
Centrally symmetri
 
onvex bodies and

se
tions having maximal quermassintegrals

E. Makai, Jr.

∗

Alfréd Rényi Mathemati
al Institute

Hungarian A
ademy of S
ien
es

P.O.B. 127, H-1364 Budapest, HUNGARY

makai�renyi.hu

www.renyi.hu/

∼
makai

H. Martini

∗∗

Te
hnis
he Universität Chemnitz

Fakultät für Mathematik

D-09107 Chemnitz, GERMANY

martini�mathematik.tu-
hemnitz.de

www.tu-
hemnitz.de/mathematik/geometrie

Stud. S
i. Math. Hungar. 49 (2) (2012), 189-199

DOI: 10.1556/SS
Math.49.2012.2.1197

Abstra
t

Let d ≥ 2, and let K ⊂ R
d
be a 
onvex body 
ontaining the origin

0 in its interior. In a previous paper we have proved the following.

The body K is 0-symmetri
 if and only if the following holds. For

ea
h ω ∈ Sd−1
, we have that the (d− 1)-volume of the interse
tion of

K and an arbitrary hyperplane, with normal ω, attains its maximum

if the hyperplane 
ontains 0. An analogous theorem, for 1-dimensional

se
tions and 1-volumes, has been proved long ago by Hammer ([2℄).

In this paper we deal with the ((d − 2)-dimensional) surfa
e area, or

with lower dimensional quermassintegrals of these interse
tions, and

prove an analogous, but lo
al theorem, for small C2
-perturbations, or

C3
-perturbations of the Eu
lidean unit ball, respe
tively.
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1 Introdu
tion

Let d ≥ 2, and let K ⊂ R
d
be a 
entered, i.e., 0-symmetri
 
onvex body.

We have observed in [3℄, Problem 3.10, that by the Aleksandro�-Fen
hel

inequalities (
f., e.g., [4℄) we have the following statement. Let 0 ≤ l ≤ d− 2
be an integer, let ω ∈ Sd−1

, let t ∈ R, and let ω⊥
be the ortho
omplement of

ω in R
d
. Then the quermassintegrals

Wl

[

(K ∩ (ω⊥ + tω))− tω
]

,


onsidered in ω⊥
, attain their maxima for t = 0. In the same Problem 3.10,

we have posed the question, whether the 
onverse impli
ation holds. For

l = 0, i.e., for the 
ase of (d−1)-volume, we proved this 
onverse impli
ation,


f. [3℄, Corollary 3.2.

In this paper, we deal with the 
ases 1 ≤ l ≤ d − 2, and prove an in�nites-

imal variant of the 
onverse impli
ation, for small C2
-perturbations of the

Eu
lidean unit ball for l = 1, and for small C3
-perturbations of the Eu
lidean

unit ball for 2 ≤ l ≤ d− 2.

2 Preliminaries

We write R
d
for the d-dimensional Eu
lidean spa
e, and Sd−1

for its unit

sphere, where d ≥ 2. The origin is denoted by 0. We writeWi for the (k− i)-
dimensional quermassintegrals of 
onvex bodies in a�ne k-subspa
es of Rd

([1℄, [4℄).

Basi
ally we use the notations of [3℄. Variable points of Sd−1
are denoted by

ω, ξ, η. We use polar 
oordinates on Sd−1
. That is, for some ξ ∈ Sd−1

, that

we 
onsider as the north pole, and for ω ∈ Sd−1
, we write

ω = ξ sinψ + η cosψ, where η ∈ ξ⊥ ∩ Sd−1, and − π/2 ≤ ψ ≤ π/2 .
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Thus, ξ⊥ ∩ Sd−1
is the equator and ψ is the geographi
 latitude, that will be

more 
onvenient to us than the 
ustomarily used ϕ = π/2 − ψ. Then we

write

ω = (η, ψ) .

In parti
ular,

(η, 0) = η .

A fun
tion f := Sd−1 → R is even, or odd, if, for all ω ∈ Sd−1
, we have

f(−ω) = f(ω), or f(−ω) = −f(ω), respe
tively.

In R
d
we will use polar 
oordinates ω, ̺, with ω ∈ Sd−1

, and ̺ ∈ [0,∞) (i.e.,
the point ω̺ ∈ R

d
has polar 
oordinates ω, ̺). Also, for �xed ξ ∈ Sd−1

, we

will use 
ylindri
al 
oordinates η, r, t, with η ∈ ξ⊥ ∩ Sd−1
, and r ∈ [0,∞)

(together polar 
oordinates in ξ⊥), and t ∈ R. Here, for x ∈ R
d
, we have

t = 〈x, ξ〉 , and x = rη + tξ .

For x ∈ bdK, we will also write, in 
ylindri
al 
oordinates,

x = r(ξ, η, t)η + tξ ,

where the �rst variable of r refers to ξ, and the last variable means that we


onsider the radial fun
tion of the interse
tion K ∩ (ξ⊥+ tξ), with respe
t to

the �origin� tξ.

We have, for x ∈ R
d
, that

̺ cosψ = r, and ̺ sinψ = t . (1)

Di�erentiating these formulas with respe
t to ψ, and then setting ψ = 0, we
obtain

∂r

∂ψ
|ψ=0 =

∂̺

∂ψ
|ψ=0, and

∂t

∂ψ
|ψ=0 = ̺|ψ=0 . (2)

For terms unde�ned in this paper, 
f., e.g., [1℄, and [4℄.
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3 Theorem

Theorem. Let d ≥ 3 and 2 ≤ k ≤ d − 1 be integers, and let λ0 ∈ (0,∞).
Suppose that for ea
h λ ∈ [0, λ0], we have that Kλ

is a 
onvex body in R
d

with radial fun
tion ̺λ(ω), for ω ∈ Sd−1
. Let ̺0(ω) ≡ 1, and let ̺λ(ω) be a

C2
-fun
tion of (λ, ω) ∈ [0, λ0] × Sd−1

. Assume that for ea
h λ ∈ [0, λ0], for
any linear k-subspa
e Lk ⊂ R

d
, the fun
tion y 7→ W1(K

λ ∩ (Lk + y)) has a
maximum at y = 0. Then

∂̺λ

∂λ
(ω)|λ=0

is an even fun
tion of ω. If 2 ≤ l ≤ k − 1, and ̺λ(ω) is a C3
-fun
tion of

(λ, ω) ∈ [0, λ0]×S
d−1

, and we repla
e in the above hypothesis W1 by Wl, then

the same 
on
lusion holds.

Clearly, we 
ould have written, in the hypothesis of the theorem, that Kλ

is a star body, sin
e, by the other assumptions, Kλ
is a 
onvex body with

positive Gauss 
urvature for ea
h λ ∈ [0, λ0] (after possibly de
reasing λ0).

We observe that for the 
ase k = 1, and for the 
ase l = 0, we have the

theorems 
ited in the abstra
t, 
f. [2℄, Theorem 1, and [3℄, Corollary 3.2.

These assert that, in this 
ase, a
tually ea
h Kλ
is 
entered, whi
h is of 
ourse

a stronger statement than the statement of the theorem of this paper. There

is still one quermassintegral, namely Wk. However, this is, independently of

its argument, equal to the volume of the unit ball in R
k
, so, in this 
ase the

hypotheses of our theorem do not imply anything.

4 Proof

We begin with the following

Proposition ([3℄, Theorem 3.8). Let f : Sd−1 → R be a C1
-fun
tion (or,

more generally, a Lips
hitz fun
tion). Further, let, for ea
h ξ ∈ Sd−1
(or,

more generally, for almost all ξ ∈ Sd−1
), the equality

∫

ξ⊥∩Sd−1

∂f

∂ψ
(η, 0)dη = 0
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hold. Then f is an even fun
tion.

Proof of the Theorem. As in the proof of Theorem 3.1 of [3℄, we may

suppose k = d − 1. In fa
t, for any linear (k + 1)-subspa
e Lk+1 of R
d
, we

have that Kλ∩Lk+1 also satisfy the hypotheses of the theorem. Furthermore,

if for ea
h Lk+1, the restri
tion of the fun
tion

∂̺λ

∂λ
(ω)|λ=0

to Lk+1 is even, then also this fun
tion itself is even. So, from now on, let

k = d− 1.

Let t0 ∈ (0,∞) be so small that the 
losed ball about 0, of radius t0, is

ontained in ea
h Kλ

, where λ ∈ [0, λ0] (possibly de
reasing λ0). From now

on, let t ∈ (−t0, t0). This implies that K∩(ξ⊥+ tξ) is a ((d−1)-dimensional)


onvex body in ξ⊥ + tξ.

1. First we treat the 
ase l = 1.

Let us �x a point ξ ∈ Sd−1
, that we 
onsider as the north pole. Let Sλ(ξ, t)

denote the ((d − 2)-dimensional) surfa
e area of Kλ ∩ (ξ⊥ + tξ), 
onsidered
as a ((d− 1)-dimensional) 
onvex body in ξ⊥ + tξ. We have

Sλ(ξ, t) =

∫

ξ⊥∩Sd−1

dSλ(ξ, t) =

∫

ξ⊥∩Sd−1

rλ(ξ, η, t)d−2 1

〈η, nλ(η, t)〉
dη , (3)

where rλ(ξ, η, t) is the radial fun
tion of Kλ ∩ (ξ⊥ + tξ), with respe
t to the

�origin� tξ, and nλ(η, t) ∈ ξ⊥ ∩ Sd−1
is the outer normal unit ve
tor of the

surfa
e element dSλ(ξ, t) at η ∈ ξ⊥ ∩ Sd−1
, taken in ξ⊥ + tξ.

From now on, we 
onsider λ ∈ [0, λ0] as �xed, and drop the upper indi
es

λ. Also, to simplify the formulas, we omit those variables of our fun
tions,

whose omission does not lead to misunderstanding.

We determine

∂

∂t
S(ξ, t)|t=0 ,
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that equals 0 by the hypothesis of the theorem. We may di�erentiate under

the integral sign. We have

(∂/∂t)

(

rd−2 1

〈η, n(η)〉

)

=

(d− 2)rd−3(∂r/∂t)
1

〈η, n(η)〉
− rd−2 1

〈η, n(η)〉2
∂

∂t
〈η, n(η)〉 ,

(4)

and we have to evaluate this at t = 0.

Letting t = 0, i.e., by (1), ψ = 0, we have by (2) ∂t/∂ψ = ̺, hen
e

∂

∂t
=
∂ψ

∂t

∂

∂ψ
=

1

̺

∂

∂ψ
.

Therefore, (4) equals

(d− 2)rd−31

̺

∂r

∂ψ

1

〈η, n(η)〉
− rd−2 1

〈η, n(η)〉2
1

̺

∂

∂ψ
〈η, n(η)〉 .

Here the �rst term is, using r = ̺ (
f. (1)),

(d− 2)̺d−4 ∂̺

∂ψ

1

〈η, n(η)〉
, (5)

and the se
ond term is

−̺d−3 1

〈η, n(η)〉2
∂

∂ψ
〈n, n(η)〉 . (6)

Now it will be 
onvenient to write ̺ =: 1 + ε, where ε : Sd−1 → R is a

C2
-fun
tion, of C2

-norm tending to 0 for λ → 0. We 
al
ulate (5) and (6),

till terms of degree 1 in ε, but negle
ting terms of degree at least 2 in ε.

Then (5) be
omes

(d− 2)(1 + ε)d−4 ∂ε

∂ψ

1

〈η, n(η)〉
.
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Here, be
ause of the third fa
tor, we may write ε = 0 in the se
ond and

fourth fa
tors, getting

(d− 2)
∂ε

∂ψ
. (7)

On the other hand, (6) 
ontains (∂/∂ψ)〈η, n(η)〉 as a fa
tor. We are going

to show that this is an expression of se
ond order in ε. We have

n(η) =
(1,−∂ε/∂x1, . . . ,−∂ε/∂xd−1)

√

1 + (∂ε/∂x1)2 + . . .+ (∂ε/∂xd−1)
2
,

where x1, . . . , xd−1 are the 
oordinates on Sd−1
, in a neighbourhood of η,

given by the inverse of the exponential map at η ∈ Sd−1
. (The exponential

map maps ve
tors u, in a neighbourhood of the origin η of the tangent plane
of Sd−1

at η, to the point ω ∈ Sd−1
of the geodesi
 on Sd−1

, starting from

η, in the dire
tion of u, with ω being at a geodesi
 distan
e ‖u‖ from η.)
Therefore,

〈η, n(η)〉 =
1

√

1 + (∂ε/∂x1)
2 + . . .+ (∂ε/∂xd−1)

2
.

Clearly, it is enough to show that, e.g.,

∂

∂x1

1
√

1 + (∂ε/∂x1)
2 + . . .+ (∂ε/∂xd−1)

2
(8)

is of se
ond degree of smallness in ε. However, (8) equals

−
(∂ε/∂x1)(∂

2ε/∂x21) + . . .+ (∂ε/∂xd−1) (∂
2ε/(∂xd−1∂x1))

(

1 + (∂ε/∂x1)
2 + . . .+ (∂ε/∂xd−1)

2)3/2
, (9)

and so our 
laim is shown.
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Altogether, by (3) and (4), and, on the one hand, by (5) and (7), on the

other hand, by (6) and (9), we have that ((∂/∂t)S(ξ, t))|t=0 is, till terms of

degree 1 in ε,

(d− 2)

∫

ξ⊥∩Sd−1

∂ε

∂ψ
dη . (10)

Sin
e, for ea
h ξ ∈ Sd−1
, (10) equals 0, the Proposition implies that ε is even.

(Re
all that, by hypothesis, d ≥ 3.) Returning to the original notations,

∂̺λ

∂λ
(ω)|λ=0

is an even fun
tion of ω.

2. Now we treat the 
ase 2 ≤ l ≤ d− 2.

A
tually, we will allow 1 ≤ l ≤ d− 1. Of 
ourse, as stated after the theorem,

for l = d − 1 the statement of the theorem does not hold. However, we will

need this 
ase for our formulas.

We have, for 1 ≤ l ≤ d− 1, that

W λ
l (ξ, t) :=Wl(K ∩ (ξ⊥ + tξ)) =

(1/(d− 1))

∫

bd (K∩(ξ⊥+tξ))

Hl−1(ξ, t)dS
λ(ξ, t) .

(11)

Here Hl−1(ξ, t) is
(

d−2
l−1

)−1
times the (l− 1)'st elementary symmetri
 fun
tion

of the d− 2 prin
ipal 
urvatures κ1(ξ, t), . . . , κd−2(ξ, t) of bd (K ∩ (ξ⊥ + tξ)).
Cf., e.g., [4℄, p. 291.

We write κi(ξ, t) =: 1 + δi(ξ, t), where δi is of �rst order with respe
t to the

C2
-norm of ε = ̺− 1.
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Letting

P :=
(

d−2
l−1

)−1 ∑

1≤i1<...<il−1≤d−2

(1 + δi1) . . . (1 + δil−1
)

−
(

d−2
l−1

)−1 ∑

1≤i1<...<il−1≤d−2

(1 + δi1 + . . .+ δil−1
)

=
(

d−2
l−1

)−1 ∑

1≤i1<...<il−1≤d−2

(1 + δi1) . . . (1 + δil−1
)

−1− ((l − 1)/(d− 2))
d−2
∑

i=1

δi ,

(12)

we have that P is a linear 
ombination with 
onstant 
oe�
ients, of the

elementary symmetri
 fun
tions of the δi's, of degrees 2 to l − 1. Therefore,
∂P/∂t is a sum, whose summands are produ
ts of some ∂δi/∂t, and at least

one further δj. Here ∂δi/∂t is bounded by the C3
-assumption, and the δj 's

are of �rst order with respe
t to the C2
-norm of ε. Hen
e, when 
al
ulating

the derivative of (11), with respe
t to t, at t = 0, we 
an negle
t ∂P/∂t.
Hen
e, we may repla
e in (11) Hl−1 by

1 +
l − 1

d− 2

d−2
∑

i=0

δi ,

and this repla
ement will not a�e
t the 
al
ulation of the derivative of (11),

with respe
t to t, at t = 0.

We turn to the 
al
ulation of the derivative of (11), with respe
t to t, at
t = 0, whi
h has to be 0. As mentioned above, this equals

(1/(d− 1)) (∂/∂t)
∫

bd (K∩(ξ⊥+tξ))

dSλ(ξ, t)+

(l − 1)/ ((d− 1)(d− 2)) (∂/∂t)
∫

bd (K∩(ξ⊥+tξ))

(

d−2
∑

i=0

δi

)

dSλ(ξ, t) .
(13)

Here the �rst summand is, by 1,

d− 2

d− 1

∫

ξ⊥∩Sd−1

∂ε

∂ψ
dη .
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We are going to determine the se
ond summand. For this, put l = d − 1.
Then, as already mentioned, (11) is 
onstant, hen
e (13) equals 0. From this

we have

∂

∂t

∫

bd (K∩(ξ⊥+tξ))

(

d−2
∑

i=0

δi

)

dSλ(ξ, t) = −(d− 2)

∫

ξ⊥∩Sd−1

∂ε

∂ψ
dη .

Hen
e, for all l = 1, . . . , d− 1, we have that (13) further equals

d− 1− l

d− l

∫

ξ⊥∩Sd−1

∂ε

∂ψ
dη , (14)

whi
h equals 0. By the hypothesis of the theorem, we have l ≤ d− 2, hen
e

∫

ξ⊥∩Sd−1

∂ε

∂ψ
dη = 0 ,

for ea
h ξ ∈ Sd−1
. As in 1, this implies that

∂̺λ

∂λ
(ω)|λ=0

is an even fun
tion of ω.

5 Remark

Remark. Let λ0 ∈ (0,∞). Let K0 ⊂ R
d
be a 
entered 
onvex body, further

suppose that for ea
h λ ∈ (0, λ0], we have that Kλ
is a 
onvex body in R

d
,

with radial fun
tions ̺λ, for λ ∈ {0}∪(0, λ0] = [0, λ0]. Moreover, let ̺λ(ω) be
a C2

-fun
tion of (λ, ω) ∈ [0, λ0]× Sd−1
. We may ask whether some analogue

of our theorem holds. That is, suppose that for ea
h λ ∈ [0, λ0], and ea
h

linear (d − 1)-subspa
e Ld−1 ⊂ R
d
, the fun
tion y 7→ Wl(K

λ ∩ (Ld−1 + y))
has a maximum at y = 0. Then we may pose the question: is

∂̺λ

∂λ
(ω)|λ=0

10



an even fun
tion of ω? However, we will show that this question, even in

the simplest unsolved 
ase, i.e., for d = 3, and for W1, is untreatable by our

present methods.

For d−1 = 2 we 
an use, for the 
al
ulation of the perimeter ofKλ∩(ξ⊥+tξ),
the simpler formula ds2 = dr2 + r2dη2. Then the equality

(

∂

∂t
W1

[

(K ∩ (ξ⊥ + tξ))− tξ
]

)

|t=0 = 0


an be rewritten as

∫

S1

1
√

̺2 + (∂̺/∂η)2

(

∂̺

∂ψ
+

1

̺

∂̺

∂η

∂2̺

∂η∂ψ

)

dη = 0 . (15)

Let us write ̺λ = ̺0+ε. We retain in (15) the terms at most linear in ε, and
investigate this situation. Clearly, the terms of degree 0 in ε together give

the integral, on S1
, of an odd fun
tion, i.e., 0. Now we investigate the terms

of degree 1 in ε, in the expression under the integral sign in (15). These are

the following:

[

−
1

√

(̺0)2 + (∂̺0/∂η)2
1

(̺0)2
∂̺0

∂η

∂2̺0

∂η∂ψ

−
̺0

((̺0)2 + (∂̺0/∂η)2)3/2

(

∂̺0

∂ψ
+

1

̺0
∂̺0

∂η

∂2̺0

∂η∂ψ

)]

ε

+
1

√

(̺0)2 + (∂̺0/∂η)2
∂ε

∂ψ
+

[

1
√

(̺0)2 + (∂̺0/∂η)2
1

̺0
∂2̺0

∂η∂ψ

−
∂̺0/∂η

((̺0)2 + (∂̺0/∂η)2)3/2

(

∂̺0

∂ψ
+

1

̺0
∂̺0

∂η

∂2̺0

∂η∂ψ

)]

∂ε

∂η

+
1

√

(̺0)2 + (∂̺0/∂η)2
1

̺0
∂̺0

∂η

∂2ε

∂η∂ψ

=: Aε+B ∂ε/∂ψ + C ∂ε/∂η +D∂2ε/∂η∂ψ .

(16)
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Now, let us suppose that ̺λ(ω) is a C3
fun
tion of (λ, ω) ∈ [0, λ0]×S

2
. Then,

retaining in (15) the terms at most linear in ε, (15) be
omes, by integration

by parts,

∫

S1

[(

A−
∂C

∂η

)

ε+

(

B −
∂D

∂η

)

∂ε

∂ψ

]

dη = 0 . (17)

(We do not give the 
oe�
ients in this formula more expli
itly.) Of 
ourse,

the left hand side of (17) is a 
ontinuous linear operator in ε, for the C1
-

topology. But its solution (e.g., that the solutions among the C1
-fun
tions

would be just the even C1
-fun
tions) seems to be untreatable by our methods.
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