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Abstract. If A and B are compact operators on a Hilbert space, with
singular values satisfying sj(A) = sj(B) = sj((A+B)/2), for all j = 1, 2, ...,
then A = B. Two proofs, geometric and analytic, are given.
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0. Introduction

Let A be a compact linear operator from a Hilbert space H into a Hilbert
space K. The singular values s1(A) ≥ s2(A) ≥ . . . are the eigenvalues of
|A| := (A∗A)1/2. We refer to [3] for other equivalent definitions and basic
properties. In this note we offer two proofs, geometric and analytic, of the
following uniqueness property of compact operators between Hilbert spaces.

Theo r em. If A and B are compact operators such that sj(A) = sj(B) =
sj (t0A+ (1 − t0)B) for some 0 < t0 < 1 and all j = 1, 2, . . . , then A = B.

The assumption of the Theorem implies that the Ky Fan norms ([3], p. 37)

σk(A) := s1(A) + s2(A) + . . .+ sk(A)

are constant on the segment {tA + (1 − t)B : 0 ≤ t ≤ 1}. Therefore, each
sj(·) is constant on this segment as well, for j = 1, 2, . . .. The analytic proof
given below shows that the latter property extends to the whole real line
connecting A and B. In particular, for j = 1, the norm ‖tA + (1 − t)B‖ is
bounded for t→ ∞, which is impossible unless A = B.
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If H is finite-dimensional, the squares of the singular values in question
are the roots of the characteristic equation of |tA + (1 − t)B|2. Since the
roots and the leading coefficient of this equation are constant for 0 ≤ t ≤ 1,
all its coefficients are constant for 0 ≤ t ≤ 1. But these coefficients are
polynomials in t, so they are constant for all t ∈ R and, consequently, the
roots are constant for all t as well. In particular, the largest root ‖tA +
(1 − t)B‖2 is constant for t → ∞, which implies that A = B. The infinite-
dimensional situation, however, requires deeper analytic tools to derive the
same conclusion (see the second proof).

If the singular values given are p-summable for some 1 < p < ∞, the
conclusion comes from the strict convexity of the Schatten p-norms [4]. So
the interesting case is when the singular values in the Theorem are not p-
summable for such p. The geometric proof is based on the Spectral Theorem
([3], p. 28).

The Theorem above also shows that no three distinct points of the unitary
orbit of a compact operator can lie on a real line in the operator space;
another proof in the finite dimensional case can be found in [5].

1. First proof

Let us denote C := t0A + (1 − t0)B, and sj := sj(A) = sj(B) = sj(C). The
compact operators A,B,C have the representations (cf. [3], p. 28)

Ax =
∑

sj〈x, a
′

j〉aj ,

Bx =
∑

sj〈x, b
′

j〉bj,

Cx =
∑

sj〈x, c
′

j〉cj,

where (a′j), (b
′

j), (c
′

j), and (aj), (bj), (cj) are suitable orthonormal sequences
in H and K, respectively.

By hypothesis, we have ‖A‖ = ‖B‖ = ‖C‖ = s1; we may assume s1 > 0.
From the above representation, we see that C attains its norm at c′1 ∈ H ,
satisfying ‖c′1‖ = 1. Hence ‖C‖ = ‖Cc′1‖ ≤ t0‖Ac

′

1‖ + (1 − t0)‖Bc
′

1‖ ≤
t0‖A‖ + (1 − t0)‖B‖ = ‖C‖. This implies that Ac′1 and Bc′1 are linearly
dependent (with a positive proportionality factor), further that both A and
B attain their norms at c′1. In particular, ‖Ac′1‖ = ‖Bc′1‖, hence actually
Ac′1 = Bc′1, which implies Ac′1 = Bc′1 = Cc′1 = s1c1.
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Let k ≥ 1 be defined by s1 = . . . = sk > sk+1 (notice that the singular
values of a compact operator converge to zero). Remembering that ‖c′1‖ = 1
and ‖Ac′1‖ = ‖A‖ = s1, the above representation for A and the Parseval
inequality yield

0 < s2
1 = ‖Ac′1‖

2 =
∑

s2
j |〈c

′

1, a
′

j〉|
2 ≤

∑

s2
1|〈c

′

1, a
′

j〉|
2 ≤ s2

1.

Consequently, we get that 〈c′1, a
′

j〉 = 0 for j ≥ k + 1, and that
∑

|〈c′1, a
′

j〉|
2 =

1 = ‖c′1‖
2. It follows that c′1 belongs to the linear span M ′ of a′1, . . . , a

′

k.
Similarly, the same holds for c′j with j ≤ k.

Let T denote the invertible linear transformation from M ′ onto M :=
span{a1, . . . , ak} defined by Ta′j = aj (j = 1, . . . , k). Let V ′ be a unitary
operator on M ′, and let V be the unitary operator TV ′T−1 on M . Then for
y ∈M ′ we have

k
∑

j=1

sj〈y, a
′

j〉aj = s1T





k
∑

j=1

〈y, a′j〉a
′

j



 = s1T (y)

= s1T





k
∑

j=1

〈y, V ′a′j〉V
′a′j





= s1

k
∑

j=1

〈y, V ′a′j〉V Ta
′

j

=
k

∑

j=1

sj〈y, V
′a′j〉V aj .

Let now x ∈ H be arbitrary. Applying the last formula for y, the ortho-
gonal projection of x to M ′, we obtain

Ax =
k

∑

j=1

sj〈x, V
′a′j〉V aj +

∑

j>k

sj〈x, a
′

j〉aj .

In other words, in the original representation of A we can replace a′j by V ′a′j ,
and aj by V aj , for j = 1, . . . , k, retaining all further a′j and aj, for j > k. So,
by a suitable choice of the unitary operator V ′ we can have V ′a′j = c′j ∈M ′,
for j = 1, . . . , k. To simplify notation, we will assume that in the original
representation of A we have a′j = c′j , for j = 1, . . . , k. Similarly, we will
assume that b′j = c′j, for j = 1, . . . , k.
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Let 1 ≤ j ≤ k. We know that c′j belongs to M ′ = span{a′1, . . . , a
′

k} =
span{c′1, . . . , c

′

k} = span{b′1, . . . , b
′

k}, hence 〈c′j , a
′

ℓ〉 = 〈c′j, b
′

ℓ〉 = 0 for ℓ > k.
Remembering that Ac′j = Bc′j = sjcj , we get sjaj = Ac′j = sjcj = Bc′j = sjbj ,
hence aj = cj = bj , because sj > 0. The last equalities also imply that
〈cj, aℓ〉 = 〈cj, bℓ〉 = 0 for ℓ > k.

So the operators A and B coincide on M ′, map it to M , and, moreover,
map the orthogonal complement of M ′ to the orthogonal complement of M .
We can now repeat the preceding argument for the restrictions of A,B,C
to the orthogonal complement of M ′ and proceed by induction to finish the
proof.

2. Second proof

As noticed in the introduction, it is enough to show that the spectrum of
|tA+(1−t)B|2 is constant for t ∈ R, knowing that it is constant for 0 ≤ t ≤ 1.
This comes from the following more general lemma applied to K(λ), the
spectrum of the complex polynomial with compact (self-adjoint) coefficients

(λA∗ + (1 − λ)B∗)(λA+ (1 − λ)B),

which for λ ∈ R coincides with the function in question. For the definition
and basic properties of analytic multifunctions we refer to [1] or [2].

L emma. Let K be an analytic multifunction from a domain D of the
complex plane to the complex plane. Suppose that K(λ) is constant and
countable on a subset I of strictly positive capacity (for instance, an inter-
val). Then K is constant on D.

Proof. (i) By [1], Theorem 7.2.8, K is countable on all D. Denote by K0

the constant value of K(λ) on I. Since I has strictly positive capacity, it is
not countable so by [1], Theorem 7.2.13 (originally proved in [2]), we have
K0 ⊂ K(λ), for every λ ∈ D.

(ii) By Evans’s Theorem ([1], Theorem A.1.24), there exists φ subhar-
monic on all the complex plane such that K0 = {z ∈ C : φ(z) = −∞}. We
set

ψ(λ) = max
z∈K(λ)

φ(z), for λ ∈ D.
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By the definition of an analytic multifunction ([1], p. 143), the function ψ is
subharmonic on D. Moreover, ψ(λ) ≡ −∞ on I so, by H. Cartan’s Theorem
([1], Theorem A.1.29), we have ψ ≡ −∞ on D. This means that K(λ) ⊂ K0,
for all λ ∈ D. Consequently, K(λ) = K0 on all D.

Remark. In the particular case studied in this paper we have D = C,
K(λ) is the spectrum of (λA∗ + (1 − λ)B∗)(λA + (1 − λ)B) so, in fact, the
Lemma is not used in its full strength. Part (i) can be replaced by the use
of Liouville’s Theorem ([1], Theorem 3.4.14), because K(λ) ⊂ K0, for every
λ ∈ C, implies the constancy of the polynomial hull of K(λ), which is K(λ),
because K(λ) is countable.
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