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Abstract

In this talk we give a survey of older results and some new results about the
following question: what type of polyhedra can be inscribed or circumscribed
to convex bodies in R
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1 Introduction

We begin with an unsolved
Problem. Let C ⊂ R

2 be a Jordan curve (a closed curve without self-intersections,
i.e., a homeomorphic image of the unit circle S1). Then does C contain all four
vertices of some square?

We will formulate the above question also as follows: does C have an inscribed
square. Let us observe, that a square in the plane is determined by four parameters,
and we have to satisfy four conditions (namely that the four vertices should lie on
C), therefore it makes sense to expect a positive answer to the question.

Definition. Let S ⊂ R
n be a surface, or K ⊂ R

n a convex body (i.e., a compact,
convex set with non-empty interior). We say that P is an inscribed polyhedron of
S, or of K, if each vertex of P lies on S, or on the boundary ∂K of K, respectively.

Observe that, if S bounds some domain, we do not require that P should lie in
that domain.
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Definition. Let K ⊂ R
n be a convex body. We say that P is a circumscribed

polyhedron of K, if K ⊂ P , and each (n − 1)-face of P has a common point with
∂K.

First we cite two old theorems.

Theorem. ([Em 13], [Em 15], [Zi], [Ch]) Let K ⊂ R
2 be a convex body. Then K

admits an inscribed square.

Theorem. ([Ka], [YY]) Let K ⊂ R
n be a convex body. Then K admits a circum-

scribed cube.

The proof of the first of these theorems is essentially geometrical. The continuity
arguments it uses are trivial: if a continuous function on an interval assumes both
positive and negative values, then it assumes 0 as well. On the other hand, the
second of this theorems is proven in essentially a topological way. Namely for any
n-frame in R

n at the origin there exists a rectangular parallelepiped, circumscribed
to K, and having edges parallel to the vectors of the n-frame. Then with a suitable
rotation of the n-frame we have to achieve that the edge-lengths of this rectangular
parallelepiped become equal. These edge-lengths are the widths of the thinnest
parallel strips containing the convex body, bounded by hyperplanes with normals
the vectors of the n-frame. The proof of this theorem then goes in the following
way: any continuous function Sn−1 → R assumes equal values for the vectors of a
suitably rotated copy of our n-frame.

In the following we first give planar results, then higher dimensional ones, and
afterwards we turn to an analogous covering problem. Finally we say some words
about the techniques used in the proofs of the new results.

2 The planar case

Theorem. Let C ⊂ R
2 be a Jordan curve. Then we have the following statements.

(1) ([Me 80], [KK]) C admits an inscribed (positively) similar copy of any tri-
angle.

(2) ([Me 84], attributed to H. E. Vaughan) C admits an inscribed rectangle.
(3) ([Mi], [Ni]) C admits an inscribed rhomb, even with one side of any pre-

scribed direction.
(4) ([Ni]) C admits an inscribed parallelogram, with one side of any prescribed

direction, and with any prescribed ratio of the length of this side to the length
of the other side.

Under stronger hypotheses one can assert more.

Theorem. Let C ⊂ R
2 be a Jordan curve, which is a C1-submanifold of R

2. Then
we have the following statements.

(1) ([Šn], [St]) C admits an inscribed square.
(2) ([Gri]) C admits an inscribed rectangle, with any prescribed ratio of the

lengths of the sides.

In the converse direction, we may ask what can be said about a polygon, if it
admits inscribed similar copies to any plane convex body.
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Theorem. ([Me 81]) Let P ⊂ R
2 be a convex polygon, such that each plane convex

body K ⊂ R
2 admits an inscribed similar copy of P . Then P is a triangle, or a

quadrangle having a circumcircle.

By (1) of the first theorem in §1, all triangles admit inscribed similar copies
to any plane convex body. However, by [KW], Exercise 11.5, not all quadrangles,
having circumcircles, admit inscribed similar copies to each plane convex body
(while squares do admit, in virtue of the first theorem of §0). Therefore they raised
the following

Question. ([KW], Problem 11.1) Let P ⊂ R
2 be a convex quadrangle, having a

circumcircle, such that P is not a square. Then does there exist a plane convex
body K ⊂ R

2, such that K does not admit an inscribed similar copy of P?

To this question answers our first theorem, in the negative:

Theorem 1. Let K ⊂ R
2 be a plane convex body. Then K admits an inscribed

rectangle, with any prescribed ratio of the side lengths.

3 The case of R
3 and R

4

Theorem. ([BR]) Let K ⊂ R
3 be a convex body. Then K admits an inscribed

parallelepiped.

Theorem. ([BGKvL]) Let K ⊂ R
4 be a centrally symmetric convex body. Then

K admits an inscribed parallelepiped.

Now there follows a negative result.

Theorem. ([Bi]) There exists a convex body K ⊂ R
3, that admits no inscribed

rectangular parallelepiped (in particular, no inscribed cube).

This theorem is the more interesting, because a rectangular parallelepiped in R
3

is determined by nine parameters, while only eight conditions are to be satisfied
(namely that all vertices should lie on ∂K).

However, in the centrally symmetric case we have a positive statement for rect-
angular parallelepipeds, thereby supplementing the above given theorems. This is
given in our next

Theorem 2. Let K ⊂ R
3 be a centrally symmetric convex body. Then K admits

an inscribed cube, and even an inscribed similar copy of any prescribed rectangular
parallelepiped.

4 The case of R
n

First we will consider the n-dimensional analogue of the triangle, i.e., the simplex.

Theorem. ([Ma 92]) Let K ⊂ R
n be a convex body. Then K admits an inscribed

similar copy of any prescribed simplex.

Under stronger hypotheses one can assert more.
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Theorem. ([Gro], [KN 73], [KN 75], [Ma 87]) Let K ⊂ R
n be a convex body, with

∂K a C1-submanifold of R
n, further let Σ ⊂ R

n be a simplex. Then there exist
λ > 0 and x ∈ R

n such that the homothetic copy λΣ + x of Σ is inscribed to K.

Now we turn to an n-dimensional analogue of the parallelogram, namely to the
parallelepiped. Since parallelepipeds in R

n are determined by n2 + n parameters,
while have 2n vertices, one cannot expect that a generic convex body admits an
inscribed parallelepiped (namely then 2n conditions ought to be satisfied). This led
[BGKvL] and [KW] to pose the following

Question. ([BGKvL], [KW] Problem 11.7) Does there exist an n0 such that for
all n ≥ n0 there exists a (centrally symmetric) convex body K ⊂ R

n admitting
no inscribed parallelepiped? Is it even true, that for n ≥ n0 ”most” (centrally
symmetric) convex bodies in R

n do not admit an inscribed parallelepiped?

Now we define what is meant by ”most” convex bodies. Before this we recall that
the set of all convex bodies in R

n, endowed with the Hausdorff metric (Blaschke
metric) is a locally compact metric space Cn, thus satisfies the Baire category
theorem (i.e., in Cn a countable union of nowhere dense sets cannot have an interior
point). Then one can consider as ”large” sets in Cn the residual sets, i.e., those
whose complement is a countable union of nowhere dense sets.

Definition. We say that a property is enjoyed by ”most” convex bodies in R
n, if

the set of convex bodies in R
n having that property is a residual set in Cn.

Our next theorem answers this question in the expected, positive way:

Theorem 3. There exists an n0, such that for any n ≥ n0 ”most” (centrally
symmetric) convex bodies in R

n do not admit inscribed parallelepipeds. Actually,
n0 = 5 (n0 = 7 in the centrally symmetric case) will do.

Here the concept of ”most” centrally symmetric convex bodies is defined in
analogy with the case of all convex bodies. Still we note that in both cases the
given value of n0 is the smallest dimension, such that the number of conditions to
be satisfied is larger than the number of parameters (so here the heuristic works).

4 Universal covers

The concept ”dual” to inscribed polyhedra is the concept of circumscribed poly-
hedra. Here we will depart from this concept a bit further, and will consider
polyhedra containing some sets.

Definition. We say that a set C ⊂ R
n is a universal cover in R

n if, for each set
X ⊂ R

n, of diameter at most 1, there exists a positively congruent copy C ′ of C,
such that X ⊂ C ′.

Of course, a unit ball is a universal cover in R
n. However, one can assert more:

Theorem. ([Ju 01], [Ju 10]) The circumball of a regular simplex in R
n, of unit

edges (that has radius
√

n/(2n + 2)), is a universal cover in R
n (and is the smallest

ball that is a universal cover in R
n).

Another universal cover is given by the following
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Theorem. ([Pá]) A regular hexagon in R
2, with distance of opposite sides being

equal to 1, is a universal cover in R
2.

Since this regular hexagon is inscribed to the circle given in the previous theorem
for n = 2, this theorem is a sharpening of the planar case of the previous theorem.

A generalization of the second theorem to R
n has been conjectured by [Ma 94].

To state this conjecture, we have to introduce some notations. Let Σn ⊂ R
n be

a regular simplex of unit edges. Let its vertices be denoted by v1, ..., vn+1. Let
Sij (1 ≤ i < j ≤ n + 1) be the parallel strip of width 1, bounded by the (n − 1)-
planes orthogonal to the edge [vi, vj] and passing through vi and vj , respectively.
Finally, let us put Cn =

⋂

1≤i<j≤n+1
Sij . Clearly, for n = 2, C2 is the hexagon

from the last theorem.

Conjecture. ([Ma 94]) The set Cn ⊂ R
n is a universal cover in R

n.

Our next theorem answers this conjecture for R
3 in the positive way:

Theorem 4. The set C3 ⊂ R
3, i.e., a rhombic dodecahedron, with distance of the

opposite faces being equal to 1, is a universal cover in R
3.

As a possible application, we point out the following. The so called Borsuk
problem, in R

3, askes the following. Let X ⊂ R
3 be an arbitrary set of diameter at

most 1. Then is it possible to cover X with four sets X1, ..., X4 ⊂ R
3, of diameters

diamXi strictly less than 1? This question has been answered positively, by several
authors. The sharpest published result is due to [Grü], who proved that one can
attain diamXi ≤ 0.989. For his proof he applied another universal cover, namely
the regular octahedron, with distance of the opposite faces being equal to 1. Then
he truncated this octahedron, still obtaining a universal cover, and decomposed this
new universal cover to four sets of diameters at most 0.989. Since intuitively our
rhombic dodecahedron seems to be a ”smaller” set than this octahedron, it might
be possible that a similar procedure applied to the rhombic dodecahedron would
yield a substantially sharper estimate.

5 Methods of proofs of the new results

An interesting question, to which our methods did not apply, is one stated in
[KW]:

Question. ([KW], Problem 11.6) Let K ⊂ R
3 be a convex body. Then does K

admit an inscribed regular octahedron?

Lastly we say some words about the proofs of our theorems.

Partly we have used some theorems of [Gri], who in turn has used intersec-
tion number techniques. We elucidate his techniques on an example, of inscribing
squares to Jordan curves C in R

2, that are C1-submanifolds of R
2. One has to find

four points, that satisfy two conditions: (1) they are the vertices of some square,
and (2) all lie on C. In other words, one has to prove that two 4-submanifolds
M1, M2 ⊂ R

8 have a non-empty intersection, where M1 is the submanifold of all
ordered quadruples of points in R

2, forming the vertices of some square (in positive
orientation, say), and M2 = C4. Here M1 depends on the configuration looked for,
while M2 depends on the surface (curve C) we look the configuration on.
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Moreover, M1 and M2 are of complementary dimensions, and both M1 and M2

are orientable manifolds, that makes possible to define their (signed) intersection
number, provided they are in generic position. For a suitably chosen ”test” sur-
face one can readily determine this intersection number, which should be non-zero,
and then one still has to prove that this intersection number is invariant under
deformations of the surface.

Also we have used techniques from algebraic topology. This we elucidate on the
example already mentioned in §0, that of circumscribing cubes to a convex body
K ⊂ R

3 (although we actually use this technique for another theorem). There we
have associated to a 3-frame at the origin an ordered triple of real numbers, namely
the edge-lengths of the rectangular parallelepiped circumscribed to K, with edges
parallel to the vectors of the 3-frame.

Thus we have a map from the special orthogonal group SO(3) to R
3. We have

to show that its image intersects the diagonal of R
3. Of course, this is not true for

an arbitrary continuous map SO(3) → R
3. However, we have a rather large group

acting on the set of our 3-frames, and correspondingly we can define an action of
the same group on R

3, in such a way that our map becomes an equivariant map
SO(3) → R

3.
Then the question of nonexistence of equivariant maps with image avoiding the

diagonal can be reduced to the question that a certain vector bundle does not
have a nowhere 0 section, which question in turn can be settled by calculating top
Stiefel-Whitney classes.

Lastly, with non-inscribability of parallelotopes to generic convex bodies in R
n,

for n sufficiently large, we have proceded as follows. Simple calculations by poly-
nomials show that already a generic cubic surface (a set of the form p−1(0) where
p : R

n → R is a generic polynomial of third degree, that of course depends only
on finitely many parameters) does not admit an inscribed parallelepiped. More
exactly, the set of cubic surfaces, admitting an inscribed parallelepiped, is a set
of ”smaller dimension” than the set of all cubic surfaces. (Therefore was it neces-
sary to bound the degree, since for all convex bodies, both dimensions are infinite.)
Then, choosing a generic cubic polynomial p sufficiently close to

∑n

i=1
x2

i − 1, we
find a convex body K close to the unit ball, with ∂K ⊂ p−1(0), hence K does not
admit an inscribed parallelepiped.
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schliesst, J. Reine Angew. Math. 123 (1901), 241-257, Jahrbuch Fortschr. Math.
32 (1901), 296
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[Šn] L. G. Šnirel’man, On certain geometrical properties of closed curves (in
Russsian), Sbornik rabot mat. razdela sekcii est. i točnyh nauk Komakademii,
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[Zi] K. Zindler, Über konvexe Gebilde II, Monatshefte Math. Phys. 31 (1921),
25-56, Jahrbuch Fortschr. Math. 48 (1921-1922), 833

Mathematical Institute, Oxford University, St. Giles’ 24-29, Oxford OX1 3LB,

United Kingdom

Mathematical Institute of the Hungarian Academy of Sciences, H-1364 Budapest,

Pf. 127,

Hungary
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