ·
(Cd + cd)

d−1cd ≤ δ holds.
By Theorem A, the number of pairs {pi(1), pi(2)} with d(pi(1), pi(2)) ∈ [t2, t2 +

cdn
1/d] is at most T (d + 1, n) = (n2/2) (1− 1/d) + Od(1). Hence, the number of

pairs for which d(pi(1), pi(2)) belongs to the union of the two intervals in question

is at most (n2/2)(1 − 1/d + 2δ) + Od(1). In view of (1.3), the last expression is
bounded from above by

T (m(d− 1) + 1, n) =
n2

2

(

1−
1

m(d− 1)

)

+Od(1),

provided that 2δ < 1/d− 1/(d+ 1) ≤ 1/d− 1/m(d− 1) and n is sufficiently large.
Thus, in the case t1 ≤ Cdn

1/d, Theorem 1 is true.
(3) It follows from part (2) that

t2 + cdn
1/d

t2
≤

t1 + cdn
1/d

t1
≤

Cdn
1/d + cdn

1/d

Cdn1/d
= 1 +

cd
Cd

≤ 1 + cd,

which proves (3). �

Proof of Theorem 1, continuation. Step 2. In the rest of the proof, we assume
that conditions (1), (2), and (3) of Lemma 1 are satisfied. Consider the graph G
with vertex set {p1, . . . , pn}, where pi(1) and pi(2) are connected by an edge if and
only if d(pi(1), pi(2)) belongs to one of the two intervals in question.

Suppose, in order to obtain a contradiction, that the number of edges of G
is greater than T (m(d− 1) + 1, n). By [1], Ch. 6, G contains a subgraph G1 =
K(1, 1, . . . , 1, ⌊constd · n⌋), that is, a complete (m(d− 1) + 1)-partite graph with
1, 1, . . . , 1, ⌊constd ·n⌋ points in its parts called primary colour classes. (So here we
consider the vertices coloured.) Obviously, it makes sense to speak about the j-th
primary colour class of any (spanned) subgraph of G1, for 1 ≤ j ≤ m(d − 1) + 1.
This is the intersection of the j-th primary colour class of G1 with the vertex set
of the subgraph. For the subgraphs considered later in this proof, these primary
colour classes are always non-empty.

Define the secondary colouring of the edges of G1, as follows. Assign to each edge
the symbol L and R, according to whether the length of the corresponding segment
lies in the first or in the second interval. Since the two intervals are disjoint (cf.
Lemma 1 (1)), the secondary colouring is uniquely determined.

At least half of the points of the (m(d− 1) + 1)-st primary colour class of G1 =
K(1, 1, . . . , 1, ⌊constd · n⌋) are joined by edges of the same secondary colour L or
R to the unique point in the first primary colour class. By induction, the unique
points in the 1st, 2nd, . . . , m(d − 1)-st primary colour classes of G1 and some
⌊constd · n⌋ points in the (m(d− 1) + 1)-st primary colour class of G1 satisfy the
following. The secondary colour of an edge between any two of these points only
depends on the primary colour classes the endpoints of the edge belong to. We
denote the subgraph induced by all these points by G∗

1.
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From now on, we will consider G∗
1 rather than G1. We will show that such a

graph G∗
1 cannot exist, for cd > 0 a sufficiently small constant. This contradiction

will prove that the number of pairs {pi(1), pi(2)}, whose distances lie in the union
of our two intervals, is at most as large as is stated in Theorem 1.

Step 3. Let Dd > 2 be a sufficiently large constant. We distinguish two cases:

Case I: t2/(t1 + cdn
1/d) ≤ Dd,

Case II: t2/(t1 + cdn
1/d) > Dd > 2 .

In Case I, we use two-distance sets in R
d−1. The proof will be presented in Step

4, and will be completed using Lemma 2.
In Case II, the two types of distances, i.e., those belonging to the first interval

and to the second one, can be treated separately. The segments corresponding
to different types of distances will turn out to be “almost orthogonal”. We will
describe the structure of our edge coloured graph. The proof in this case will be
carried out in Step 5 and completed by Lemma 9.

Step 4. First, we analyze Case I. The proof of the following lemma consists of
six easy parts (enumerated as A, B, . . . , F).

Lemma 2. The upper estimate of Theorem 1 holds in Case I.

Proof. A. In Case I, we have by Lemma 1 (3), for cd > 0 sufficiently small

t2 + cdn
1/d

t1
=

t2 + cdn
1/d

t2
·

t2
t1 + cdn1/d

·
t1 + cdn

1/d

t1
≤ (1 + cd)

2Dd ≤ constd ·Dd .

Thus, in Case I, the quotient of any two distances lying in the union of our two
intervals is at most constd ·Dd. Therefore, these quotients lie between two positive
bounds, namely (constd · Dd)

−1 and constd · Dd. In particular, this holds for the
distances between the endpoints of the edges of the graph G∗

1.

B. Definition 3. Let m > d be any integer, and let x1, . . . , xm, xm+1 ∈ R
d

be any distinct points in R
d. Let ∆(x1, . . . , xm, xm+1) be the maximum absolute

value of all determinants whose columns are any d vectors from the set

{(x1 − xm+1)/d(x1, xm+1), . . . , (xm − xm+1)/d(xm, xm+1)} ⊂ Sd−1.

Clearly, ∆(x1, . . . , xm+1) is invariant under simultaneous similarity transforma-
tions of x1, . . . , xm+1. Furthermore, it is nonnegative, and equals 0 if and only if
x1, . . . , xm+1 lie in an (affine) hyperplane. Thus, it can be considered as a measure
of “non-hyperplanarity of x1, . . . , xm+1”. We will apply the above definition for
the case m := m(d− 1) (recall (1.3)).

C. Claim 1. Let q1, . . . , qm(d−1)+1 be vertices of G∗
1, one from each respective

primary colour class. (Thus, q1, . . . , qm(d−1) are fixed, but qm(d−1)+1 can assume
⌊constd ·n⌋ values, i.e., points.) Then ∆(q1, . . . , qm(d−1)+1) is at least some positive
constant, provided that cd > 0 is sufficiently small.

Proof. Suppose, for contradiction, that cd > 0 is very small, i.e., we have cNd <
1/N , say, for a large integer N , but ∆(q1, . . . , qm(d−1)+1) can get arbitrarily close to

0. That is, ∆(q1, . . . , qm(d−1)+1) < 1/N , say, for some choice qN1 , . . . , qNm(d−1)+1 of
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the points q1, . . . , qm(d−1)+1. (Actually, only the last point can vary.) We apply to

each of qN1 , . . . , qNm(d−1)+1, simultaneously, a similarity transformation Φλ with ratio

λ > 0 such that the following holds. We have diam {Φλq
N
1 , . . . ,Φλq

N
m(d−1)+1} = 1

and {Φλq
N
1 , . . . ,Φλq

N
m(d−1)+1} lies in the unit ball of Rd. Then, by A, the minimal

distance in {Φλq
N
1 , . . . ,Φλq

N
m(d−1)+1} is at least 1/(constd ·Dd) > 0.

Now let N → ∞. Then, for a certain subsequence N(ν) of the N ’s, the following
four statements are true:
(i) for each 1 ≤ j ≤ m(d− 1) + 1, we have that limν→∞ Φλ(q

N(ν)
j ) exists;

(ii) these limit points have pairwise distances at least 1/(constd ·Dd);

(iii) for any j(1) 6= j(2), the distance d(Φλ(q
N(ν)
j(1) ),Φλ(q

N(ν)
j(2) )) lies in [λtκ, λ(tκ +

cdn
1/d)] for some κ ∈ {1, 2}.

(iv) limν→∞ ∆
(

q
N(ν)
1 , . . . , q

N(ν)
m(d−1)+1

)

= 0.

By (ii),
(

limν→∞ Φλ(q
N(ν)
1 ), . . . , limν→∞ Φλ(q

N(ν)
m(d−1)+1)

)

belongs to the domain

of definition of the function ∆(x1, . . . , xm(d−1)+1).

By (iii), Lemma 1 (3) and c
N(ν)
d < 1/N(ν), we have that any two numbers that

belong to the same new interval [λtκ, λ(tκ + cdn
1/d)], for κ ∈ {1, 2}, have a ratio in

[(1 + c
N(ν)
d )−1, 1 + c

N(ν)
d ] ⊂ [(1 + (1/N(ν)))

−1
, 1 + (1/N(ν))]. Thus, this ratio lies

in an as small neighbourhood of 1, as we want. Therefore, for ν → ∞, both our
new κ-th intervals converge to degenerate intervals, i.e., to points. In particular,
the second new interval converges to {1}.

By the similarity invariance of ∆(·) and (iv), we have

∆
(

lim
ν→∞

Φλq
N(ν)
1 , . . . , lim

ν→∞
Φλq

N(ν)
m(d−1)+1

)

= lim
ν→∞

∆
(

Φλq
N(ν)
1 , . . . ,Φλq

N(ν)
m(d−1)+1

)

= 0.

That is, the points limν→∞ Φλq
N(ν)
1 , . . . , limν→∞ Φλq

N(ν)
m(d−1)+1 lie in some hyper-

plane of Rd, their number is m(d − 1) + 1, and they determine only two distinct
distances. This contradiction ends the proof of Claim 1. �

D. Let us fix some qm(d−1)+1 in the (m(d− 1) + 1)-st primary colour class of
G∗

1. By Claim 1, among the m(d− 1) > d unit vectors

u1(qm(d−1)+1) := (q1 − qm(d−1)+1)/d(q1, qm(d−1)+1), . . . ,

um(d−1)(qm(d−1)+1) := (qm(d−1) − qm(d−1)+1)/d(q1, qm(d−1)+1),

there are uj(1)(qm(d−1)+1), . . . , uj(d)(qm(d−1)+1) such that

|det
(

uj(1)(qm(d−1)+1), . . . , uj(d)(qm(d−1)+1)
)

| ≥ constd > 0.

Since there are only constd choices for these d-tuples, still for ⌊constd · n⌋ many
choices of qm(d−1)+1 this d-tuple is the same, {uj(1), . . . , uj(d)}, say. We will write
Cm(d−1)+1 for the set of these ⌊constd ·n⌋ points qm(d−1)+1 in the (m(d− 1) + 1)-st
primary colour class of G∗

1. Thus,

|det
(

uj(1), . . . , uj(d)

)

| ≥ constd > 0 .
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Hence, we have a d-dimensional simplex S(qj(1), . . . , qj(d), qm(d−1)+1), and a (d−1)-
dimensional simplex S(qj(1), . . . , qj(d)).

From the set of unit vectors u1, . . . , um(d−1), we will consider only uj(1), . . . ,
uj(d). Further, from among all constd · n points qm(d−1)+1 in the (m(d− 1) + 1)-st
primary colour class of G∗

1, we will restrict our attention to the subset Cm(d−1)+1.
We write G∗

1
′ for the induced subgraph of G∗

1, containing all (single) vertices of G∗
1

in its first m(d − 1) primary colour classes, and Cm(d−1)+1 from its last primary
colour class.

E. Recall from Step 2 of the proof of Theorem 1 the following. For any
h = 1, . . . , d, either
(1) for any choice of the vertex qm(d−1)+1,i of the (m(d− 1) + 1)-st primary colour
class of G∗

1, the distance d(qj(h), qm(d−1)+1,i) lies in the first interval, or
(2) for any choice of the vertex qm(d−1)+1,i of the (m(d− 1) + 1)-st primary colour
class of G∗

1, the distance d(qj(h), qm(d−1)+1,i) lies in the second interval. In partic-
ular, this holds for the subgraph G∗

1
′ of G∗

1. This means that

Cm(d−1)+1 ⊂ ∩d
h=1Sj(h), (3.1)

where Sj(1), . . . , Sj(d) are spherical shells with centres qj(1), . . . , qj(d), inner radii

either t1 or t2, and outer radii either t1 + cdn
1/d or t2 + cdn

1/d, resp. For each
of these spherical shells, the quotient of the difference of the outer and inner radii
and of the inner radius is cdn

1/d/tκ ≤ cdn
1/d/(Cdn

1/d) = cd/Cd ≤ cd, by Lemma 1
(2). Hence, this quotient is in an arbitrarily small neighbourhood of 0, if cd > 0 is
chosen sufficiently small.

We are going to show that, for cd > 0 sufficiently small, the inclusion (3.1) is
impossible, yielding the desired contradiction.

Before this, we have to introduce some notations. Observe that aff {qj(1), . . . ,

qj(d)} is a hyperplane of symmetry of ∩d
h=1Sj(h), which will be identified with the

hyperplane xd = 0. (As S(qj(1), . . . , qj(d)) is (d − 1)-dimensional, so is its affine

hull.) Let H+ and H− denote the closed half-spaces xd ≥ 0 and xd ≤ 0, resp. One
of them contains at least half of the points of Cm(d−1)+1. We may suppose this is

H+. Thus
H+ contains ⌊constd · n⌋ points of Cm(d−1)+1.

Let us fix a point qm(d−1)+1,1 ∈ Cm(d−1)+1 ∩H+.
For any h ∈ {1, . . . , d}, define the slab S′

j(h), as follows. Let S′
j(h) be bounded

by two hyperplanes, both orthogonal to qj(h) − qm(d−1)+1,1. Further, they inter-
sect the half-line from qj(h), passing through qm(d−1)+1,1, at points with distances

d(qj(h), qm(d−1)+1,1) + cdn
1/d and d(qj(h), qm(d−1)+1,1) − 2cdn

1/d from qj(h). (By
Lemma 1 (2), this difference is positive, for cd > 0 sufficiently small.) We need the
following

Claim 2. If cd > 0 is sufficiently small, then

(∩d
h=1Sj(h)) ∩H+ ⊂ Π := ∩d

h=1S
′
j(h).

This holds both in Case I and in Case II.

This statement appears to be intuitively clear, but we have been unable to show
it by a simple geometric argument. We provide a proof in the original version of
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our paper [10], on arXiv; see parts 8-10 of the proof of Theorem 1, pp. 9-13. It
uses elements of the algebraic topology of Euclidean spaces [17].

F. Again, we handle both Cases I and II. The set Π in Claim 2 is a parallelepiped,
and is circumscribed about a ball of diameter 3cdn

1/d. Its volume is (3cd/2)
dn times

the volume of its homothetic copy Π1 circumscribed about the unit ball. Moreover,

V (Π1) = 2d/|det (uj(1),1, . . . , uj(d),1)|,

with the denominator at least constd > 0, by D. (The easiest way to see this
volume formula is as follows. The polar body (Π1)∗ of Π1 is a cross-polytope,
with V

(

(Π1)∗
)

= (2d/d!)|det (uj(1),1, . . . , uj(d),1)|. Simultaneously, the product

V (Π1)V
(

(Π1)∗
)

of the two volumes is invariant under linear maps. Hence, it equals

4d/d!, as can be calculated from the case when Π1 is the unit cube. Cf. [20], pp.
165, 169.) All these imply that

V (Π) ≤ (3cd/2)
dn2d/constd .

Now a standard volume consideration finishes the proof of Lemma 2. Consider
the open balls of unit diameter, with centres at all ⌊constd ·n⌋ points qm(d−1)+1,i ∈
Cm(d−1)+1 ∩ H+ ⊂ Π. These are pairwise disjoint open balls contained in a con-

centric homothetic copy Π′ of Π, with inradius 3cdn
1/d/2 + 1/2. However,

V (Π′) ≤ constd · c
d
dn.

So, if cd > 0 is sufficiently small, then the volume of Π′ is not large enough to contain
⌊constd · n⌋ disjoint open balls of unit diameter. This contradiction completes the
proof of Lemma 2 and, hence, Theorem 1 in Case I (see Step 3). �

Next, we turn to the proof of Theorem 1 in Case II.

Proof of Theorem 1, continuation. Step 5. Now we assume that t2/(t1 +
cdn

1/d) > Dd > 2, where Dd is a sufficiently large constant (Case II).
We investigate the secondary (edge) colourings of the graph G∗

1
′ from Step 2

of the proof of Lemma 2. Each edge is coloured either by L or by R. Each edge
coloured by R has length at least t2, and each edge coloured by L has length at
most t1 + cdn

1/d. By t2/(t1 + cdn
1/d) > 2, any edge coloured by R is more than

twice as long as any edge coloured by L.
This implies that one can define an equivalence relation ∼ on the vertices of G∗

1
′

as follows.

Definition 4. For any two vertices qj(1), qj(2) of G∗
1
′, we write qj(1) ∼ qj(2) if

either qj(1) = qj(2), or the edge qj(1)qj(2) is coloured by L.

Recall from Step 2 and the proof of Lemma 2, D, that the colour of an edge of
G∗

1
′ between vertices of two primary colour classes does not depend on the vertices

chosen from the primary colour classes. (This is equivalent to its special case when
one of the primary colour classes is the (m(d− 1) + 1)-st primary colour class.)

Therefore, we may consider the relation ∼ as defined

alternatively on the set of primary colour classes of G∗
1
′.
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Whether we consider it on the set of vertices, or on the primary colour classes, will
be clear from the context. Let ℓ denote the number of ∼-equivalence classes.

Let us choose for each of the ℓ ∼-equivalence classes of primary colour classes
of G∗

1
′ one vertex qj from their union; let these be r1, r2, . . . , rℓ. By Lemma 1 (3),

edges coloured the same way have a ratio in an as small neighbourhood of 1 as we
want, provided cd > 0 is sufficiently small. Note that any edge among r1, . . . , rℓ is
coloured by R. Therefore the quotients of the lengths of these edges are in an as
small neighbourhood of 1 as we want, for cd > 0 sufficiently small. Hence, for cd > 0
sufficiently small, we have ℓ ≤ d+1. Namely, for d+2 points in R

d the quotient of
the maximum and the minimum distances is at least some constant strictly greater
than 1. (Cf. Schütte [24], Satz 3, which gives the sharp lower bound, which is
(1 + 2/d)1/2, for d even and [1 + 2(d+ 2)/ (d(d+ 2)− 1)]1/2, for d odd.) The same
argument shows that r1, . . . , rℓ cannot lie in an affine (ℓ−2)-plane, thus determine
an (ℓ− 1)-simplex, namely S(r1, . . . , rℓ).

Our goal is to show that the simplex S(r1, . . . , rℓ) is “close” to a regular (ℓ−1)-
simplex of edge length t2. Similarly, the vertices of G∗

1
′ in single ∼-equivalence

classes are “close” to the vertices of regular simplices of edge length t1, of dimensions
at most d − ℓ + 1, with affine hulls nearly orthogonal to aff {r1, . . . , rℓ}. The
number of primary colour classes of G∗

1
′ is maximum if all of the last simplices have

dimension d− ℓ+ 1.

Lemma 3. In Case II, the number ℓ of the ∼-equivalence classes is at least 2,
provided cd > 0 is sufficiently small.

Proof. If ℓ = 1, then all distances between the vertices ofG∗
1
′ lie in [t1, t1+cdn

1/d],
contradicting Lemma 1 (1). This proves Lemma 3. �

Lemma 4. In Case II, let qj ∈ V (G∗
1
′) be in the ∼-equivalence class of r1 ∈

V (G∗
1
′) such that qj 6= r1. Further, let r2 ∈ V (G∗

1
′) be in another ∼-equivalence

class, as r1. Then |∢qjr1r2 − π/2| is as small as we want, for Dd sufficiently large
and cd > 0 sufficiently small. (Here r2 exists by Lemma 3.)

Proof. We are going to estimate from above

| cos(∢qjr1r2)| =
∣

∣d(r1, r2)
2 + d(r1, qj)

2 − d(qj , r2)
2
∣

∣ / (2d(r1, r2)d(r1, qj))

=
∣

∣(d(r1, r2) + d(qj , r2)) (d(r1, r2)− d(qj , r2)) + d(r1, qj)
2
∣

∣

/ (2d(r1, r2)d(r1, qj)) ≤ [2(t2 + cdn
1/d)cdn

1/d + (t1 + cdn
1/d)2]/(2t1t2) .

By Lemma 1 (3), any two numbers from the same interval [tκ, tκ + cdn
1/d] have

quotients as close to 1 as we want, for cd > 0 sufficiently small. Thus, we suppose
t1 + cdn

1/d ≤ 2t1 and t2 + cdn
1/d ≤ 2t2, for cd > 0 sufficiently small. Then

| cos(∢qjr1r2)| ≤ [2 · 2t2 · cdn
1/d + 4t21]/(2t1t2) =

2cdn
1/d/t1 + 2t1/t2 ≤ 2cd/Cd + 2/Dd < 2cd + 2/Dd,

by Lemma 1 (2), and by t2/t1 ≥ t2/(t1+cdn
1/d) > Dd (Case II). If Dd is sufficiently

large and cd > 0 is sufficiently small, then this last expression, and hence also
| cos(∢qjr1r2)| is as small as we want. This proves Lemma 4. �
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Lemma 5. In Case II, the number ℓ of the ∼-equivalence classes is at most d,
for Dd sufficiently large and cd > 0 sufficiently small.

Proof. We already know that ℓ ≤ d + 1 (cf. Step 5), so we have to exclude
ℓ = d+ 1 only.

Suppose ℓ = d+ 1. At the beginning of Step 5, we selected points r1, . . . , rℓ =
rd+1, one from the union of each ∼-equivalence class of the primary colour classes of
V (G∗

1
′). By Lemma 1 (3), for cd > 0 sufficiently small, we have that the quotients

of any two distances among these points are in an as small neighbourhood of 1 as
we want. This also implies that any three of these points determine a triangle with
angles as close to π/3 as we want.

Let vµ := (rµ − rd+1)/d(rµ, rd+1) ∈ Sd−1, for µ = 1, . . . , d. Let V denote the
d× d matrix with columns v1, . . . , vd. We have

|det (v1, . . . , vd)| = |detV | = [det (V ′V )]1/2 = [det (〈vµ(1), vµ(2)〉)]
1/2,

where V ′ is the transposed matrix of V . Moreover, (〈vµ(1), vµ(2)〉) is a d× d matrix
for which 〈vµ(1), vµ(1)〉 = 1, and µ(1) 6= µ(2) implies that 〈vµ(1), vµ(2)〉 is as close to
cos(π/3) = 1/2 as we want. Hence, |det (v1, . . . , vd)| is as close to [det ((1+
δµ(1)µ(2))/2

)

]1/2 as we want, for Dd sufficiently large and cd > 0 sufficiently small.

Here [det
(

(1 + δµ(1)µ(2))/2
)

]1/2 equals the absolute value of the determinant whose
columns are the unit vectors pointing from a vertex of a regular d-simplex to all
other vertices. Thus it is a non-zero constant. All this implies that |det (v1, . . . , vd)|
is greater than a non-zero constant. In particular, v1, . . . , vd are linearly indepen-
dent.

By (1.3), m(d − 1) + 1 > d + 1 for d ≥ 2, hence some of the ℓ = d + 1 ∼-
equivalence classes must contain at least two vertices qj of G∗

1
′. Assume without

loss of generality that rd+1 belongs to such a class and qj is one of its elements
different from rd+1. In view of Lemma 4, the scalar product of the vector v :=
(qj − rd+1)/d(qj , rd+1) ∈ Sd−1 with any vµ, 1 ≤ µ ≤ d, is as close to 0 as we
want, provided that Dd is sufficiently large and cd > 0 is sufficiently small. In
other words, max1≤µ≤d |〈v, vµ〉| is as small as we want, for Dd sufficiently large
and cd > 0 sufficiently small.

By the linear independence of v1, . . . , vd, we have v =
∑d

µ=1 λµvµ for some
λµ ∈ R. Consider this as a system of equations for λµ, and note that the absolute
value of any coordinate of v and any vµ is at most 1. Then we have by Cramer’s rule
for λµ, and by |det (v1, . . . , vd)| ≥ constd, that |λµ| ≤ constd/|det (vµ)| ≤ constd.

Hence

1 = 〈v, v〉 = 〈v,
d

∑

µ=1

λµvµ〉 =
d

∑

µ=1

λµ〈v, vµ〉 ≤

d · max
1≤µ≤d

|λµ| · max
1≤µ≤d

|〈v, vµ〉| ≤ constd · max
1≤µ≤d

|〈v, vµ〉|.

This contradicts the fact that max1≤µ≤d |〈v, vµ〉| is as small as we want, for Dd

sufficiently large and cd > 0 sufficiently small. This completes the proof of Lemma
5. �

Lemma 6. In Case II, for Dd sufficiently large and cd > 0 sufficiently small,
any ∼-equivalence class contains at most d− ℓ+ 2 points qj.
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Proof. Let qj be any vertex in the ∼-equivalence class of rℓ, say, and let qj 6= rℓ.
(If such a vertex did not exist, then this ∼-equivalence class would have 1 < d−ℓ+2
points, by Lemma 5.) Then, by Lemma 4, | cos(∢qjrℓr1)|, . . . , | cos(∢qjrℓrℓ−1)| are
as small as we want, forDd sufficiently large and cd > 0 sufficiently small. Let wj :=
(qj − rℓ)/d(qj , rℓ) ∈ Sd−1, and, for µ = 1, . . . , ℓ− 1, let wµ := (rµ − rℓ)/d(rµ, rℓ) ∈
Sd−1. Then we have that |〈wj, wµ〉| is as small as we want, for Dd sufficiently
large and cd > 0 sufficiently small. Suppose rℓ = 0, and let (wj)′ be the orthogonal
projection of wj to the linear (ℓ− 1)-subspace aff {r1, . . . , rℓ} = lin {r1, . . . , rℓ−1}.
Then w1, . . . , wℓ−1, (w

j)′ ∈ lin {r1, . . . , rℓ−1}. Moreover, |〈(wj)′, wµ〉| = |〈wj, wµ〉|
is as small as we want, for Dd sufficiently large and cd > 0 sufficiently small.

Now we proceed in the linear subspace lin {r1, . . . , rℓ−1}, as we proceeded in R
d

in the proof of Lemma 5. We have |det (w1, . . . , wℓ−1)| ≥ constd > 0. (Observe that
ℓ can assume only finitely many values. This is why we could write here constd > 0.)

Moreover, (wj)′ =
∑ℓ−1

µ=1 λµwµ, where now by Cramer’s rule |λµ| ≤ constd ·‖(w
j)′‖.

Then

‖(wj)′‖2 = 〈(wj)′, (wj)′〉 = 〈(wj)′,

ℓ−1
∑

µ=1

λµwµ〉 =
ℓ−1
∑

µ=1

λµ〈(w
j)′, wµ〉

≤ d · max
1≤µ≤ℓ−1

|λµ| · max
1≤µ≤ℓ−1

|〈(wj)′, wµ〉|

≤ constd · ‖(w
j)′‖ · max

1≤µ≤ℓ−1
|〈(wj)′, wµ〉|.

Hence,
‖(wj)′‖ ≤ η := constd · max

1≤µ≤ℓ−1
|〈(wj)′, wµ〉|,

and here η is as small as we want, for Dd sufficiently large and cd > 0 sufficiently
small.

Suppose that the equivalence class of rℓ contains d−ℓ+2 other points, qℓ+1, . . . ,
qd+2, besides rℓ (any of which could be identical with the point denoted by qj
at the beginning of the proof of the lemma). Let qℓ = q∗ℓ := rℓ = 0. Further,
let q∗ℓ+1, . . . , q

∗
d+2 denote the orthogonal projections of qℓ+1, . . . , qd+2 to the linear

(d− ℓ+ 1)-subspace which is the orthocomplement of lin {r1, . . . , rℓ−1}. Then we
have for distinct j(1), j(2) ∈ {ℓ, ℓ+ 1, . . . , d+ 2} that

d(q∗j(1), q
∗
j(2)) ≤ d(qj(1), qj(2)) ≤ t1 + cdn

1/d.

On the other hand, for j(1) ∈ {ℓ, ℓ+1, . . . , d+2}, the orthogonal projection of qj(1)
to lin {r1, . . . , rℓ−1} is qj(1)−q∗j(1). Here for j(1) ≥ ℓ+1 we have qj(1) = qj(1)−rℓ =

d(qj(1), rℓ)w
j(1), hence its orthogonal projection to lin {r1, . . . , rℓ−1} is qj(1)−q∗j(1) =

d(qj(1), rℓ)(w
j(1))′. Therefore, we have d(qj(1), q

∗
j(1)) = d(qj(1), rℓ) · ‖(w

j(1))′‖ ≤

d(qj(1), rℓ)η and, analogously, d(qj(2), q
∗
j(2)) ≤ d(qj(2), rℓ)η. For j(1) = ℓ, we have

d(qj(1), q
∗
j(1)) = 0 ≤ d(qj(1), rℓ)η = 0 and, analogously for j(2) = ℓ.

These imply by Lemma 1 (2), for Dd sufficiently large and cd > 0 sufficiently
small, that for j(1), j(2) ∈ {ℓ, ℓ+ 1, . . . , d+ 2} we have (both for j(κ) = ℓ, and for
j(κ) > ℓ) that

d(q∗j(1), q
∗
j(2)) ≥ d(qj(1), qj(2))− d(q∗j(1), qj(1))− d(q∗j(2), qj(2)) ≥
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t1 − η · d(qj(1), rℓ)− η · d(qj(2), rℓ) ≥ t1 − 2η(t1 + cdn
1/d) ≥ t1 − 4ηt1.

Let Dd be sufficiently large and cd > 0 be sufficiently small. Then cdn
1/d/t1 is

sufficiently small (Lemma 1 (2)), and also η is sufficiently small. Therefore, each
d(q∗j(1), q

∗
j(2)) lies in an interval, whose maximum and minimum have a quotient

that is as close to 1 as we want. Thus, there are d− ℓ+3 points, q∗ℓ , q
∗
ℓ+1, . . . , q

∗
d+2,

with this property in a (d − ℓ + 1)-dimensional linear subspace of Rd; namely in
the orthocomplement of lin {r1, . . . , rℓ−1}. This is impossible by the theorem of
Schütte [24], cited at the beginning of Step 5, for Dd sufficiently large and cd > 0
sufficiently small. �

Lemma 7. In Case II, for d ≥ 6, the upper estimate of Theorem 1 holds.

Proof. By Lemma 6, the number of all primary colour classes of G∗
1
′, i.e. m(d−

1) + 1, is at most ℓ · (d − ℓ + 2) ≤ ⌊((d+ 2)/2)
2⌋. Hence, by (1.1), we have

d(d−1)/2+1 ≤ m(d−1)+1 ≤ ⌊((d+ 2)/2)
2
⌋. Thus, d(d−1)/2+1 ≤ ((d+ 2)/2)

2
,

implying d ≤ 6. That is, for d ≥ 7 we have a contradiction.
For d = 6, by (1.2) we have 17 = m(d−1)+1 ≤ ℓ(d−ℓ+2) ≤ ⌊((6 + 2)/2)

2⌋ = 16,
a contradiction.

At the beginning of Step 2, we assumed, in order to obtain a contradiction, that
Theorem 1 was false. This led to a contradiction for every d ≥ 6. �

Lemma 8. In Case II, for d = 2, 3, the upper estimate of Theorem 1 holds.

Proof. By (1.2), for d = 2 we have

4 = m(d− 1) + 1 ≤ ℓ(d− ℓ+ 2) ≤ ⌊((d+ 2)/2)
2⌋ = 4,

implying ℓ = 2, while for d = 3 we have

6 = m(d− 1) + 1 ≤ ℓ(d− ℓ+ 2) ≤ ⌊((d+ 2)/2)
2⌋ = 6,

implying ℓ ∈ {2, 3}. For both d = 2 and 3, equality in the first inequality implies
that each of the ℓ ∼-equivalence classes contains maximally many, i.e., d − ℓ + 2
primary colour classes of G∗

1
′.

First, let d = 2. Then ℓ = d − ℓ + 2 = 2. Let the ∼-equivalence classes on the
primary colour classes of G∗

1
′ be represented by the vertices {q1, q3} and {q2, q4}.

Here all qj ’s belong to distinct ones among the four primary colour classes of G∗
1
′,

which have 1, 1, 1, ⌊const · n⌋ vertices, resp. (Thus, these vertices form a subgraph
of G∗

1
′ which is a four-clique – in particular, each distance determined by them

lies in [t1, t1 + cdn
1/d] ∪ [t2, t2 + cdn

1/d].) Further, the secondary colour of an edge
only depends on the primary colour classes the edge endpoints belong to. Up to
notation, we may assume that q4 belongs to the last one of these primary colour
classes (it plays the role of qm(d−1)+1 from part E of the proof of Lemma 2). By
Lemma 4, ∢q2q4q3 is close to π/2. Fix q1, q2, q3, and vary q4 in its own primary
colour class in G∗

1
′, so that it assumes ⌊const · n⌋ values (points). Then all these

points lie in the intersection of two circular shells (defined analogously as in part E
of the proof of Lemma 2). These have centres q2 and q3, inner radii some tκ’s, and
outer radii the respective (tκ + cdn

1/d)’s. Moreover, the unit vectors pointing from
q4 to q2 and to q3 enclose an angle close to π/2. Then Claim 2 and the arguments
in part F of the proof of Lemma 2 yield a contradiction, for Dd sufficiently large
and cd > 0 sufficiently small.
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Second, let d = 3. We copy the proof of the case d = 2. Then either ℓ = 2 and
d−ℓ+2 = 3, or ℓ = 3 and d−ℓ+2 = 2. Let the ∼-equivalence classes on the primary
colour classes of G∗

1
′ be represented either by the vertices {q1, q3, q5}, {q2, q4, q6},

or by the vertices {q1, q4}, {q2, q5}, {q3, q6}, resp. Here, all qj -s belong to distinct
primary colour classes of G∗

1
′, which have 1, 1, 1, 1, 1, ⌊const · n⌋ vertices, resp. Up

to notation, in both cases we may assume that q6 belongs to the last one of these
primary colour classes. By Lemma 4, for ℓ = 2, both ∢q2q6q3 and ∢q4q6q3 are close
to π/2, while for ℓ = 3, both ∢q3q6q4 and ∢q3q6q5 are close to π/2. Moreover, by
Lemma 1 (3), ℓ = 2 implies that ∢q2q6q4 is close to π/3, while ℓ = 3 implies that
∢q4q6q5 is close to π/3. Fix q1, . . . , q5, and vary q6 in its own primary colour class
in G∗

1
′, so that it assumes ⌊const · n⌋ values (points). Then all these points lie in

the intersection of three spherical shells. These have centres q2, q4, q3 for ℓ = 2,
and centres q3, q4, q5 for ℓ = 3. Moreover, their inner radii are some tκ’s, and the
outer radii are the respective (tκ + cdn

1/d)’s. Further, for ℓ = 2 (and 3), the angles
enclosed by the unit vectors pointing from q6 to q2, q3, q4 (and to q3, q4, q5, resp.,)
are close to π/3, π/2, π/2. Then Claim 2 and the arguments in part F of the proof
of Lemma 2 yield a contradiction, for Dd sufficiently large and cd > 0 sufficiently
small. �

Proof of Theorem 1, continuation. Step 6. By Step 1 (about tightness) and
Lemmas 2, 7 and 8, the proof of Theorem 1 for d 6= 4, 5 follows.

Step 7. Now we give the differences in the proof of Theorem 1 for the cases
d = 4, 5. Recall that the proof for Case I already has been given in Lemma 2, so
we need to investigate Case II only (cf. Step 3).

Analogously, as at the beginning of §3, we will have several positive constants,
now depending on d and ε, like constd,ε, etc. Of these, Cd,ε, Dd,ε will be fixed large
constants, and cd,ε will be a sufficiently small positive constant, in terms of the
already fixed values of all the other constants.

As in Step 2 of the proof of Theorem 1, suppose, in order to obtain a contradic-
tion, that the number of edges of G is greater than (n2/2)(1−1/m(d−1)+ε). Then
by [1], Ch. 6, now G contains a subgraph G2 = K(⌊constd,ε · logn⌋, . . . , ⌊constd,ε ·
logn⌋), which is a complete (m(d− 1) + 1)-partite graph, with ⌊constd,ε · logn⌋
points in each colour class. (For the dependence of constd,ε on d and ε in this
statement, the best known bound is given in [4].)

The primary (vertex) colouring and the secondary (edge) colouring of G2 are
defined as for G1 in Step 2. (Each edge of G2 is coloured by L or R.) Analogously
to the definition of the subgraph G∗

1 of G1 in Step 2, for any j, where 1 ≤ j ≤
m(d−1)+1, we define an induced subgraph G∗

2,j of G2 with the following properties.
Each primary colour class of G2, except the j-th one, has exactly one point in G∗

2,j .
Further, still ⌊constd,ε · logn⌋ points of the j-th primary colour class of G2 belong
to G∗

2,j . Moreover, the secondary colour L or R of an edge in G∗
2,j depends only on

the primary colour classes the edge endpoints belong to.
Analogously to how we have defined the subgraph G∗

1
′ of G∗

1 in part D of the
proof of Lemma 2, now we define the subgraph (G∗

2,j)
′ of G∗

2,j. In what follows, we
will deal with the graphs (G∗

2,j)
′, for 1 ≤ j ≤ m(d− 1) + 1.

We want to show that for some 1 ≤ j ≤ m(d − 1) + 1 such a graph (G∗
2,j)

′

cannot exist, for cd,ε > 0 a sufficiently small constant. This contradiction will show
that the number of pairs {pi(1), pi(2)}, whose distances lie in the union of our two
intervals, is at most as large as stated in Theorem 1.
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Lemma 9. In Case II, for d = 4, 5, the upper estimate of Theorem 1 holds.

Proof. Suppose that none of the ℓ ∼-equivalence classes of the primary colour
classes of (G∗

2,j)
′ contains d− ℓ+2 primary colour classes (cf. Lemma 6). Then we

have m(d−1)+1 ≤ ℓ(d− ℓ+1) ≤ ⌊((d+ 1)/2)
2⌋. Thus, by (1.2), for d = 4 we have

7 = m(3) + 1 ≤ 6, and for d = 5 we have 11 = m(4) + 1 ≤ 9, i.e., in both cases we
get a contradiction. Therefore, one of the ∼-equivalence classes of primary colour
classes, C, say, contains maximally many, i.e., d− ℓ+ 2 primary colour classes of
(G∗

2,j)
′.

Let us choose from C one primary colour class, the j(0)-th one, say, where
1 ≤ j(0) ≤ m(d − 1) + 1, and consider (G∗

2,j(0))
′. We use the notation r1, . . . , rℓ

introduced in Step 5.
Let the d− ℓ+ 2 primary colour classes in C contain d− ℓ+ 2 points as follows.

One of them is rj(0), and the others are qℓ+1, . . . , qd+1. Now consider the d− ℓ+ 1

vectors (qj − rj(0))/d(qj , rj(0)) ∈ Sd−1, for j ∈ {ℓ + 1, . . . , d + 1}, and the ℓ − 1

vectors (rj(1) − rj(0))/d(rj(1), rj(0)) ∈ Sd−1, for j(1) ∈ {1, . . . , ℓ} \ {j(0)}. Let M
be the d×d matrix formed by the above (d− ℓ+1)+(ℓ−1) = d column vectors, in
the above order. Then |detM | = [det (M ′M)]1/2, where M ′ is the transpose of M .
The entries of M ′M are the cosines of the angles formed by the d column vectors
of M . The diagonal entries of M ′M are equal to 1. Outside the diagonal, in the
intersection of the first d− ℓ+ 1 rows and the first d− ℓ+ 1 columns, as well as in
the intersection of the last ℓ− 1 rows and the last ℓ− 1 columns, by Lemma 1 (3),
the entries of M ′M are close to 1/2. By Lemma 4, the remaining entries of M ′M
are close to 0.

LetN0 denote the d×dmatrix, with the exact entries 1, 1/2 and 0 at its respective
positions. Then det (M ′M) is close to detN0, hence

|detM | = [det (M ′M)]1/2 is close to [det (N0)]
1/2 (∈ [0,∞)). (3.2)

Now we define a d × d matrix M0 (it will not be unique) as follows. Its first
d − ℓ + 1 column vectors are the edge vectors of a regular (d − ℓ + 1)-simplex of
unit edge lengths in the coordinate subspace spanned by the first d − ℓ + 1 basic
unit vectors, pointing from some of its vertices to all its other vertices. Moreover,
its last ℓ − 1 column vectors are the edge vectors of a regular (ℓ − 1)-simplex of
unit edge lengths in the coordinate subspace spanned by the last ℓ − 1 basic unit
vectors, pointing from some of its vertices to all its other vertices. Then all these d
column vectors form a base of Rd, hence |detM0| is some positive constant constd,ℓ,
independently of the choice of M0. Since ℓ can assume only finitely many values
(cf. Lemma 5), therefore |detM0| ≥ constd > 0. Moreover, the entries of M ′

0M0 are
the cosines of the angles formed by the d column vectors of M0. Hence, we have
M ′

0M0 = N0, which implies

[det (N0)]
1/2 = [det (M ′

0M0)]
1/2 = |detM0| ≥ const d > 0. (3.3)

By (3.2) and (3.3), also

|detM | ≥ constd > 0, provided Dd,ε is

sufficiently large and cd,ε > 0 is sufficiently small.
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On the other hand, the ⌊constd,ε · logn⌋ points of (G∗
2,j)

′ in its j(0)-th primary
colour class should be contained in an intersection of d spherical shells (called Sj(h)

in part E of the proof of Lemma 2). These have centres qℓ+1, . . . , qd+1 and rj(1)
for j(1) ∈ {1, . . . , ℓ} \ {j(0)}, inner radii some tκ, and outer radii (differently from
part E of the proof of Lemma 2) the respective tκ + cd,ε(logn)

1/d.
Moreover, the unit vectors pointing from rj(0) to the above centres, are the

column vectors of a d× d matrix, having a determinant of absolute value bounded
from below by a positive number. Then the slabs S′

j(h) in Claim 2 will be replaced

by new slabs. More exactly, rj(0) replaces qm(d−1)+1,1, the present d centres replace
qj(1), . . . , qj(d) in part D of the proof of Lemma 2, logn replaces n, and a suitable
half-space replaces H+ (in part E of the proof of Lemma 2). Then Π in Claim 2
of the proof of Lemma 2 will be replaced by a parallelepiped, circumscribed about
a ball of diameter 3cd,ε(logn)

1/d. Moreover, Π′ in part F of the proof of Lemma 2

will be replaced by a parallelepiped, with inradius 3cd,ε(logn)
1/d/2+ 1/2, hence of

volume at most
constd,ε · c

d
d,ε log n.

Thus, with these changes, the analogue of Claim 2 of the proof of Lemma 2 (with
the same proof as cited after Claim 2) and the arguments in part F of the proof
of Lemma 2 yield a contradiction. Namely, for cd,ε > 0 sufficiently small, we have
the following. The parallelepiped replacing Π′ has not enough volume in order to
contain ⌊constd,ε · logn⌋ disjoint open balls of unit diameter. �

Proof of Theorem 1, continuation. Step 8. By Step 1 (about tightness) and
Lemmas 2 and 9, the proof of Theorem 1 for d = 4, 5 follows.

Together with Step 6, this completes the proof of Theorem 1. �

§4. Proof of Theorem 2

In this section, we present the proof of Theorem 2. The proof falls into five
simple steps marked as Step 1, Step 2, etc.

Proof of Theorem 2. Step 1. Recall that the tightness of Theorem 2 (A) and
(B) was shown by Constructions 2 and 3. It remains to establish that (d+ 1)k in
(A) and T

(

(d+ 1)k + 1, n
)

in (B) are upper bounds for the respective quantities.
For (B), this follows from (A), by Turán’s theorem.

Step 2. We need to show that, for 0 < ε < εd,k, where εd,k > 0 is sufficiently
small, any (k, ε)-distance set P in R

d has a cardinality at most (d + 1)k. We use
induction on k.

For k = 1, this statement is valid for 1 + ε < (1 + 2/d)1/2 (for d even), or for
1+ ε < [1 + 2(d+2)/ (d(d+ 2)− 1)]1/2 (for d odd), resp. (cf. Schütte [24], Satz 3).

Now let k ≥ 2. We may suppose without loss of generality that t1 < . . . < tk.
(If two of these numbers are equal, then the statement follows by induction.) We
may and will suppose ε ≤ 1.

Let Dd,k > 0 be a sufficiently large constant. We distinguish two cases:

Case I: tk/t1 ≤ Dd,k,

Case II: tk/t1 > Dd,k.

Step 3. In Case I, we prove
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Lemma 10. If tk/t1 ≤ Dd,k, then the upper estimate stated in Step 2 is valid.

Proof. The ratio of any two distances determined by P is at most tk(1+ ε)/t1 ≤
2Dd,k. Then, for sufficiently small ε > 0, we get

|P | ≤ m(d, k),

by using the analogues of the compactness considerations from the proof of Lemma
2, Claim 1. (Actually, only (i), the analogue of (ii) with 1/(2Dd,k), and (iii) from
Claim 1 are needed.)

Further, by (1.1) we have

m(d, k) ≤

(

d+ k

k

)

=
d+ 1

1
· . . . ·

d+ k

k
=

(

d

1
+ 1

)

· . . . ·

(

d

k
+ 1

)

≤ (d+ 1)k.

Hence,
|P | ≤ m(d, k) ≤ (d+ 1)k,

as claimed in Step 2. �

Step 4. In Case II, we prove

Lemma 11. If tk/t1 > Dd,k, then the upper estimate from Step 2 holds.

Proof. In Case II, there exists an integer j ∈ {1, . . . , k − 1} such that tj+1/tj >

D
1/(k−1)
d,k . We consider a colouring of the edges of the complete graph on the

vertex set P with k colours. Namely, every edge {pi(1), pi(2)} gets a colour j with
d(pi(1), pi(2)) ∈ [tj , tj(1 + ε)]. (Such a colouring is not necessarily unique, but this
makes no difference.)

Let us call a distance d(pi(1), pi(2)) small if its colour is at most j, and large if
its colour is at least j + 1. The quotient of any large and any small distance is

at least tj+1/ (tj(1 + ε)) > D
1/(k−1)
d,k /(1 + ε) ≥ D

1/(k−1)
d,k /2 =: D′

d,k, where D′
d,k is

a large constant. In particular, we will assume that D′
d,k > 1, which implies that

(0, tj(1 + ε)] ∩ [tj+1,∞) = ∅. Thus, the length d(pi(1), pi(2)) uniquely determines
whether it is a small or a large distance. From now on, we also assume that
D′

d,k > 2. This yields that every large distance is more than twice as large as every
small distance.

This implies that we can define an equivalence relation ∼ on the points pi(1),
pi(2) ∈ P .

Definition 5. For pi(1), pi(2) ∈ P we write pi(1) ∼ pi(2) if either i(1) = i(2), or
d(pi(1), pi(2)) is a small distance. By the last italicized text, ∼ is an equivalence
relation on P .

In each ∼-equivalence class of the points pi ∈ P , each edge has a colour at most
j. Thus, each ∼-equivalence class is a (j, ε)-distance set. Since j ≤ k − 1, by the
induction hypothesis we have, for ε > 0 sufficiently small, that the cardinality of
any ∼-equivalence class is at most (d+ 1)j.

Now consider a set of representatives from each ∼-equivalence class. In this
set, each edge has a colour at least j + 1, so it is a (k − j, ε)-distance set. Since
k − j ≤ k − 1, by the induction hypothesis we have, for ε > 0 sufficiently small,
that the cardinality of this set is at most (d+ 1)k−j.
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Using the results of the last two paragraphs, we obtain the following. For ε > 0
sufficiently small, |P | is at most the number of ∼-equivalence classes times the
maximum cardinality of a ∼-equivalence class. That is,

|P | ≤ (d+ 1)k−j(d+ 1)j = (d+ 1)k,

as asserted in Step 2. �

Step 5. Now Theorem 2 follows from Steps 1, 2, and Lemmas 10 and 11. �

§5. Concluding remarks

1. Suppose that neither k nor d is much larger than the other. It seems likely that
in this case one can obtain reasonably good constructions for Q in Construction 1
the following way. Suppose that d = d(1)+. . .+d(h) and k = k(1)+. . .+k(h), where
all d(g) and k(g), for 1 ≤ g ≤ h, are natural numbers. Then R

d = R
d(1)+...+d(h) =

R
d(1) ⊕ . . . ⊕ R

d(h). In each R
d(g), for 1 ≤ g ≤ h, we take a subset Qg. Here,

each Qg is one of the examples from Construction 1′ or Construction 1′′, with all
distances in Qg lying in the union of k(g) intervals of arbitrarily small lengths. We
scale Q1, . . . , Qh in such a way that for each 1 ≤ g ≤ h− 1, the maximal distance
in Qg is much smaller than the minimal distance in Qg+1. Moreover, all distances
in Qg still belong to the union of k(g) intervals of arbitrarily small lengths. Let
Q := ⊕h

g=1Qg. For any two distinct points q(1) = ⊕h
g=1qg(1), q(2) = ⊕h

g=1qg(2) ∈ Q,
there is a largest g ∈ {1, . . . , h} such that qg(1) 6= qg(2). Then the distance between
q(1) and q(2) is arbitrarily close to the distance between qg(1) and qg(2). Therefore,
all distances determined by Q lie in the union of k(1) + . . .+ k(h) = k intervals of
arbitrarily small length.

2. A related question was studied by Pach, Radoičić and Vondrák [22], [23].
They proved that for any d ≥ 2 and any 0 < γ < 1/4, the following statement
holds. Suppose that in an n-element separated point set P ⊂ R

d there are at least
γn2 point pairs whose distances differ by at most 1. Then the diameter of P is at
least constd,γ · n2/(d−1). Apart from the value of the constant, this bound is tight
for all d ≥ 2 and all 0 < γ < 1/4.

3. Another related question is treated in [11]. Suppose that in a separated n-
element point set P in the plane, the number of pairs that determine a distance
nearly equal to one of t1 < . . . < tk is maximal. Does it follow that then we have,
“approximately,” t2 = 2t1, . . . , tk = kt1 (as in the example after Theorem B)?
In this direction, they proved the following. Let δ > 0 and suppose that for any
1 ≤ i(1) ≤ i(2) < i(3) ≤ k, the inequality |ti(3)/(ti(1) + ti(2))− 1| > δ holds. Then,
for n ≥ nk,δ, the number of unordered pairs that determine a distance belonging
to [t1, t1 + 1]∪ . . .∪ [tk, tk + 1], is at most n2/4 + constk,δ · n. This bound is sharp,
up to the value of constk,δ > 0. It is easy to see that if ti(3) = ti(1) + ti(2) holds
for some i(1) ≤ i(2) < i(3), then the number of pairs with the above property can
attain ⌊n2/3⌋.

4. We pose the following
Question. What would be the results analogous to our Theorem 2, for unions

of intervals of the form [t1, t
1+ε
1 ] ∪ . . . ∪ [tk, t

1+ε
k ], for ε > 0?
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[18] P. Lisoněk, New maximal two-distance sets, J. Combin. Th., Ser. A 77

(1997), 318–338, MR 98a:51014



TWO NEARLY EQUAL DISTANCES IN R
d 23

[19] J. E. Littlewood, A. Offord, On the number of real roots of a random
algebraic equation. III. Rec. Math. [Mat. Sbornik] N.S. 12 (1943), 277–
286, MR 5,179h

[20] E. Lutwak, Selected affine isoperimetric inequalities, Handbook of Convex
Geometry (Eds. P.M. Gruber, J. M. Wills), North Holland, Amsterdam
etc., 1993, Vol. A, Chapter 1.5, 151-176, MR 94h:52014

[21] E. Makai, Jr., J. Pach, J. Spencer, New results on the distribution of dis-
tances determined by separated point sets, Paul Erdős and His Math. II,
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