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Abstract. There are determined sharp lower bounds for the number of shadow–
boundaries, and illuminated regions of a convex body in En, exhibiting extremal

properties of the simplex and the parallelotope, respectively of the j–fold both way

infinite cylinder, over an (n − j)–simplex and an (n − j)–parallelotope.

1. Introduction

Kleinschmidt and Pachner [6] introduced the notion of shadow–boundary of a
convex polytope P ⊂ En with respect to a point x ∈ En \ P as the intersection
of P and the union of all its supporting rays with apex x. By analogy, H.Martini
[8] considered the notion of shadow–boundary of a convex polytope P ⊂ En with
respect to a direction l in En as the intersection of P and the union of all lines
having direction l and supporting K.

The shadow–boundary of a convex polytope P ⊂ En with respect to a point
z is called sharp provided z is not contained in any facet hyperplane; i.e., in the
affine hull of a facet of P . Similarly, the shadow–boundary of P with respect to a
direction l is called sharp if the direction l is not parallel to any facet hyperplane
of P .

In [6], [7], [8] upper and lower bounds on the numbers of sharp shadow–bound-
aries of a convex polytope (with respect to exterior points, and directions) with a
fixed number of facets have been obtained.

Below the notions of shadow-boundaries and sharp shadow–boundaries are ex-
tended for the case of a convex body. There are determined lower bounds for the
numbers of shadow–boundaries, sharp shadow–boundaries, and illuminated regions
of a convex body in En.

2. Basic notions

The usual abbreviations aff, bd, int, relint, dim, card are used for affine hull,
boundary, interior, relative interior (taken in the affine hull), dimension, and car-
dinality, respectively. The notations [x, y], ]x, y[, 〈x, y〉, [x, y〉 mean, respectively,
closed line interval, open line interval, the line passing through different points x, y,
and the (closed) ray with apex x passing through the point y. For any (oriented)
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direction l in En and for any point x ∈ En, l(x) means the ray with apex x having

direction l, and l̃(x) means the ray with apex x having the direction opposite to l.
Let K be a convex body (a proper closed convex set with nonempty interior) in

the Euclidean space En. (When we speak about convex polyhedral sets, we always
will involve the same properties.) Further CK denotes the characteristic cone of K,
i.e., CK = ∩{K − x : x ∈ K}. A direction l in En is called exterior for K if the ray

l̃(0) with apex 0 having the direction opposite to l does not belong to CK .
The notions of shadow–boundary (with respect to an exterior point or to an

exterior direction) can be obviously extended to the case of a convex body K ⊂ En.
Below we denote by Sz(K) the shadow–boundary of K with respect to an exterior
point z, and by S′

l(K) the shadow–boundary of K with respect to an exterior
direction l. Denote by σ(K) the number of all pairwise different nonempty shadow–
boundaries of K with respect to exterior points (put σ(K) = ∞ if their number
is infinite). Similarly, denote by σ′(K) the corresponding number of all pairwise
different nonempty shadow–boundaries of K with respect to exterior directions.

The shadow–boundary Sz(K) with respect to a point z is called sharp provided
card(l(z)∩K) ≤ 1 for any ray l(z) supporting K. By analogy, the shadow–boundary
S′

l(K) with respect to a direction l in En is called sharp if card(m ∩ K) ≤ 1 for
any line m parallel to l and supporting K. Denote by δ(K) the number of all
pairwise different nonempty sharp shadow–boundaries of K with respect to exterior
points (put δ(K) = ∞ if their number is infinite). Similarly, denote by δ′(K) the
corresponding number of all pairwise different nonempty sharp shadow–boundaries
of K with respect to exterior directions.

One can define the shadow–boundary Sz(K) of a convex body K ⊂ En with
respect to a point z ∈ bdK word by word as for the case z ∈ En \ K, except
for n = 1, when we define it as {z}. We denote by σb(K) the number of all
pairwise different shadow–boundaries of K, different from bdK, with respect to
points z ∈ bdK (put σb(K) = ∞ if their number is infinite). Note that these are
nonempty.

Together with shadow-boundaries we consider illuminated regions of K. A point
x ∈ bdK is called illuminated by a point z ∈ En \K provided ]z, x[∩K = ∅ and the
ray [z, x〉 passes at x to intK (this is a slight variant of the notion of illumination
according to L. Fejes Tóth [3]). For any point z ∈ En \ K, the set

Iz(K) := {x ∈ bdK : x is illuminated by z}

is called the illuminated region of K with respect to z. Denote by γ(K) the number
of all pairwise different illuminated regions of K, different from bdK, with respect
to exterior points (put γ(K) = ∞ if their number is infinite).

An exterior direction l in En illuminates a boundary point x of a convex body
K ⊂ En if the ray l̃(x) intersects K at x only, and l(x) passes at x to intK. The set
I ′

l(K) of all points x ∈ bdK illuminated by l is called the illuminated region of K
with respect to the direction l. Denote by γ′(K) the number of all pairwise different
illuminated regions of K different from bdK, with respect to exterior directions
(put γ′(K) = ∞ if their number is infinite).

Lastly, let ε(K) denote the number of all different ordered pairs (Sz(K), Iz(K)),
where z ∈ En \ K and Sz(K) 6= ∅ (and thus Iz(K) 6= bdK). (Put ε(K) = ∞ if
their number is infinite.)

Observation. Further, unless specified otherwise, any shadow–boundary and any
illuminated region of a convex body K ⊂ En is considered relative to exterior points
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and exterior directions only. In this connection the respective word ”exterior” will
be omitted.

Note that any two of the numbers σ(K), σ′(K), δ(K), δ′(K), σb(K), γ(K),
γ′(K), ε(K) can be different. For example, if K is a regular hexagon in the plane,
then σ(K) = 45, σ′(K) = 6, δ(K) = 15, δ′(K) = 3, σb(K) = γ′(K) = 12,
γ(K) = 18, ε(K) = 48. Further, if K ⊂ E3 is a pyramid over a square, σb(K) = 18,
γ′(K) = 22.

3. Main Results

Theorem 1. For a convex body K ⊂ En, the following conditions are equivalent:

1) K is polyhedral,

2) σ(K) < ∞,

3) σ′(K) < ∞,

4) δ(K) < ∞,

5) δ′(K) < ∞,

6) σb(K) < ∞,

7) γ(K) < ∞,

8) γ′(K) < ∞,

9) ε(K) < ∞.

Theorem 2. For a convex body K ⊂ En which is not a parallel slab, we have:

σ′(K) ≤ σ(K), δ′(K) ≤ δ(K),

max{γ′(K), σb(K)} ≤ γ(K), δ(K) ≤ min{σ(K), γ(K)},

δ′(K) ≤ min{σ′(K), γ′(K)}, max{σ(K), γ(K)} ≤ ε(K).

Theorem 3. Let K ⊂ En be a convex body having a j–dimensional characteristic
cone (0 ≤ j ≤ n − 2). Then the following hold:

1) σ(K) ≥ (3n−j+1 − 2n−j+2 + 1)/2;

1’) σ′(K) ≥ (3n−j − 1)/2;

2) δ(K) ≥ 2n−j − 1;

2’) δ′(K) ≥ 2n−j−1;

3) σb(K) ≥ 2n−j+1 − 2;

4) γ(K) ≥ 2n−j+1 − 2;

4’) γ′(K) ≥ 2n−j+1 − 2;

5) ε(K) ≥ 3n−j+1 − 2n−j+2 + 1.

Equality in any of 1), 2), 3), 4), 4’), 5) holds if and only if K is a j–fold both
way infinite cylinder over an (n − j)–simplex. Equality in any of 1’), 2’) holds if
and only if K is a j–fold both way infinite cylinder over an (n − j)–parallelotope.

Note that for j = n, for K a half–space all above quantities are 0; for j = n− 1,
for K a parallel slab

σ(K) = σ′(K) = δ(K) = δ′(K) = ε(K) = 0,
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σb(K) = γ(K) = γ′(K) = 2,

and evidently each of these is the minimum value for the given j. (For γ′(K), where
K is polyhedral, use the direction of a segment with endpoints in the relative interior
points of two facets.) Moreover, one easily sees that these are the only convex bodies
for j = n, respectively j = n − 1, for which these minima are attained.

The assertions about σ′(K) and δ′(K) formulated in Theorem 3 are implied by
the following generalization of Satz 1 from [8]. This can be proved by the method
of [8], Satz 1 (and [7], Theorem 5), noting for δ′(K) that the dimension of the
intersection of all facet hyperplanes of K and the infinite hyperplane (in the n–
dimensional projective space) is less than the dimension of the characteristic cone
of K, and for σ′(K) using beside this Lemma 3, 2) and the sharp lower bounds
for the number of projective cells of any given dimension in arrangements of m
hyperplanes with empty intersection in the projective k–space, given by [9].
Theorem 4. Let a convex polyhedral set K ⊂ En have exactly m (m > 1)
pairwise non–parallel facets, and let it have j–dimensional characteristic cone (thus
j ≥ n − m). Then the following holds.

1) If 0 ≤ j ≤ n − 2, then

σ′(K) ≥
(

3n−j−2(4m − 4n + 4j + 9) − 1
)

/2,

δ′(K) ≥ 2n−j−2(m − n + j + 2);

equality in any of these inequalities holds if and only if K is a j–fold both way
infinite cylinder over an (n− j − 2)–fold finite prism over a bounded planar convex
polygon with exactly m − n + j + 2 pairwise non–parallel sides.

2) If j = n − 1 (respectively, j = n), then σ′(K) ≥ 2m and δ′(K) ≥ m (respec-
tively, σ′(K) ≥ 2m − 1 and δ′(K) ≥ m − 1); equality in any of these inequalities
holds if and only if K is an (n − 2)–fold both way infinite cylinder over an un-
bounded planar convex polygonal set with exactly m pairwise non–parallel sides,
having one pair of parallel sides (respectively, with no pair of parallel sides). �

There remains the problem, analogous to Theorem 4, to find the minima of σ(K),
σb(K), γ(K), γ′(K), ε(K), if beyond j also the number of facets of K is given (for
δ(K) this is done in [7, Theorem 5]).

4. Auxiliary lemmas

First we repeat some considerations of [6] and [8], and give some considerations of
[7] in a more detailed way, in our slightly more general context. For a convex body
K ⊂ En, let z ∈ En \K, and let a ray l(z) intersect bd K. Then either aff l(z) is a
supporting line to K, or else card

(

l(z) ∩ bdK
)

≤ 2, and for x ∈ l(z) ∩ bdK either
l(z) passes at x from int(En \K) to int K, or conversely (depending on the position
of the ray l(x) relative to the supporting cone of K at x). Thus (bdK) \ Sz(K) is
the union of two open (in bdK) sets, namely

Iz(K) = {x ∈ bdK : [z, x〉 passes at x from int(En \ K) to intK},

Dz(K) = {x ∈ bdK : [z, x〉 passes at x from intK to int(En \ K)}.

The set Iz(K) is nonempty and connected. In fact, let x1, x2 ∈ Iz(K) (actually,
it suffices to suppose x1 ∈ Iz(K), [z, x2] ∩ K = {x2}). Then for any λ ∈ ]0, 1[
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and for the direction l directly parallel to λ(x1 − z) + (1 − λ)(x2 − z), the ray
l(z) intersects bd K first in a point x, that belongs to Iz(K). Similarly for the case
z ∈ En\K, [z, x1]∩bd K = {x1}, [z, x2]∩bd K = {x2}, one has [z, x]∩bdK = {x}
with the above λ, l and x. Therefore we have

Sz(K) ⊃ bd Iz(K) ⊃ {x ∈ Sz(K) : ]z, x[∩bdK = ∅}

(bd Iz(K) taken relative to bdK). If K is bounded then also Dz(K) is nonempty
and connected. In this case Sz(K) determines the unordered pair {Iz(K), Dz(K)},
namely as the set of the connected components of (bd K) \ Sz(K).

However, for K unbounded, Dz(K) may be empty, and also may have several
connected components. E. g. for K ⊂ E2 and z ∈ E2 given in (ξ, η) coordinate
system by

K = {(ξ, η) : ξ ≥ 0, η ≥ 0, ξ + η ≥ 3}, z = (1, 1),

Dz(K) has two components. Already in E3, Dz(K) can have any finite number of
components. Departing from a one–way infinite cone over a convex 2k–gon F , let
us cut its apex off by the plane of F . Thus we obtain a convex polyhedral set K,
and we choose for z the apex of the originally considered cone. Then the facets Fi

of K lying on the boundary of the cone lie in Sz(K). By a small rotation in suitable
sense of each facet plane affFi about the corresponding edge of F , we can achieve
that for the obtained convex polyhedral set K ′ with facets F, F ′

i (in corresponding
notations), every second F ′

i will have its relative interior in Dz(K
′), and all other

F ′

i -s in Iz(K
′). Thus Dz(K

′) has exactly k components.
Therefore we only conjecture that also for unbounded K the set Sz(K) deter-

mines the pair {Iz(K), Dz(K)}.
Anyway, for K polyhedral and Sz(K) sharp, Sz(K) determines {Iz(K), Dz(K)}.

Namely if (bdK) \ Sz(K) is connected, it equals Iz(K), and then Dz(K) = ∅. If
(bdK) \ Sz(K) has two connected components, then one is Iz(K), the other is
Dz(K). If (bdK) \ Sz(K) has at least three connected components (which implies
that K is not a parallel slab and thus bd K is connected), then one is Iz(K),
and let those contained in Dz(K) (which are finitely many) be D1, . . . , Dk, where
k ≥ 2. The connectedness of bd K implies that for any Di and any facets Fi,
F ′

i of K, such that relintFi ⊂ Di and relint F ′

i ⊂ Iz(K), there exists a sequence
Fi = Fi,1, Fi,2, . . . , Fi,l = F ′

i of facets of K, such that

dim(Fi,j ∩ Fi,j+1) = n − 2 for all 1 ≤ j ≤ l − 1.

Let j0 be the minimal j such that relint Fi,j ⊂ Iz(K). By induction one sees that
for each j < j0, thus in particular, for j = j0 − 1 we have

relint(Fi,j−1 ∩ Fi,j) ⊂ Dz(K), thus relint(Fi,j−1 ∩ Fi,j) ⊂ Di.

Hence relint Fi,j ⊂ Di. Thus

relint Fi,j0−1 ⊂ Di, relintFi,j0 ⊂ Iz(K), dim(Fi,j0−1 ∩ Fi,j0) = n − 2.

However, for i1 6= i2 there are no facets Fi1 , Fi2 of K, such that

relint Fi1 ⊂ Di1 , relint Fi2 ⊂ Di2 , dim(Fi1 ∩ Fi2) = n − 2.
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Thus in this case the sharp shadow boundary Sz(K) actually determines even Iz(K)
(as the unique connected component of (bdK) \ Sz(K), neighbourly to all other
components in the above sense).

Let now l be an exterior direction for K. In this case

{

I ′

l(K) = {x ∈ bdK : l(x), respectively l̃(x) pass at x to intK,

respectively int(En \ K)}.

Let

{

D′

l(K) = {x ∈ bdK : l(x), respectively l̃(x) pass at x to int(En \ K),

respectively intK}.

Then, depending on whether the direction opposite to l is an exterior direction
for K or not, we have that both I ′

l(K), D′

l(K) are nonempty and connected, or
I ′

l(K) is nonempty and connected and D′

l(K) = ∅. Moreover,

S′

l(K) ⊃ bd I ′

l(K) ⊃
{

x ∈ S′

l(K) : l̃(x) ∩ K = {x}
}

(bd I ′

l(K) taken relative to bdK). (For these observe that for any two directed lines
of direction l, one passing into, respectively out of int K (or K), the other passing
into, respectively out of K, any further parallel, similarly directed line strictly
between them passes into, respectively out of int K (or K).) Thus S′

l(K) determines
the unordered pair {I ′

l(K), D′

l(K)}, as the set of the connected components of
(bdK) \ S′

l(K), or as {(bdK) \ S′

l(K), ∅}.
From the above statements on the boundary of the illuminated domain there

follows readily
Lemma 1. Let a shadow boundary Sz(K) (respectively, S′

l(K)) be sharp. Then
Sz(K) = bd Iz(K) (respectively, S′

l(K) = bd I ′

l(K)), relative to bdK. �

Lemma 2. If a shadow-boundary Sz(K) (respectively, S′

l(K)) is nonempty, then
in any neighbourhood of the point z (respectively, of the direction l), there is a point
v (respectively, a direction m) such that the shadow–boundary Sv(K) (respectively,
S′

m(K)) is nonempty and sharp.
Proof. The assertion about the sharpness follows immediately from [5] and [1],

respectively: the point–set union A (respectively, the set B of directions) of the
lines determined by the line segments on the boundary of a convex body in En has
σ–finite (n−1)–dimensional (respectively, (n−2)–dimensional) Hausdorff measure.
Thus A (respectively, B) contains no nonempty open set in En (respectively, in
the space of directions, with the natural topology). So it suffices to show that
any neighbourhood of z (respectively, of l) contains some nonempty open set G
(respectively, H), such that for any v ∈ G (respectively, m ∈ H), we have Sv(K) 6= ∅
(respectively, S′

m(K) 6= ∅).
Let us choose y ∈ Sz(K). Then K has a supporting cone Ky at y, and z is an

exterior or boundary point of Ky.
1) If z is an exterior point of Ky, then any point v in a neighbourhood of z is an

exterior point of Ky, thus y ∈ Sv(K), and hence Sv(K) 6= ∅.
2) If z ∈ bdKy, then in a neighbourhood of z choose a point v ∈ (intKy) \ K

(note that by z /∈ K, any open neighbourhood of z intersects (intKy) \ K; their
intersection can be chosen for G). Then z ∈ Dv(K), thus Dv(K) 6= ∅. Also we have
Iv(K) 6= ∅.
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If Sv(K) = ∅, then bdK is the union of its two disjoint, nonempty relatively
open subsets U , V , i.e., bdK is disconnected. Therefore K is a slab. However a
slab admits no nonempty shadow–boundary Sz(K). This contradiction shows that
Sv(K) 6= ∅.

The case of directions is analogous, choosing in case 2) an exterior direction
m such that the ray m̃(y) points from y to the interior of Ky, and noting that
I ′

m(K) 6= ∅. �

Let K ⊂ En be a convex polyhedral set. Let AE(K), respectively AP (K) denote
the arrangement of the facet hyperplanes of K in En, respectively in the projective
n–space, and let A∞(K) denote the arrangement, which is the trace of AP (K) on
the infinite hyperplane. We always consider the cells of arrangements as relatively
open.

It is known ([6], [8]) that for a convex polyhedral set K ⊂ En, which is not a
parallel slab, one has:

1) δ(K) equals the number of the projective n–cells disjoint to intK, in the
arrangement AP (K);

2) δ′(K) equals the number of those projective (n− 1)–cells in the arrangement
A∞(K), which are different from the intersection of the infinite hyperplane and all
open outer half–spaces bounded by the facet hyperplanes of K (i.e., the set of those
directions l, which themselves or their opposites illuminate each facet of K).

Denoting by K̃ the intersection of all closed outer half–spaces of the facet hy-
perplanes of K (if this is not empty, or, equivalently, if its interior is not empty),
we have similarly

Lemma 3. Let K ⊂ En be a convex polyhedral set, which is not a parallel slab.
We have

1) if K is compact, σ(K) equals the number of those projective cells in the
arrangement AP (K), which do not lie in K or in the infinite hyperplane;

2) σ′(K) equals the number of those projective cells in the arrangement A∞(K),
which are different from the intersection of the infinite hyperplane and all facet
hyperplanes of K (if this is not empty) and also from the intersection of the infinite
hyperplane and all open outer half–spaces bounded by the facet hyperplanes of K
(if this is not empty);

3) σb(K) equals the number of all those faces of K, of dimensions 0, 1, . . . , n−1,
which are different from the unique minimal face of K, of dimension in {0, 1, . . . , n−
1} (if it exists);

4) γ(K) equals the number of those Euclidean n–cells in the arrangement AE(K),

which are different from int K and also from int K̃ (if this is not empty);

5) γ′(K) equals the number of those unbounded Euclidean n–cells in the ar-
rangement AE(K), which contain an unbounded part of some ray with apex some

interior point of K, and are different from intK, and also from int K̃ (if this is not
empty);

6) ε(K) equals the number of those Euclidean cells in the arrangement AE(K),

which are not contained in K and are different from int K̃ (if this is not empty).

Proof. 1) As we have seen above, for K compact, Sz(K) determines Iz(K) and
Dz(K), up to order. Thus Sz(K) determines — beside the set of facets of K lying
in Sz(K) — the set of facets of K on whose interior side z lies, and the set of
facets of K on whose exterior side z lies, up to order. That is, Sz(K) determines in
which projective cell z lies, in the arrangement AP (K). Point z cannot lie in K, by
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definition, and also cannot lie in the infinite hyperplane. Conversely, without using
compactness of K, if we know in which projective cell z lies (subject to the above
restrictions), then Sz(K) is uniquely determined, namely it is the union of the facets
of K whose hyperplanes contain the cell containing z, and of the boundary of the
union of the facets of K on whose exterior side the cell containing z lies (or of those
facets of K on whose interior side the cell containing z lies).

2) The arguments in 1), applied to a light source a direction l rather than a point
z, prove the statement of 2). We have to exclude cells consisting only of directions

l which satisfy both l(0) ⊂ (int CK) ∪ (−CK) and l̃(0) ⊂ (intCK) ∪ (−CK). These
directions correspond just to the points of the two excluded projective cells.

3) If the light source z lies on bdK, then Sz(K) is the union of the faces of K
containing z, which is uniquely determined by the face F of K containing z in its
relative interior. Further, for faces F1 6= F2 of K and z1 ∈ relint F1, z2 ∈ relintF2,
the respective unions are different, and Sz(K) = bdK if and only if F is the
minimal face of K.

4) Let us consider an illuminated region Iz(K) 6= bdK. If we move z towards
some generic interior point of K through a small distance, then the illuminated
region remains the same, and z does not get to any facet hyperplane of K. Further,
if u, v ∈ En \K do not lie on any facet hyperplane of K, then Iu(K) = Iv(K) if and
only if u, v belong to the same open Euclidean n–cell in the arrangement AE(K).
By definition z /∈ K, and, since Iz(K) = bdK is excluded, z does not belong to

the (eventual) cell int K̃.
5) Similarly as in 4), for an illuminating direction l we choose an illuminating

point z sufficiently far on a ray l̃(x0), where x0 is a generic point of intK. Then
I ′

l(K) = Iz(K). All sufficiently far such points z lie in an unbounded open Euclidean
n–cell of the arrangement AE(K). However only such Euclidean n–cells can arise

this way, which contain an unbounded part of the ray l̃(x0), and which are different

from intK and int K̃.
6) Proceed analogously as for σ(K). �

Let P ⊂ En be a convex polytope, and F1, . . . , Fq be all the facets of P. The facet
hyperplanes aff F1, . . . , affFq form an arrangement of hyperplanes in En, which
divides En into relatively open convex cells of dimensions 0, 1, ..., n. Let the set of
all these cells be denoted by C(P ). Denote by Li(P ), i = 1, . . . , n the set of those
unbounded Euclidean i–cells Ci of this arrangement, for which aff Ci = aff F i for
some i–face F i of P and which contain an unbounded part of some ray l(x), where
x ∈ relintF i. Let ηi(P ) = cardLi(P ).
Lemma 4. For any convex polytope P ⊂ En,

ηi(P ) ≥ (2i+1 − 2) ·

(

n + 1

i + 1

)

, i = 1, . . . , n.

Equality holds, for any i ∈ {1, . . . , n}, if and only if P is a simplex.
Proof. It suffices to deal with the case i = n. Namely, for i ≤ n− 1 the number

of i–faces of P is at least
(

n+1
i+1

)

, with equality if and only if P is a simplex (cf.

[4], p. 184, 2, case r = 2), and for each i–face we can apply the statement of the
lemma, with n replaced by i.

Now we turn to the case i = n. For P a simplex, the equality ηn(P ) = 2n+1 − 2
is easily verified. Therefore we suppose P is not a simplex (thus n ≥ 2), and prove
ηn(P ) > 2n+1 −2. We use induction on n. In the case n = 2 some four side lines of
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P bound a convex quadrangle Q ( ⊃ P ). We have η2(P ) ≥ η2(Q). One easily sees
that in each of the cases that Q has two, one or no pair of parallel sides, we have
η2(Q) = 8 > 6 = 22+1 − 2.

Suppose now that n ≥ 3 and the assertion of the lemma in the case i = n
is true for all k ≤ n − 1 rather than n. Let P be a convex polytope in En,
which is not a simplex. Let the facets of P be F1, . . . , Fq. Consider the facet F1

and the supporting hyperplane affF1 of P. By inductive assumption, the (n − 2)–
planes L1, . . . , Lt generated by the facets of F1 determine in aff F1 at least 2n − 2
unbounded relatively open (n− 1)–cells which contain an unbounded part of some
ray l(x), where x ∈ relint F1. Here equality stands if and only if F1 is an (n − 1)–
simplex. Denote by N the set of all unbounded relatively open Euclidean (n − 1)–
cells in the arrangement of the planes

Ni = (aff F1) ∩ affFi, (i ∈ {2, . . . , q}, Fi is not parallel to F1),

which contain an unbounded part of some ray l(x), where x ∈ relint F1. Because of
the inclusion {L1, . . . , Lt} ⊂ {N2, . . . , Nq}, we have card N ≥ ηn−1(F1) ≥ 2n − 2.

Let G ∈ N . Then G is a common facet of two unbounded n–cells D′, D′′ ∈ C(P ),
one on each side of aff F1, where D′ (respectively, D′′) lies in the inner (respectively,
outer) half–space bounded by aff F1. We show that D′, D′′ ∈ Ln(P ). In fact, if an
unbounded part of l(x) belongs to G, where x ∈ relint F1, then we find a point
y ∈ int P near x such that an unbounded part of l(y) belongs to D′. For D′′ define
lε as the direction of the vector sum of the unit vector of direction l and ε times
the outer normal unit vector of F1, where ε > 0 is small. Then an unbounded part
of lε(x) lies in D′′, hence the same holds for lε(y), for some point y ∈ int P such
that lε(x) ⊂ lε(y). Further, for any two different cells G1, G2 ∈ N , the respective
cells D′

1, D
′′

1 , D′

2, D
′′

2 ∈ Ln(P ) are pairwise different. Hence

ηn(P ) ≥ 2 · card N ≥ 2ηn−1(F1) ≥ 2(2n − 2),

and if F1 is not an (n − 1)–simplex, then

ηn(P ) ≥ 2 · card N ≥ 2ηn−1(F1) ≥ 2n+1 − 2.

A new n–cell in Ln(P ) will be found in the following way. Denote by H the hy-
perplane in En supporting P , parallel to and different from affF1. Put M = P ∩H.
Denote by Fi(1), . . . , Fi(s) all the facets of P containing M , and let Qi(1), . . . , Qi(s)

be the open half–spaces bounded by the hyperplanes affFi(1), . . . , affFi(s) and dis-
joint to P . Obviously, the open set Q = Qi(1) ∩ . . . ∩ Qi(s) is unbounded. The set
Q is (possibly) divided by the remaining hyperplanes affFi, i 6= i(1), . . . , i(s) into
open n–cells. Let u ∈ M , and let l be a direction such that l(u) ⊂ Q ∪ {u} and
l is not parallel to any facet hyperplane of P . Then an unbounded part of l(u)
belongs to some unbounded n–cell C ∈ C(P ), where C ⊂ Q. Thus C ∈ Ln(P ).
Hence ηn(P ) ≥ 2 · card N + 1, and in case that F1 (or any facet of P ) is not an
(n − 1)–simplex, ηn(P ) ≥ 2 · card N + 1 ≥ 2n+1 − 1.

From now on we may suppose that P is simplicial. If P were also simple, then P
would be a simplex [4, p. 65, exercise 11]. Since P was supposed to be no simplex,
this implies P cannot be a simple polytope.

Suppose that e.g. the vertex x of the facet F1 of P is not a simple vertex of
P , i.e., the number of facets of P , adjacent to x and different from F1, is at least
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n. The hyperplanes of these facets intersect affF1 in at least n (n− 2)–planes Pi

lying in affF1, each containing x, and each being a supporting plane of F1 in affF1.
Since the (n−1)–simplex F1 has n−1 facets containing x, one of the (n−2)–planes
Pi, say P1, is not a facet hyperplane of F1. Let further Fx denote the facet of F1

opposite to x.
Let A denote the Euclidean arrangement of (n−2)–planes in aff F1, consisting of

P1 and the facet hyperplanes of F1. Let further M denote the set of all unbounded
relatively open Euclidean (n − 1)–cells in the arrangement A, that contain an un-
bounded part of some ray l(x), where x ∈ relint F1. Then cardN ≥ card M . Thus
we have

ηn(P ) ≥ 2 · card N + 1 ≥ 2 · card M + 1.

P1 contains a ray l(x) such that l(x) \ {x} is disjoint to all facet hyperplanes of F1.
Let l(y) be a subray of l(x), where y 6= x. Then all sufficiently small perturbations
l1(y1) of l(y) (i.e., y1 is close to y, l1 is close to l), lying in aff F1 and such that
l1(y1) ∩ aff Fx = ∅, lie in the same relatively open (n − 1)–cell of the arrangement
AE(F1). However such perturbations l1(y1) can lie in different relatively open
Euclidean (n−1)–cells of the arrangement A, namely they can lie on different sides
of P1. In fact, let u (/∈ P1 − P1) be the vector x − c, where c is the centroid of
Fx. Then first we can translate l(y) in the direction of −u through a sufficiently

small distance, so that for the obtained ray l(y1) the opposite ray l̃(y1) intersects
relint F1. Second consider the direction lε of the vector sum of the unit vector of
direction l and εu, and consider a subray lε(y′) of the ray lε(y), where ε > 0 is small,

and y′ ( 6= y) is close to y, such that l̃ε(y′) intersects relint F1. These two rays show
that the cell C1 ∈ Ln−1(F1) containing the ray l(y) contains two cells in M . Hence
card M ≥ ηn−1(F1) + 1 = 2n − 1. Therefore ηn(P ) ≥ 2 · card M + 1 ≥ 2n+1 − 1. �

5. Proofs of the results

Proof of Theorem 1. If K is polyhedral, then, obviously, any shadow–
boundary and any illuminated region can be represented as a union of some rela-
tively open faces of K. Since the number of faces of a polyhedral body is finite, each
of the numbers σ(K), σ′(K), δ(K), δ′(K), σb(K), γ(K), γ′(K), ε(K) is finite.

Suppose that K is not polyhedral. Then for any natural number m ≥ 1, it
is possible to find inductively m regular points x1, . . . , xm ∈ bdK such that the
hyperplanes H1, . . . , Hm supporting K at x1, . . . , xm, respectively, are pairwise
different and non–parallel. Let z be any point in int K, and Gi be the hyperplane
parallel to Hi and passing through z. The hyperplanes G1, . . . , Gm divide En \ K
into open non-overlapping domains, say D1, . . . , Dk. By induction on m, it is easy
to prove the inequality k ≥ m. For any point

v ∈ En \ (K ∪ G1 ∪ . . . ∪ Gm),

let A(v) denote the intersection {x1, . . . , xm} ∩ I ′

l(v), where l(v) is the direction of

the ray [v, z〉. Then each l(v) is an exterior direction, and for

v, w ∈ En \ (K ∪ G1 ∪ . . . ∪ Gm),

one has A(v) = A(w) if and only if v and w belong to the same domain Dr. By
Lemma 2, we choose from each Dr, r = 1, . . . , k a point v(r) such that each
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shadow–boundary S′

l(v(r)) is empty or sharp. For at least k − 2 of the points

v(r), we have ∅ 6= A(v(r)) 6= {x1, . . . , xm}, hence also S′

l(v(r)) 6= ∅ (note that

K is no slab, since it is not polyhedral). Thus we can choose [(k − 2)/2] points
among the v(r)’s such that each corresponding set A(v(r)) is a nonempty proper
subset of {x1, . . . , xm}, and no two A(v(r))’s are the complements of each other
in {x1, . . . , xm}. Then the corresponding [(k − 2)/2] (≥ [(m − 2)/2]) shadow–
boundaries are sharp, nonempty, and pairwise different (since for an exterior direc-
tion l, S′

l(K) uniquely determines {I ′

l(K), D′

l(K)}, cf. the beginning of Section 4),
and also the illuminated regions are pairwise different, and are also different from
bdK. Since m is arbitrary, σ′(K) ≥ δ′(K) = γ′(K) = ∞.

Choosing sufficiently far points z(r) in some ε0–neighbourhoods of the rays
˜l(v(r))(z), they illuminate the same subsets of {x1, . . . , xm} as the directions l(v(
r)), hence similarly γ(K) = ∞. Since the [(k−2)/2] above sharp shadow–boundari-
es S′

l(v(r))(K) are different, the Hausdorff distances between any sufficiently large

bounded portions of them are positive. However an easy compactness argument,
using sharpness of S′

l(v(r))(K), shows that in bounded portions of En the Hausdorff

distances of S′

l(v(r))(K) and Sz(r)(K) are small (i.e., for any ball B about 0 and any

ε > 0, the intersection of one of the above sets with B lies in the ε–neighbourhood
of the other set, and vice versa, if z(r) is sufficiently far). This implies that also
the respective shadow–boundaries Sz(r)(K) are different. Moreover we can choose
z(r) so that Sz(r)(K) is sharp. Hence ε(K) ≥ σ(K) ≥ δ(K) = ∞.

Evidently xi ∈ Sxi
(K) 6∋ xj for i 6= j, hence the sets Sxi

(K) are different,
showing σb(K) = ∞. �

Proof of Theorem 2. By Theorem 1, we may suppose K to be polyhedral.
1) Fix a point y ∈ intK, and choose for any exterior direction l a point z ∈ l̃(y)

sufficiently far from y. Then I ′

l(K) = Iz(K), and, in case S′

l(K) is sharp, S′

l(K) =
Sz(K). This implies γ′(K) ≤ γ(K), δ′(K) ≤ δ(K).

2) Now we prove that σ′(K) ≤ σ(K). Since nonempty sharp shadow–boundaries
S′

l(K) are equal to sharp shadow–boundaries Sz(K) for suitable points z, we have
to show that one can associate to each nonsharp shadow–boundary S′

l(K) some
nonsharp shadow–boundary Sz(K), in such a way that to different S′

l(K)’s there
are associated different Sz(K)’s.

Let F1, . . . , Fm (m ≥ 1) be the facets contained in a nonsharp shadow–boundary
S′

l(K). Let us choose among the intersections, different from the empty set, of
subfamilies of {affF1, . . . , affFm} one of minimal dimension. Let this intersection
be G. We may suppose G = ∩{aff Fi : 1 ≤ i ≤ p}, and G ∩ affFj = ∅ for p + 1 ≤
j ≤ m, where 1 ≤ p ≤ m. Evidently, l(0) ⊂ G − G, and

G − G ⊂ aff Fj − aff Fj for p + 1 ≤ j ≤ m.

Let us choose z0 ∈ G. Since l is an exterior direction for K, the difference l̃(z0)\K is

unbounded. Choose z ∈ l̃(z0)\K so far from z0 that, for any facet F of K, relintF ⊂
I ′

l(K) implies relintF ⊂ Iz(K), and relintF ⊂ D′

l(K) implies relint F ⊂ Dz(K).
Then the facets of K contained in Sz(K) are exactly F1, . . . , Fp; in particular,
Sz(K) 6= ∅.

We have to show that Sz(K) uniquely determines S′

l(K). Let us consider the
set M (which contains l) of those exterior directions m, for which m(0) ⊂ aff Fi −
aff Fi, 1 ≤ i ≤ p.
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These directions m are the exterior directions m such that m(0) ⊂ G−G. Thus
for m ∈ M , we have m(0) ⊂ affFj − aff Fj for p + 1 ≤ j ≤ m as well. Therefore for
each m ∈ M , one has

{F ∈ F (K) : F ⊂ S′

l(K)} ⊂ {F ∈ F (K) : F ⊂ S′

m(K)},

where F (K) is the set of all facets of K. Hence

⋂

m∈M

{F ∈ F (K) : F ⊂ S′

m(K)} = {F ∈ F (K) : F ⊂ S′

l(K)},

showing that Sz(K) uniquely determines the set of facets contained in S′

l(K).
Observe that both of S′

l(K) and Sz(K) are the unions of certain (closed) (n−2)–
faces and (n − 1)–faces of K. An (n − 2)–face of K, which does not lie in any
(n− 1)–face of K contained in S′

l(K), belongs to S′

l(K) if and only if it belongs to
Sz(K). Hence

S′

l(K) = Sz(K) ∪ (
⋃

{F ∈ F (K) : F ⊂ S′

l(K)}),

thus Sz(K) uniquely determines S′

l(K).
3) Now we turn to the last three inequalities of Theorem 2. Since each nonempty

sharp shadow–boundary Sz(K) corresponds to at least one illuminated region Iz(K)
6= bdK, and each illuminated region Iz(K) 6= bdK corresponds to at most one
nonempty sharp shadow–boundary (see Lemma 1), one has δ(K) ≤ γ(K). The
inequality δ(K) ≤ σ(K) is trivial. Hence δ(K) ≤ min{σ(K), γ(K)}. Similarly,
δ′(K) ≤ min{σ′(K), γ′(K)}. The last inequality is trivial.

4) By Lemma 3, σb(K) equals the number of all faces of K of dimensions
0, 1, . . . , n−1, with the exception of the minimal face among them (if it exists), and
γ(K) equals the number of those Euclidean n–cells in the Euclidean arrangement of

all facet hyperplanes of K, which are different from int K and int K̃. Observe that
if a face F of K, of dimension in {0, 1, . . . , n − 1}, is the intersection of the facets
F1, . . . , Fm, then F is the intersection of K and the closure of the open Euclidean
n–cell C(F ) which is the intersection of the open outer half–spaces bounded by
aff F1, . . . , affFm, and of the open inner half–spaces bounded by all the other facet
hyperplanes of K. Therefore for different faces F also the cells C(F ) are different.

Further, for F not a minimal face, C(F ) 6= int K̃. Hence σb(K) ≤ γ(K). �

Proof of Theorem 3. By Theorem 1, we can suppose that K is a polyhedral
set. Because of j ≤ n− 2, K is no parallel slab. For polyhedral sets the statements
about σ′(K), δ(K), δ′(K) are immediate consequences of our Theorem 4 and [7,
Theorem 5]. However, below we give simple direct proofs also for them.

By [4, p.24, 5 and p.26, 1] (and since K is the direct sum of some Ek, where
0 ≤ k ≤ n− 1, and a line–free closed convex set) we have K = K0 + CK , where K0

is a compact convex polytope (possibly less than n dimensional). Let π denote the
projection along aff CK (∋ 0),

π : En → En/ affCK
∼= En−j.

Then π(K) = π(K0) is a compact convex (n − j)–polytope. Let F ′ be an i–face
of π(K) (0 ≤ i ≤ n − j − 1), and let us choose i + 1 affine independent points
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x′

1, . . . , x′

i+1 of F ′. Choose points x1, . . . , xi+1 ∈ K, projecting by π to x′

1, . . . , x′

i+1.
These span an i–plane Pi in En, for which (Pi−Pi)∩affCK = {0}. Further choose j
linearly independent vectors v1, . . . , vj ∈ CK . Then x1, . . . , xi+1, x1 + v1, . . . , x1 +
vj are i + j + 1 affine independent points of K projecting by π to F ′, further
dim

(

π−1(affF ′)
)

= i + j. Hence

F := K ∩ π−1(affF ′) (= K ∩ π−1(F ′))

is an (i + j)–face of K, and F ′ is uniquely determined by F via π(F ) = F ′. We
have affF −aff F ⊃ affCK , and, conversely, each face G of K, of dimension at most
n − 1, and satisfying aff G − affG ⊃ affCK , is of the form G = K ∩ π−1(F ′), for a
face F ′ (= π(G)) of π(K), of dimension in {0, 1, . . . , n − j − 1}.

For the investigated eight quantities we have evidently







σ
(

π−1
(

π(K)
)

)

= σ
(

π(K)
)

, σ′

(

π−1
(

π(K)
)

)

= σ′
(

π(K)
)

, . . . ,

ε
(

π−1
(

π(K)
)

)

= ε(π(K)).

If for each facet F of K we have aff F − aff F ⊃ aff CK , then K = π−1
(

π(K)
)

, i.e.,
K is a j–fold both way infinite cylinder over π(K). Let now K have a facet F0

such that affF0 − aff F0 6⊃ affCK . Then, taking in account that now by the above
considerations the set of facet hyperplanes (respectively, face planes) of K strictly
contains the set of facet hyperplanes (respectively, face planes) of π−1

(

π(K)
)

, by
statements 1) and 2) before Lemma 3 and by Lemma 3 we have seven strict in-
equalities

σ′(K) > σ′

(

π−1
(

π(K)
)

)

, . . . , ε(K) > ε
(

π−1
(

π(K)
)

)

.

(For σ′(K) and δ′(K) use also that F0 is not parallel to any facet F of K such that
aff F − aff F ⊃ affCK .) For σ(K) observe that if z′i ∈ En/ affCK are points with
different Sz′

i

(

π(K)
)

’s, then choosing any points zi ∈ π−1(z′i) the sets Szi
(K) will

be nonempty and different. Namely the sets of faces of K of the form K ∩π−1(F ′),
belonging to Szi

(K) (where F ′ is a face of π(K), of dimension in {0, 1, . . . , n−j−1}),
are nonempty and different. A further different nonempty shadow–boundary is

Su(K), where u ∈
(

int π−1
(

π(K)
)

)

\ K. Namely the relative interior of each

face of K of the form K ∩ π−1(F ′) (where F ′ is a face of π(K), of dimension in
{0, 1, . . . , n − j − 1}) belongs to Dz(K). Hence also

σ(K) > σ
(

π−1
(

π(K)
)

)

.

Now by statements 1) and 2) before Lemma 3, by Lemma 3 and by Lemma 4
we obtain

σ
(

π(K)
)

≥
1

2
·

n−j
∑

i=1

ηi

(

π(K)
)

≥ (3n−j+1 − 2n−j+2 + 1)/2,

δ
(

π(K)
)

≥
1

2
· ηn−j

(

π(K)
)

≥ 2n−j − 1, γ′
(

π(K)
)

= ηn−j

(

π(K)
)

≥ 2n−j+1 − 2,
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ε
(

π(K)
)

≥

n−j
∑

i=1

ηi

(

π(K)
)

≥ 3n−j+1 − 2n−j+2 + 1.

By [4, p.184, 2, case r = 2] the number of i–faces of an (n− j)–polytope is at least
(

n−j+1
i+1

)

(0 ≤ i ≤ n − j − 1), with equality, for any i, only for a simplex. Hence,
also using the third inequality in Theorem 2,

γ
(

π(K)
)

≥ σb

(

π(K)
)

≥ 2n−j+1 − 2.

Since in these five chains of inequalities in any of the right hand side inequalities
equality holds only if π(K) is a simplex, any of

σ
(

π(K)
)

, δ
(

π(K)
)

, γ′
(

π(K)
)

, ε
(

π(K)
)

, γ
(

π(K)
)

, σb

(

π(K)
)

is equal to the respective right hand side expression only if π(K) is a simplex.
For σ′

(

π(K)
)

and δ′
(

π(K)
)

we proceed analogously to [8]. The polytope π(K)
has some n− j facets having a one–point intersection, and the corresponding facet
hyperplanes subdivide the infinite hyperplane of En/ affCK into (3n−j − 1)/2 pro-
jective cells, with 2n−j−1 projective (n − j − 1)–cells among them. Hence

σ′
(

π(K)
)

≥ (3n−j − 1)/2, δ′
(

π(K)
)

≥ 2n−j−1,

with equality only if each facet of the polytope π(K) is parallel to one of the
mentioned n − j facets of π(K), and thus π(K) is a parallelotope.

Putting together the above estimates proves all inequalities 1)–5) of the Theorem.
Equality in any of these holds only if a) K is a j–fold both–way infinite cylinder
over π(K), and b) π(K) is a simplex, except for the inequalities 1’), 2’), when π(K)
is a parallelotope. The fact that in the asserted cases of equality in fact equality
holds, is easily verified. �

The proof of Theorem 4 follows from the remarks preceding it, in Section 3, as
noted already there.
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