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Abstract. In this mini-survey, we summarize some joint results found
by Paul Erdős and the authors during the past decade on the set of dis-
tances between n points in Euclidean space. We concentrate on two types
of questions: (1) How uniformly can the

(n
2

)

distances determined by such
a point set be distributed? (2) What is the maximum number of distances
that can lie in the union of k intervals of length 1, provided that the minimal
distance is at least 1?

1 Introduction

Ever since Paul Erdős rediscovered Sylvester’s conjecture [35], when he was
a student, he was fascinated by geometric problems with a combinatorial fla-
vor. According to this celebrated result, today known as the Gallai-Sylvester
theorem [28], any finite set of non-collinear points in the plane has two el-
ements such that the line determined by them does not pass through any
other element. In the dual setting: any finite set of non-concurrent straight
lines (no two of which are parallel) determines an intersection point incident
to precisely two elements of the set.

This result has inspired a lot of research. Recently, Rom Pinchasi [32]
verified an analogous conjecture of András Bezdek [4, 5] for circles. He
proved that any set of at least 5 pairwise intersecting unit circles in the
plane determines an intersection point incident to precisely two elements of
the set. It is conjectured that if we only assume that at least two unit circles
have a point in common, then there exists an intersection point incident to
at most three elements of the set. For some other results in this direction,
see [1].
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We mention two other well-known conjectures related to the Sylvester-
Gallai theorem.

Dirac’s Conjecture [15]: Any sufficiently large set of n non-collinear
points determines at least n/2 lines, each of which passes through precisely
two elements of the set.

Fukuda’s Conjecture: [14]: Any non-collinear set of n red and n blue
points in the plane, separated by a line, contains a red point and a blue point
such that their connecting line does not pass through any other element of
the set.

The best known results concerning these questions are due to Csima and
Sawyer [12, 13] and Pach and Pinchasi [31], respectively.

Erdős often said that even Euclid would appreciate these problems, be-
cause they involved only the most elementary concepts of geometry. Inci-
dence relations between points and lines in the Euclidean and projective
planes came to new life as objects of combinatorial study. The Gallai-
Sylvester theorem has also contributed a great deal to the development of
the theory of combinatorial designs [2].

In 1946, in a paper published in the American Mathematical Monthly
[17], Erdős raised a new type of question: At most how many times can
the unit distance occur among n points in the plane (more generally, in
Euclidean or other metric spaces)?

It is conjectured that in the plane the maximum is n1+const/ log log n, which
is attained by a

√
n × √

n piece of a square lattice, but the best currently
known upper estimate, due to Spencer, Szemerédi, and Trotter [34], is only
O(n4/3) (see [36] for a simple proof). In 3-space, the best known upper
bound is n3/2β(n), where β(n) is an extremely slowly increasing function,
closely related to the inverse Ackermann function [11], but the truth is
probably closer to n4/3. In higher dimensions, we know the asymptotically
tight answer [20], [26], [30]. The maximum number of times that the same
distance can occur among n distinct points in k-space is

n2
(

1
2 − 1

k

)

+ O(n) if k ≥ 4 is even;

n2
(

1
2 − 1

k−1

)

+ O(n4/3) if k ≥ 5 is odd.

he unit distance problem is essentially equivalent to the following question
about incidences: What is the maximum number of incidences between n
points and n unit circles in the plane (spheres in space)?

In a more general setting, Aronov and Sharir [3] have recently proved
that the maximum number of incidences between m points and n not nec-

2



essarily congruent circles in the plane is

O(m2/3n2/3 + m) if m ≥ n3/2;

O(m4/7n17/21 + n) if m ≤ n3/2,

and the first estimate cannot be improved. Incidence estimates of this kind
may lead to an improvement of Székely’s result [36] that every set of n points
in the plane determines at least constant times n4/5 distinct distances (which
is only slightly better than the best previously known bound of Chung,
Szemerédi, and Trotter [10]). We note that most recently const ·n4/5 was
improved to const ·n6/7 by J. Solymosi, Cs. Tóth [39], and subsequently
this was improved to constε · n4/(5−e−1)−ε (ε > 0 arbitrary), by G. Tardos
[40]. It is conjectured that the optimal configuration is lattice-like, and it
gives roughly constant times n/

√
log n (more exactly Θ(n/

√
log n)) distinct

distances.
In the last decade Erdős’s attention turned to some interesting new vari-

ants of the above questions, which cannot be reformulated in terms of in-
cidences between points and curves (surfaces). For instance, what is the
minimum diameter of a set of n points in the plane with the property that
any two distances determined by them are either equal or differ by at least
one? (It follows from the above mentioned result of Tardos [40] that this
number, the largest distance determined by such a point set, is at least con-
stant times n4/(5−e−1)−ε, but it is possible that the truth is n− 1 or at least
linear in n.)

In the present mini-survey, we discuss two questions posed by Erdős
that belong to this category. It seems that they are related to problems in
integral geometry and in the theory of packing and covering rather than to
incidences. Most of the results were obtained in collaboration with Erdős.
The proofs will be published elsewhere.

2 Uniformity of distance distributions

Given n points in Rk, the k-dimensional Euclidean space, let d1 ≤ ... ≤
d(n

2)
denote all the distances determined by them, with multiplicity. Paul

Erdős asked the following question. Can it occur that these distances are,
in some sense, “uniformly distributed” in the interval [d1, d(n

2)
]? To make

his question more concrete, Erdős asked for the minimum of

S :=

(n

2)−1
∑

j=1

(dj+1 − dj)
2,
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provided that d1 ≥ 1, i.e., the point set is separated. Obviously, here we
can and will assume without loss of generality that d1 = 1. Observe, that if
the distances could be “uniformly distributed” in [d1, d(n

2)
], i.e., they could

form an arithmetic progression, then it would follow from the arithmetic–
quadratic mean inequality that the minimum is

(

d(n

2)
− 1

)2

(n
2

)

− 1
.

Since our point set is separated, we have that d(n

2)
is at least constant times

n1/k. Therefore, min S ≥ const · n−2(1−1/k).
However, this estimate is far from being sharp. Instead, we have

Theorem 1.1 [25] For every separated set of n points on the line (k = 1),
we have

S ≥ const · log n.

This inequality is tight up to the value of the constant.

That is, in the 1-dimensional case, the sum of the squares of the gaps
between the consecutive distances, somewhat surprisingly, tends to infinity
as n → ∞. This is not the case in higher dimensions.

Theorem 1.2 [33] For every separated set of n points in the plane (k = 2),
we have

S ≥ const · n−6/7.

This result is tight up to the value of the constant.

In place of the squares of the gaps between the distances, one could use
any other increasing convex function of the gaps to define a competing mea-
sure of uniformity. In this case, the arithmetic–quadratic mean inequality
has to be replaced by Jensen’s inequality. In particular, for any c > 1, we
may wish to minimize the quantity

Sk
c :=

(n

2)−1
∑

j=1

(dj+1 − dj)
c.

The linear case is essentially settled by

Theorem 1.3 [25] For every separated set of n points on the line (k = 1),
we have

S1
c ≥ constc ·











n2−c if 1 < c < 2;
log n if c = 2;
1 if c > 2.
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For every fixed c, this bound is tight up to the value of the constant.

This result can be generalized to higher dimensions, as follows.

Theorem 1.4 [23] For any positive integer k, for every separated set of n
points in Rk, we have

Sk
c ≥ constc,k ·



















n
c

k
−2(c−1) if 1 < c < k+3

k+1 ;

n
−

3(k−1)
k(k+1) · log k+3

4k n if c = k+3
k+1 ;

n
−

6(k−1)(c−1)2

3(k−1)(c−1)+2c if c > k+3
k+1 .

According to Theorem 1.3, the last result is asymptotically tight for
k = 1. By Theorem 1.2, it is also tight in the case k = 2, c = 2. We
conjecture that, at least for small values of c, Theorem 1.4 is not far from
being optimal.

To prove our lower bounds, we had to strengthen the following classical
result of Bieberbach [9] (Ch. 44, 54): the volume of any k-dimensional con-
vex body of diameter d is at most as large as the volume of a k-dimensional
ball with the same diameter. Our volume estimate depends on one fur-
ther parameter e, and Bieberbach’s inequality can be obtained from it by
integration with respect to e. More precisely, we have

Theorem 1.5 [23] Let D ⊂ Rk be a convex body of diameter d, and let
0 < e < d. Then

∫

D

∫

D
|p − q| = e

dp dq ≤ ek−1 · kκk · Vol(B(p0, d/2) ∩ B(q0, d/2)),

where p0 and q0 are any two points at distance e from each other, B(x, r)
denotes the ball of radius r centered at x, and κk is the volume of the unit
ball B(0, 1) ⊂ Rk.

Equality holds here if and only if D is a ball of diameter d.

The tightness of Theorems 1.1 and 1.3 can be established by explicit
constructions. In the case of Theorem 1.2, we had to start with a random
construction given by a Poisson process and modify it “by hand.”

3 Nearly equal distances

During the past fifty years, Erdős almost “systematically” raised and par-
tially answered a wide range of questions about the distribution of all sums,
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differences, or distances determined by a set of n numbers or points in var-
ious metric spaces [21]. A famous example is the following problem due to
Littlewood and Offord [16]. Given a set of n non-zero numbers, at most how
many of the 2n partial sums formed by them can coincide? The maximum,
determined in [16], is

( n
⌊n/2⌋

)

. Interestingly, it follows from the proof that if
every number has absolute value at least 1, and we wish to maximize the
number of partial sums that are nearly equal, i.e., which fall into an open
interval of length 1, the answer remains unchanged.

Another famous question of this type is the one mentioned in the In-
troduction: Given n points in the plane (or, more generally, in k-space),
at most how many of the

(n
2

)

interpoint distances can coincide? Erdős ob-
served that, unlike in the case of the Littlewood-Offord problem, the answer
to the above question does not remain the same if we count the number
of distances that are nearly equal. To exclude the trivial examples when all
distances are nearly equal to 0, we consider only separated point sets, i.e., we
assume that the minimum distance between two points is at least 1 (which
can be attained by proper scaling). What is the maximum number of pairs
of points in an n-element set with distance in a closed unit interval [t, t+1]?

2
_ n

2
_n

t

Figure 1.

The following construction shows that in the plane, for a suitable value
of t, this number is at least ⌊n2/4⌋ (see Fig. 1). Take a set V of n points
with coordinates

(0, 1), (0, 2), . . . , (0, ⌊n/2⌋); (t, 1), (t, 2), . . . , (t, ⌈n/2⌉).

The distance between any element of V whose x-coordinate is 0 and any
other element whose x-coordinate is t belongs to an interval [t, t + O(1/t)].
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Thus, if t is large enough, ⌊n2/4⌋ pairs will have a distance lying in [t, t+1].
Erdős conjectured that this configuration is optimal, provided that n is
sufficiently large.

Theorem 2.1 [25] Let P be a separated set of n points in the plane. If n
is sufficiently large, then for every t > 0, the number of pairs of points in P
whose distance lies in the interval [t, t + 1] is at most ⌊n2/4⌋. This bound
can be attained for every t ≥ t(n), where t(n) is a suitable function of n.

Let T (k, n) denote the number of edges of a balanced complete k-partite
graph on n vertices, i.e., a graph whose vertices are partitioned into k
groups of size ⌊n/k⌋ or ⌈n/k⌉, and two vertices are connected by an edge
if and only if they belong to different groups. Clearly, we have T (k, n) =
n2

2

(

1 − 1
k + o(1)

)

.

To generalize Theorem 2.1 to higher dimensions, we need a sharper ver-
sion of the following result of Turán [38] (see also [30], [8]). Any graph of
n vertices, which does not contain a complete subgraph with k + 1 vertices,
has at most T (k, n) edges.

Theorem 2.2 [25] Let k ≥ 2 be an integer, and let P be a separated set of
n points in Rk. If n is sufficiently large, then for every t > 0, the number
of pairs of points in P whose distance lies in the interval [t, t + 1] is at most
T (k, n). This bound can be attained for every t ≥ t(k, n), where t(k, n) is a
suitable function of k and n.
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The tightness of the bound in Theorem 2.2 can be shown by straightfor-
ward generalization of the construction preceding Theorem 2.1. Let t be a
sufficiently large number, and let v1, v2, . . . , vk be the vertices of a regular
(k−1)-dimensional simplex in the hyperplane xk = 0, with edge-length t. At
each vi draw a perpendicular to the hyperplane xk = 0, and on each of these
lines pick ⌊n/k⌋ or ⌈n/k⌉ distinct points whose xk-coordinates are integers
between 0 and n/k, so that the total number of points is n (see Fig. 2). If t
is sufficiently large, depending on k and n, the distance between any pair of
points selected on different perpendiculars belongs to the interval [t, t + 1].

It is not hard to extend Theorem 2.1 in another direction. Suppose that,
instead of maximizing the number of “nearly equal” distances, we want to
estimate the largest number of distances “nearly equal” to (at least) one of
p preselected values.

Theorem 2.3 [22] Let P be a separated set of n points in the plane, and let
p be a positive integer.

For any t1, t2, . . . , tp > 0, the number of pairs of points in P whose
distance lies in [t1, t1 + 1] ∪ [t2, t2 + 1] ∪ . . . ∪ [tp, tp + 1] is at most

n2

2

(

1 − 1

p + 1
+ o(1)

)

.

This estimate is tight for every fixed p and for some t1 = t1(p, n), t2 =
t2(p, n), . . . , tp = tp(p, n).

 n
p+1
___  n

p+1
___  n

p+1
___ n

p+1
___

t t

Figure 3.

To show the tightness, now consider the points

(0, 1), (0, 2), . . . , (0, n0); (t, 1), (t, 2), . . . , (t, n1); . . . ; (pt, 1), (pt, 2), . . . , (pt, np),

where n0, ..., np are equal either to ⌊n/(p + 1)⌋ or ⌈n/(p + 1)⌉, and n0 + ...+
np = n (see Fig. 3). If t is large enough, all distances between points in
different groups lie in [t, t+1]∪ [2t, 2t+1]∪ . . .∪ [pt, pt+1]. It is conjectured
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that this construction is not only asymptotically optimal, but it also gives
the exact maximum, provided that n is sufficiently large.

It appears to be technically difficult to generalize Theorem 2.3 to higher
dimensions. The only case we can settle is p = 2.

For any k ≥ 1, let mk denote the largest size of a point set in Rk

determining two distinct distances. Clearly, m1 = 3 and m2 = 5. We know
the exact values of mk for k ≤ 8 (see [29]), and it is also known [6], [7] that

(

k + 1

2

)

≤ mk ≤
(

k + 2

2

)

holds for every k.

Theorem 2.4 [24] Let k ≥ 2 be an integer, and let P be a separated set of
n points in Rk.

For any t1, t2 > 0, the number of pairs of points in P whose distance lies
in [t1, t1 + 1] ∪ [t2, t2 + 1] is at most

n2

2

(

1 − 1

mk−1
+ o(1)

)

.

For every fixed k and for some t1 = t1(k, n), t2 = t2(k, n), this estimate is
tight.

n
m

k-1

_____

n
m

k-1

_____
m

k-1

_____n

t
1

t
2

Rk-1

Figure 4.
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It is not hard to modify the previous constructions to obtain an example
proving that the last result is also tight. Choose an mk−1-element set X
in the hyperplane xk = 0, which determines two (non-zero) distances. By
proper scaling, we can achieve that even the smaller distance is arbitrarily
large. At each point of X draw a perpendicular to the hyperplane xk = 0,
and on each of these lines pick ⌊n/mk−1⌋ or ⌈n/mk−1⌉ distinct points whose
xk-coordinates are integers between 0 and n/mk−1, so that the total number
of points is n (see Fig. 4).

Note that if k 6= 4, 5 and n is sufficiently large, we can prove the stronger
statement that the number of point pairs whose distance lies in [t1, t1 + 1]∪
[t2, t2 + 1] is at most T (mk−1, n). It is quite possible that the same is true
for k = 4 and 5.

The proofs of all statements in this section are based on some standard
results in extremal graph [8] and hypergraph theory [19], such as relatives
of the Erdős-Stone theorem [27] and Szemerédi’s Regularity Lemma [37].
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[17] P. Erdős, On sets of distances of n points, Amer. Math. Monthly 53

(1946), 248–250.
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