Strict convexity of the singular value sequences
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Abstract. If A and B are compact operators on a Hilbert space, with
singular values satisfying s;(A) = s;(B) = s;((A+ B)/2), for all j = 1,2, ...,
then A = B. Two proofs, geometric and analytic, are given.
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0. Introduction

Let A be a compact linear operator from a Hilbert space H into a Hilbert
space K. The singular values s1(A) > s3(A) > ... are the eigenvalues of
|A] == (A*A)Y2. We refer to [3] for other equivalent definitions and basic
properties. In this note we offer two proofs, geometric and analytic, of the
following uniqueness property of compact operators between Hilbert spaces.

Theorem. If A and B are compact operators such that s;(A) = s;(B) =
s; (toA+ (1 —t9)B) for some 0 <ty <1l andall j=1,2,..., then A= B.

The assumption of the Theorem implies that the Ky Fan norms ([3], p. 37)
op(A) = 51(A) + s2(A) + ... + sp(A)

are constant on the segment {tA + (1 —¢)B : 0 <t < 1}. Therefore, each
s;(+) is constant on this segment as well, for j = 1,2,.... The analytic proof
given below shows that the latter property extends to the whole real line
connecting A and B. In particular, for j = 1, the norm |[tA + (1 — ¢)B| is
bounded for ¢ — oo, which is impossible unless A = B.
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If H is finite-dimensional, the squares of the singular values in question
are the roots of the characteristic equation of |[tA + (1 — ¢)B|?. Since the
roots and the leading coefficient of this equation are constant for 0 <t < 1,
all its coefficients are constant for 0 < ¢ < 1. But these coefficients are
polynomials in ¢, so they are constant for all ¢ € R and, consequently, the
roots are constant for all ¢t as well. In particular, the largest root |[tA +
(1 —¢)B||* is constant for ¢ — oo, which implies that A = B. The infinite-
dimensional situation, however, requires deeper analytic tools to derive the
same conclusion (see the second proof).

If the singular values given are p-summable for some 1 < p < oo, the
conclusion comes from the strict convexity of the Schatten p-norms [4]. So
the interesting case is when the singular values in the Theorem are not p-
summable for such p. The geometric proof is based on the Spectral Theorem
(13], p. 28).

The Theorem above also shows that no three distinct points of the unitary
orbit of a compact operator can lie on a real line in the operator space;
another proof in the finite dimensional case can be found in [5].

1. First proof

Let us denote C' :=tyA + (1 — ty) B, and s; := s;(A) = s,;(B) = s;(C). The
compact operators A, B, C' have the representations (cf. [3], p.28)

Ar = Zija'» aj,
Bx = Zijb'

Cx = Zsj x,c )Cjs

where (aj), (), (c}), and (a;), (b;), (¢;) are suitable orthonormal sequences
in H and K, respectively.

By hypothesis, we have ||A|| = ||B|| = ||C|| = s1; we may assume s; > 0.
From the above representation, we see that C' attains its norm at ¢, € H,
satisfying ;| = 1. Hence [[C] = [IC¢,|| < tollAci] + (1 — to) |Bel]| <
tol|All + (1 — %o)||B|| = ||C]|. This implies that Ac]} and B¢| are linearly
dependent (with a positive proportionality factor), further that both A and
B attain their norms at ¢;. In particular, ||Ac)|| = ||Bc||, hence actually
Ac) = B¢}, which implies Ac} = Bc) = Cc} = s1¢1.



Let k£ > 1 be defined by s; = ... = s > sx41 (notice that the singular
values of a compact operator converge to zero). Remembering that ||c}|| =1
and ||Acj|| = ||A|| = s1, the above representation for A and the Parseval
inequality yield

0 < st = [[Ad||* =3 sjl{cy, ap)* < 32 si|(ch, af)|* < st

Consequently, we get that (¢, a}j) = 0 for j > k+ 1, and that 3 [(c},a})|* =
1 = ||d||*>. Tt follows that ¢| belongs to the linear span M’ of da},...,d}.
Similarly, the same holds for ¢ with j < k.

Let T denote the invertible linear transformation from M’ onto M :=
span{ay, . ..,ax} defined by T'a’, = a; (j = 1,...,k). Let V' be a unitary
operator on M’, and let V' be the unitary operator TV'T~! on M. Then for
y € M’ we have

Y osily,diya; = siT (Z<% as)a )IS1T(ZJ)

j=1
= 81T (

k
= sy (y,V'd))VTd]
=1

™M= T

(y, V'd)V' j)

k
= Z y,V’ Waj.

Let now = € H be arbitrary. Applying the last formula for y, the ortho-
gonal projection of z to M’, we obtain

k
:Z xV”Va]JrZsj aj)a;.

In other words, in the original representation of A we can replace a} by V'a’;,

and a; by Va;, for j = 1,..., k, retaining all further a;» and a;, for j > k. So,

by a suitable choice of the unitary operator V' we can have V'a; = ¢; € M,

for j = 1,..., k. To simplify notation, we will assume that in the original
representation of A we have o} = ¢}, for j = 1,..., k. Similarly, we will
assume that b; = ¢}, for j=1,... k.



Let 1 < j < k. We know that ¢ belongs to M' = span{ay,...,a;} =
span{cy, ..., ¢} = span{by, ..., b}, hence (¢}, aj) = (c}, b)) = 0 for £ > k.
Remembering that Ac; = Bc; = s;c;, we get sja; = Acj = s;jc; = Bc; = s;b;,
hence a; = ¢; = b;, because s; > 0. The last equalities also imply that
(cj,ap) = (cj,be) =0 for £ > k.

So the operators A and B coincide on M’, map it to M, and, moreover,
map the orthogonal complement of M’ to the orthogonal complement of M.
We can now repeat the preceding argument for the restrictions of A, B, C'
to the orthogonal complement of M’ and proceed by induction to finish the
proof.

2. Second proof

As noticed in the introduction, it is enough to show that the spectrum of
|t A+(1—t)B|* is constant for ¢ € R, knowing that it is constant for 0 < ¢ < 1.
This comes from the following more general lemma applied to K(\), the
spectrum of the complex polynomial with compact (self-adjoint) coefficients

(A" + (1 = B )AA+ (1 - \)B),

which for A € R coincides with the function in question. For the definition
and basic properties of analytic multifunctions we refer to [1] or [2].

Lemma. Let K be an analytic multifunction from a domain D of the
complex plane to the complex plane. Suppose that K(X) is constant and
countable on a subset I of strictly positive capacity (for instance, an inter-
val). Then K is constant on D.

Proof. (i) By [1], Theorem 7.2.8, K is countable on all D. Denote by K
the constant value of K(\) on I. Since [ has strictly positive capacity, it is
not countable so by [1], Theorem 7.2.13 (originally proved in [2]), we have
Ko C K()\), for every A € D.

(ii) By Evans’s Theorem ([1], Theorem A.1.24), there exists ¢ subhar-
monic on all the complex plane such that Koy = {z € C: ¢(z) = —c0}. We
set

¥(A) = max ¢(z), for A € D.

z€K(X)



By the definition of an analytic multifunction ([1], p. 143), the function v is
subharmonic on D. Moreover, 1)(\) = —oo on [ so, by H. Cartan’s Theorem
([1], Theorem A.1.29), we have 1) = —oo on D. This means that K(\) C K,
for all A € D. Consequently, K(\) = K, on all D.

Remark. In the particular case studied in this paper we have D = C,
K (M) is the spectrum of (AA* + (1 — A\)B*)(AA 4+ (1 — A\)B) so, in fact, the
Lemma is not used in its full strength. Part (i) can be replaced by the use
of Liouville’s Theorem ([1], Theorem 3.4.14), because K (\) C Ky, for every
A € C, implies the constancy of the polynomial hull of K(\), which is K()),
because K (\) is countable.
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