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Abstract

Let d > 2, and let K C R? be a convex body containing the origin
0 in its interior. In a previous paper we have proved the following.
The body K is 0-symmetric if and only if the following holds. For
each w € S9!, we have that the (d — 1)-volume of the intersection of
K and an arbitrary hyperplane, with normal w, attains its maximum
if the hyperplane contains 0. An analogous theorem, for 1-dimensional
sections and 1-volumes, has been proved long ago by Hammer ([2]).
In this paper we deal with the ((d — 2)-dimensional) surface area, or
with lower dimensional quermassintegrals of these intersections, and
prove an analogous, but local theorem, for small C?-perturbations, or
C3-perturbations of the Euclidean unit ball, respectively.
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1 Introduction

Let d > 2, and let K C R? be a centered, i.e., O-symmetric convex body.
We have observed in [3], Problem 3.10, that by the Aleksandroff-Fenchel
inequalities (cf., e.g., [4]) we have the following statement. Let 0 <[ < d—2
be an integer, let w € S9!, let t € R, and let w' be the orthocomplement of
w in R%. Then the quermassintegrals

W, [(K N (wh 4+ tw)) — tw] |

considered in w', attain their maxima for ¢ = 0. In the same Problem 3.10,
we have posed the question, whether the converse implication holds. For
[ =0, i.e., for the case of (d—1)-volume, we proved this converse implication,
cf. [3], Corollary 3.2.

In this paper, we deal with the cases 1 <[ < d — 2, and prove an infinites-
imal variant of the converse implication, for small C?-perturbations of the
Euclidean unit ball for [ = 1, and for small C3-perturbations of the Euclidean
unit ball for 2 <[ < d — 2.

2 Preliminaries

We write R? for the d-dimensional Euclidean space, and S9! for its unit
sphere, where d > 2. The origin is denoted by 0. We write W; for the (k —1i)-
dimensional quermassintegrals of convex bodies in affine k-subspaces of R?

(111, 141)-

Basically we use the notations of [3]. Variable points of S9! are denoted by
w,&,n. We use polar coordinates on S9~!. That is, for some ¢ € S9!, that
we consider as the north pole, and for w € S% !, we write

w = Esine +ncosty, where n € NS and —7/2 <y < 7w/2.
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Thus, £+ N S9! is the equator and v is the geographic latitude, that will be
more convenient to us than the customarily used ¢ = 7/2 — 1. Then we
write

w=(n,1).

In particular,

(nao):n'

A function f := S9! — R is even, or odd, if, for all w € S !, we have
f(—w) = f(w), or f(—w) = —f(w), respectively.

In R¢ we will use polar coordinates w, o, with w € S%~!, and ¢ € [0,0) (i.e.,
the point wo € R? has polar coordinates w, ). Also, for fixed £ € S9!, we
will use cylindrical coordinates n,7,t, with n € £+ NS4 and r € [0,00)
(together polar coordinates in £+), and ¢ € R. Here, for z € R?, we have

t=(x,&), and x =rn+1§.
For x € bd K, we will also write, in cylindrical coordinates,

=7 ntn+tE,

where the first variable of r refers to £, and the last variable means that we
consider the radial function of the intersection K N (£1 +t€), with respect to
the “origin” t€.

We have, for z € R?, that

ocosty =7, and psiny =t. (1)

Differentiating these formulas with respect to 1, and then setting ) = 0, we
obtain

or 00 ot
%M:o = %w:oa and %w:o = 0ly—0- (2)

For terms undefined in this paper, cf., e.g., [1], and [4].
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3 Theorem

Theorem. Let d > 3 and 2 < k < d — 1 be integers, and let Ny € (0,00).
Suppose that for each A € [0, \o], we have that K* is a convex body in R?
with radial function o*(w), for w € S471. Let o°(w) = 1, and let o*(w) be a
C?-function of (\,w) € [0, \o] x ST1. Assume that for each X € [0, \o], for
any linear k-subspace L, C RY, the function y — Wi (K> N (Ly +y)) has a
mazimum at y = 0. Then

0o0*
BN (w) \Azo

is an even function of w. If 2 <1 < k —1, and o*(w) is a C3-function of
(A, w) € [0, \g] XS4, and we replace in the above hypothesis Wi by W, then
the same conclusion holds.

Clearly, we could have written, in the hypothesis of the theorem, that K*
is a star body, since, by the other assumptions, K* is a convex body with
positive Gauss curvature for each \ € [0, \g] (after possibly decreasing Ag).

We observe that for the case & = 1, and for the case [ = 0, we have the
theorems cited in the abstract, cf. [2], Theorem 1, and [3], Corollary 3.2.
These assert that, in this case, actually each K* is centered, which is of course
a stronger statement than the statement of the theorem of this paper. There
is still one quermassintegral, namely W,. However, this is, independently of
its argument, equal to the volume of the unit ball in R¥, so, in this case the
hypotheses of our theorem do not imply anything.

4 Proof

We begin with the following

Proposition ([3], Theorem 3.8). Let f : S¥ 1 — R be a C'-function (or,
more generally, a Lipschitz function). Further, let, for each & € S*' (or,
more generally, for almost all £ € S71), the equality

of B

£Llngd-1



hold. Then f is an even function. [ ]

Proof of the Theorem. As in the proof of Theorem 3.1 of [3], we may
suppose k = d — 1. In fact, for any linear (k + 1)-subspace L;,, of R?, we
have that K*N L, also satisfy the hypotheses of the theorem. Furthermore,
if for each L1, the restriction of the function

0o0*
ﬁ (w)] A=0

to Liy1 is even, then also this function itself is even. So, from now on, let
k=d-1.

Let ty € (0,00) be so small that the closed ball about 0, of radius tg, is
contained in each K*, where A\ € [0, \o] (possibly decreasing \g). From now
on, let t € (—tg,1). This implies that K N (&L +¢€) is a ((d — 1)-dimensional)
convex body in &+ 4 ¢€.

1. First we treat the case [ = 1.

Let us fix a point £ € S%°!, that we consider as the north pole. Let S*(&,¢)
denote the ((d — 2)-dimensional) surface area of K* N (4 + t€), considered
as a ((d — 1)-dimensional) convex body in &+ + t£. We have

SHEt) = / dSMEt) = / A€, 1)

glngd-1 glngd-1

¥

where r*(€,n,t) is the radial function of K* N (£+ + t€), with respect to the
“origin” t£, and n*(n,t) € £ N S9! is the outer normal unit vector of the
surface element dS*(£,t) at n € &£ N S97L taken in &+ + #€.

From now on, we consider A € [0, \¢] as fixed, and drop the upper indices
A. Also, to simplify the formulas, we omit those variables of our functions,
whose omission does not lead to misunderstanding.

We determine

0
as(ga t)|t:0 )



that equals 0 by the hypothesis of the theorem. We may differentiate under
the integral sign. We have

g2 1 _
(6/0%) (T (%"(ﬁ)))l 1 5 (4)
— 2)r4=3(0r I e — (N7}
=BG ) T Gt o O

and we have to evaluate this at ¢ = 0.

Letting ¢t = 0, i.e., by (1), ¥» = 0, we have by (2) 0t/0¢ = o, hence

o wao 10

ot~ ooy 00w
Therefore, (4) equals

a3lOr 1 aa_ L

10
e O IR R T e T A Gl

Here the first term is, using r = o (cf. (1)),

b0 1
@ = S Ty ©)

and the second term is

d’371 i n,n
0 g ) (6)

Now it will be convenient to write o =: 1 + &, where ¢ : ! = R is a
C?-function, of C%-norm tending to 0 for A — 0. We calculate (5) and (6),
till terms of degree 1 in €, but neglecting terms of degree at least 2 in ¢.

Then (5) becomes

a-a9e 1

(@=2)1+e) oY (n.n(n))”



Here, because of the third factor, we may write ¢ = 0 in the second and
fourth factors, getting

(- 2)2—; ™)

On the other hand, (6) contains (9/0v)(n,n(n)) as a factor. We are going
to show that this is an expression of second order in €. We have

1,—0¢/0xq,...,—0c/0xq_
O R L i )
V14 (02/021)? + ...+ (92/Day)
where z1,...,74_1 are the coordinates on S9!, in a neighbourhood of 7,

given by the inverse of the exponential map at € S !. (The exponential
map maps vectors u, in a neighbourhood of the origin 7 of the tangent plane
of S%=1 at 7, to the point w € S9! of the geodesic on S?~!, starting from
n, in the direction of u, with w being at a geodesic distance ||u|| from 7.)
Therefore,

n) = : .
V14 (0/01)* + ...+ (9/ra )’

(n,n(

Clearly, it is enough to show that, e.g.,

B |
001 14 (92/00: ) + ... + (92/0w4r)?

is of second degree of smallness in €. However, (8) equals

OO ¢k (02f0n ) P Oriaon)
(1+ (82/011)° + ... + (85/axd_1)2)3/2 )

and so our claim is shown.



Altogether, by (3) and (4), and, on the one hand, by (5) and (7), on the
other hand, by (6) and (9), we have that ((0/9t)S(&,t))|i=o is, till terms of
degree 1 in ¢,

)
(d—2) ﬁdn.

&'LﬁSd*l

(10)

Since, for each £ € S?°1, (10) equals 0, the Proposition implies that ¢ is even.
(Recall that, by hypothesis, d > 3.) Returning to the original notations,

00*
N (w) IA:O

is an even function of w.
2. Now we treat the case 2 <[ <d — 2.

Actually, we will allow 1 <[ < d—1. Of course, as stated after the theorem,
for | = d — 1 the statement of the theorem does not hold. However, we will
need this case for our formulas.

We have, for 1 <[ < d —1, that

WAEt) == Wy(K N (E-+18)) =

(1/(d—1)) / Hy_1(6,1)dSME 1) (11)

bd (KN(&L+t¢))

Here H; 1(,1) is (?:12)71 times the (I — 1)’st elementary symmetric function
of the d — 2 principal curvatures k1(£,t),. .., kq_2(&,t) of bd (K N (£ +t)).

Cf., e.g., [4], p. 291.

We write r;(€,t) =: 1+ 6;(§,t), where J; is of first order with respect to the
C?-norm of ¢ = o — 1.



Letting

P=(7 % (146 (146,

1<ir <...<ij_1<d—2
_on—1

1<i1<..<ij_1<d—2

- (7:12)_1 Z (1_'_51'1)"'(1—’_52‘171)

1<i1 <. <51 <d—2

(1) - 2>>‘§fai,

(12)

we have that P is a linear combination with constant coefficients, of the
elementary symmetric functions of the §;’s, of degrees 2 to [ — 1. Therefore,
OP/0t is a sum, whose summands are products of some 96;/0t, and at least
one further §;. Here 9;/0¢ is bounded by the C*-assumption, and the 4,’s
are of first order with respect to the C%2-norm of . Hence, when calculating
the derivative of (11), with respect to t, at ¢ = 0, we can neglect OP/0t.
Hence, we may replace in (11) H;, | by

d—2

-1

=0

and this replacement will not affect the calculation of the derivative of (11),
with respect to ¢, at t = 0.

We turn to the calculation of the derivative of (11), with respect to ¢, at
t = 0, which has to be 0. As mentioned above, this equals

(1/d=1)@fot) [ dSMNE )+

bd (KN(&++t£))
d—2 (13)
(I-1)/(d-1)d-2)@/0t) [ (z cz) dSM(E,t).
bd (KN(¢L+t¢)) \i=0

Here the first summand is, by 1,

d—2 o
d—1 gy



We are going to determine the second summand. For this, put | = d — 1.
Then, as already mentioned, (11) is constant, hence (13) equals 0. From this
we have

0 =2 \ e

o > 6 ) dSHNEt) = —(d—2) %dn.
bd (Kn(gt+te)) =0 Lngd-1

Hence, for all [ =1,...,d — 1, we have that (13) further equals

d—1-1 Oe

_ —d 14
d—1 o0 (14)

glmsd—l

which equals 0. By the hypothesis of the theorem, we have [ < d — 2, hence

%dnzo,

cLngd—1
for each ¢ € S%!. As in 1, this implies that

o¢*
D)

(w)lx=o0

is an even function of w. ]

5 Remark

Remark. Let \g € (0,00). Let K° C R? be a centered convex body, further
suppose that for each X € (0, \o], we have that K* is a convex body in RY,
with radial functions o*, for A € {0}U(0, \o] = [0, Ag]. Moreover, let o*(w) be
a C%-function of (A, w) € [0, A\g] x S?~!. We may ask whether some analogue
of our theorem holds. That is, suppose that for each A € [0, \¢], and each
linear (d — 1)-subspace Ly ; C R, the function y — W) (K* N (Lg_1 +v))
has a maximum at y = 0. Then we may pose the question: is

0o*

S
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an even function of w? However, we will show that this question, even in
the simplest unsolved case, i.e., for d = 3, and for Wi, is untreatable by our
present methods.

For d—1 = 2 we can use, for the calculation of the perimeter of K*N(&++t£),
the simpler formula ds* = dr? + r?dn?. Then the equality

([0 (6 41— 6] ) 1y =0

can be rewritten as

(15)

do 10p 829) 0

1
SZ V02 + (00/0n)? (@ " 00n Ondip

Let us write o* = ¢” +¢. We retain in (15) the terms at most linear in e, and
investigate this situation. Clearly, the terms of degree 0 in ¢ together give
the integral, on S*, of an odd function, i.e., 0. Now we investigate the terms
of degree 1 in ¢, in the expression under the integral sign in (15). These are
the following:

_ 1 1 0_@0 62g0
V(%)% + (90" /)2 (0°)* On Ondy
¢" (8_90 100" &°¢° )]

1@ + @a a2 \ oy o oy onow )| ©
n 1 @ N 1 i 020"

V()24 (000 /an)2 0% | /(%)% + (9g°/0m)? & OndY (16)
N 00°/0n (8_90 L 102 & )] Oe

((&0)2 4 (00°/On)?)3/2 \ O~ o On Ondvp ) | On

N 1 10¢" 0%
V(@02 + (00°/0n)? 0 In Ondy

=: Ae+ B0e/Oy + C de/On+ D &% /ond .

11



Now, let us suppose that o*(w) is a C? function of (\,w) € [0, X\o] x S%. Then,
retaining in (15) the terms at most linear in €, (15) becomes, by integration
by parts,

/91[<A_%)8+<B_%—S)g—;]dﬁ=0- (17)

(We do not give the coefficients in this formula more explicitly.) Of course,
the left hand side of (17) is a continuous linear operator in ¢, for the C-
topology. But its solution (e.g., that the solutions among the C'-functions
would be just the even C'-functions) seems to be untreatable by our methods.
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