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Abstract

We consider vertex colourings of the dodecahedral graph with five
colours, such that on each face the vertices are coloured with all the
five colours. We show that the total number of these colourings is 240.
All such colourings can be obtained from any given such colouring,
by permuting the colours, and possibly applying central symmetry
with respect to the centre of the regular dodecahedron. For any such
colouring, the colour classes form the vertex sets of five regular tetra-
hedra. These tetrahedra together form one of the two compounds of
five tetrahedra, inscribed in the regular dodecahedron. We give two
proofs: a combinatorial one, and a geometrical one. Our result is
related to the result in W. W. Rouse Ball – H. S. M. Coxeter, stat-
ing that there are four such colourings, as follows. There are four
such colourings, up to applying an arbitrary orientation-preserving
congruence of the regular dodecahedron.
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1 Introduction

As well known, the most popular soccer balls (footballs) have the form
of a spherical mosaic, consisting of twelve regular spherical pentagons and
twenty regular spherical hexagons. If we retain all the vertices of all its
faces, but we replace the regular spherical polygons with planar ones, then
we obtain an Archimedean polyhedron (i.e., its faces are regular, and its sym-
metry (i.e., congruence) group acts transitively on its vertices). The group
of symmetries (i.e., congruences) of this spherical mosaic coincides with
the group of symmetries of this Archimedean polyhedron, and also with
the group of symmetries of the regular dodecahedron. Therefore this group
is sometimes called the dodecahedral group. Since the regular icosahedron is
the dual (actually, polar reciprocal) of the regular dodecahedron, therefore
the symmetry group of the regular icosahedron coincides with that of the
regular dodecahedron. Therefore this group is usually called the icosahedral
group, and is usually denoted by Ih. In our paper we will use this termi-
nology and notation. Then I denotes the subgroup of Ih consisting of the
orientation preserving elements of Ih. (Ih has 120, and I has 60 elements.
Their descriptions cf. later in this introduction.) Both the above spherical
mosaic, and the corresponding Archimedean polyhedron, are denoted by
(5, 6, 6) (cf. [1]).

This spherical mosaic was invented as a soccer ball by the former Dan-
ish football player Eigil Nielsen and was introduced in 1962. The usual
colouring of the soccer balls is the following: the pentagons are coloured
black, and the hexagons white, patented by M. Doss in 1964.

However, this mosaic was used for making balls much earlier. An archive
home movie made at the end of the 1930s shows the appearance of such a
ball (we call it the Wörthsee ball). However the name of the maker of this
ball and the year of its making are unknown to us. The faces of this ball
were coloured: all pentagons were green, while the hexagons were of five
different colours (in our notation below in Fig. 1, white = 1, yellow = 2,
red = 3, blue = 4, black = 5). Seemingly the intention of the maker was
that each pentagon should be surrounded by hexagons of all five colours.
This was achieved for several, but not all pentagons, cf. Fig. 1(A). For a
more detailed history cf. T. Tarnai – A. Lengyel [14].

TO INCLUDE HERE FIGURE 1!
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(A) (B)

Figure 1. Colouring of the Wörthsee ball. (A) Schlegel diagram of (5, 6, 6)
with coloured faces. (B) Schlegel diagram of the corresponding regular
dodecahedron with coloured vertices.

This raises the following mathematical problem. Does there exist a
colouring of the hexagonal faces of (5, 6, 6) with five colours, such that
each pentagon has hexagonal neighbours of all five colours? Clearly in this
problem the size of the pentagons is not important. We may shrink them
simultaneously to their centres, while the hexagonal faces become regular
triangles. Then our problem becomes the following. Colour the twenty faces
of a regular icosahedron with five colours, so that each vertex is incident to
faces of all five colours.

It will be more convenient to consider the dual problem. Colour the
twenty vertices of the regular dodecahedron so that each face should have
vertices of all five colours. The colours will be denoted by 1, 2, 3, 4, 5.

The actual colouring of the dual of the Wörthsee ball is shown in Fig.
1(B), where colours are replaced by numbers as given above.

This colouring problem was considered later in mathematics as well.
H. M. Cundy – A. P. Rollett, [4], 1985, wrote on pp. 82–83 the following

(slightly rewritten for shortening). “The faces of the icosahedron can be
coloured by five colours so that the five faces at every vertex are coloured
differently, but opposite faces cannot then be coloured alike.”

W. W. Rouse Ball – H. S. M. Coxeter, [13], 1987, wrote on p. 242 the
following. “L. B. Tuckerman remarks that the faces of an icosahedron can
be coloured with five colours so that each face and its three neighbours
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have four different colours. For five given colours this can be done in four
ways, consisting of two enantiomorphous pairs. One pair can be derived
from the other by making any odd permutation of the five colours (e.g. by
interchanging two colours). The faces coloured alike belong to five regu-
lar tetrahedra forming the compound described on page 135 (cf. Coxeter,
Regular polytopes, pp. 50, 106).”

Our theorem below asserts that there are 240 colourings of the vertices
of the regular dodecahedron which satisfy our requirement. The “paradox”
that this is different from 4 such colourings, as given in [13], will be resolved
later in this paper. We give two proofs of our theorem: first a combinatorial
one, and second a geometrical one.

We remark that our problem is equivalent to the problem about the
number of the five-colourings of the vertices of the graph whose vertices
are the vertices of the regular dodecahedron, and whose edges are the face-
diagonals and the edges of the regular dodecahedron.

In our paper we will use the concepts and statements from [1], [2], [7],
[8], [10], [11], [12]. In particular, a compound of five regular tetrahedra,
mentioned above, is explained in them. However, for completeness, below
we will give its description. Fig. 2 shows a photograph of a cardboard
model of the compound of five regular tetrahedra, taken by A. Lengyel.

TO INCLUDE HERE FIGURE 2!

Figure 2. The compound of five tetrahedra.
Quite recently (in 2018) the concept of regular compounds was defined
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in a strict mathematical sense by P. McMullen in [9], as follows. A vertex-
regular compound consists of copies of a regular polytope Q with vertex
sets in the vertex set of a regular polytope P , such that some subgroup
of the symmetry group of P is transitive both on the vertex set of P and
on the copies of Q. A face-regular compound is defined in a dual way, re-
placing vertices by face-planes. Then a regular compound means either a
vertex-regular, or a face-regular compound. In this sense, there are five
regular compounds in R

3. These are: regular compounds of 2 tetrahedra
inscribed in the cube (and escribed to an octahedron — this is called Ke-
pler’s stella octangula, although, according to [5], Part 1, Ch. II, §11, p.
82 (in the German edition §I.2.6, p. 83), it was described by L. Pacioli
(or Pacciuolo), as well), regular compounds of 5 and of 10 tetrahedra in-
scribed in the dodecahedron (and escribed to an icosahedron), of 5 cubes
inscribed in the dodecahedron, and of 5 octahedra escribed to an icosahe-
dron (dual to the former one). L. Fejes Tóth, [5], Part 1, Ch. II, §9, p.
78 decribes these five regular compounds (in the German edition under the
name “Körperkomplexe”, in §I.2.4, p. 79), without giving the strict defini-
tion of [9]. At the end of [5] there are spectacular anaglyphs I-III, displaying
these compounds three-dimensionally. [5] refers, in Part 1, Ch. II, §11, p.
82 (in the German edition §I.2.6, p. 83), to E. Hess [6], 1876, for thoroughly
investigating these five polyhedral compounds. For the compound of five
tetrahedra cf. [6], §6, p. 45.

Since we will use only the regular dodecahedron and tetrahedron, usu-
ally we will drop the attribute “regular”. Later on, we will suppose that
the centre of the dodecahedron is the origin 0, and that the dodecahedron is
inscribed in the unit sphere S2 about 0.

***
We turn to some elementary group theoretical considerations, and with

their help we will describe the compound of five tetrahedra.
The groups Ih and I have been introduced above. They are subsets of

the group of congruences of R3. Then all congruences in Ih (and thus also
in I) preserve 0, the centre of the dodecahedron, i.e., are linear transforma-
tions. Further we will denote by id the identical transformation on R

3, and
hence −id is the central symmetry with respect to 0. Both are congruences
of R3, and are linear transformations.

Next we introduce some abstract groups, and some permutation groups.
We write S5 for the symmetric group on five symbols, i.e., the group of
all permutations of the five symbols, and A5 for the alternating group on
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five symbols, i.e., the subgroup of S5 consisting of all even permutations
of the five symbols. If we want to give the five symbols on which these
permutations act, then we will write S5(. . .) and A5(. . .), where the five
symbols are given in the brackets. Moreover, Z2

∼= {1,−1} denotes the
two-element cyclic group (written multiplicatively). The sign ∼= means here
isomorphism of groups. We will apply this sign only in cases when this
isomorphism is in some sense “canonical”.

Now we are going to describe the compound of five tetrahedra. For this
aim first we recall the description of the icosahedral group Ih. (Cf. [7] for its
subsequent discussion, till the end of our introduction.) We describe it in
terms of the dodecahedron. As an abstract group, Ih ∼= A5×Z2. Therefore
Ih has 120 elements (as mentioned earlier).

Next we are going to describe Ih concretely, as a group of congruences.
We begin with the description of the group I. As an abstract group, it
is isomorphic to A5. Now recall that the dodecahedron has ten inscribed
tetrahedra, with vertices among the vertices of the dodecahedron. They can
be found in Figures 3 and 4: the vertices with the same numbers (colours)
are the vertices of five tetrahedra in Fig. 3, and of other five tetrahedra in
Fig. 4. Then Ih acts transitively on the set of these ten tetrahedra, i.e., any
of these tetrahedra can be taken over to any other one of these tetrahedra
by some element of Ih.

However, this does not hold any more for the group I. Any tetrahedron
depicted in Fig. 3 can be taken over to any other tetrahedron depicted
in Fig. 3 by some element of I, and the same statement holds for Fig.
4. However, one tetrahedron from Fig. 3 (Fig. 4) cannot be taken over
by any element of I to a tetrahedron from Fig. 4 (Fig. 3). That is, I
acts transitively on both sets of five tetrahedra, and both these sets are
orbits for I. Both of these sets of five tetrahedra are called a compound
of five tetrahedra. These two sets are congruent, but only via an orien-
tation reversing congruence. Thus these compounds have a chirality, i.e.,
left/right-handedness. The action of I on any of these compounds, as a
group of permutations of the five tetrahedra T1, . . . , T5 in the compound,
is the action of A5(T1, . . . , T5). Conversely, for any even permutation of
the five tetrahedra there is a unique (orientation preserving) congruence,
belonging to I, which acts on these five tetrahedra as the given even per-
mutation. Therefore,

I ∼= A5(T1, . . . , T5). (1)
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Then we have, by letting to ±id correspond ±1, that

Ih = I × {id,−id} ∼= A5(T1, . . . , T5)× {1,−1}, (2)

for T1, . . . , T5 being the tetrahedra in any of the two compounds.
Geometrically, I = I × {id} can be given as the set of all 4 rotations

of order 5 about 6 axes through the centres of antipodal (i.e., opposite)
faces, all 2 rotations of order 3 about 10 axes through antipodal vertices,
all (i.e., 1 for each of the axes) rotations of order 2 about 15 axes through
midpoints of antipodal edges, and of id. Then I × {−id} is a set of 24
rotatory reflections of order 10, and 20 rotatory reflections of order 6, and
15 rotatory reflections of order 2 (i.e., symmetries with respect to planes),
with the same axes as above, and of −id.

Suppose that we have a permutation p ∈ S5(1, . . . , 5). This is by def-
inition a bijective function from {1, . . . , 5} to itself. We define the action
of such a permutation p on a colouring of the vertices of the dodecahedral
graph with colours 1, . . . , 5 as follows. The action of p on the above colour-
ings changes the colours of all vertices of colour i to the colour p(i), for
each i ∈ {1, . . . , 5}. (Observe that, anyhow natural this definition is, we
need it, since a bijective function on {1, . . . , 5} acts by definition on the
set {1, . . . , 5}, and not on the set of the above colourings.) Thus we have
defined the action of the group S5(1, . . . , 5) on the set of all our colourings.

We also refer to [5] and [3] for ample material on regular figures, and
to [15] for its nice figures of cardboard models of regular polyhedra and of
compounds of regular polyhedra (these latter ones are not defined there in
a strict way). The compound of five tetrahedra is in [15] (p. 44 in the 1989
reprint of the first paperback edition in 1974 of [15]).

2 The theorem and its two proofs

TO INCLUDE HERE FIGURE 3!
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Figure 3. The first solution.
TO INCLUDE HERE FIGURE 4!

Figure 4. The second solution.

First we give two colourings of the dodecahedral graph, satisfying our
requirements, in Figures 3 and 4. In these figures the middle vertex, both
times of colour 1, is the north pole of the unit sphere S2 about 0, which is
the circumsphere of the dodecahedron. The three neighbours of the north
pole, both times of colours 2, 3, 4 (in the same order), lie on a circle of
latitude C1 on the northern hemisphere.
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The numbers of the 2nd, 3rd and 4th neighbours of the north pole are
6, 6 and 3, and they lie on circles of latitude C2, C3 and C4, respectively.
The unique 5th neighbour of the north pole is the south pole. C1 and C2

lie on the open northern hemisphere, and C3 = −C2 and C4 = −C1 lie on
the open southern hemisphere. (These are some analogues of the two polar
and two tropical circles.) The Euclidean distance between the points of C3

and the north pole is the edge-length of an inscribed (regular) tetrahedron
of the unit sphere S2.

We list several remarkable properties of these colourings.
P1) For Fig. 3 from any vertex, of colour i, we can reach the other

vertices of colour i by passing on an edge incident to this vertex, then at
the other endpoint of this edge turning to the left-hand side edge, and then
at the other endpoint of this second edge turning to the right-hand side
edge: a left-right zigzag. (For the north pole we pass thus, e.g., through
vertices of colours 1, 2, 5, 1.) For any i ∈ {1, . . . , 5} there are exactly four
vertices of colour i, and they form together the vertices of a tetrahedron
inscribed in the dodecahedron. For i ∈ {1, . . . , 5} these five tetrahedra
form a compound of five tetrahedra. The colour of the vertex antipodal
to any vertex v is the colour different from the colours of v and its three
neighbours. Moreover, the colours of the three neighbours of any vertex
and its antipodal vertex are the same. For Fig. 4 all above statements of
P1) hold with exchanging “left” and “right”. The respective compound of
five tetrahedra is obtained from the one in Fig. 3 by taking its centrally
symmetric image with respect to 0.

Before giving P2), we recall that a cyclic permutation of {1, 2, 3, 4, 5} is
an equivalence class of permutations (ijklm), where the five permutations
(ijklm), (mijkl), ..., (jklmi) are considered equivalent. All the five above
permutations have the same parity (even or odd), which is called the parity
of the cyclic permutation.

P2) For Fig. 3, on the twelve faces of the dodecahedron, when looking
back from the direction of their outer normal unit vectors (i.e., if we take
the faces in the positive orientation), we have that the cyclic permutations
of the colours of the vertices are exactly all twelve odd cyclic permutations.
(Observe that this statement does not depend on the orientation of the
faces; the same statement holds for the negatively oriented faces.) On
opposite faces we have inverse cyclic orders (i.e., the same cyclic orders,
but in opposite orientation). For Fig. 4 all above statements of P2) hold
with changing “odd” to “even”.
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P3) For each i 6= j there are three edges with endpoints of colours
i, j. For the three edges with endpoints of colours i, j the antipodal edges
have vertices of colours k, l, where k, l ∈ {1, . . . , 5} \ {i, j}, and all three
such pairs {k, l} occur for these three edges. These four vertices of colours
i, j, k, l are first neighbours of the four vertices of the fifth colour.

For a graph whose vertices are coloured by some colours, a colour class
is the set of all vertices coloured by a particular colour. All the colour
classes form a partition of the vertex set of the graph.

Theorem. The number of the five-colourings of the vertices of the dodeca-
hedral graph, such that on each face of the regular dodecahedron the vertices
are coloured with all five colours, is 240. All such colourings can be obtained
from any given such colouring, by permuting the colours (cf. the explanation
at the end of the introduction), and possibly applying central symmetry
with respect to the centre of the regular dodecahedron (i.e., the new colour
of a vertex is the original colour of the antipodal vertex). For any such
colouring, the colour classes form the vertex sets of five regular tetrahedra.
These regular tetrahedra together form one of the two compounds of five
regular tetrahedra, inscribed in the regular dodecahedron.

First proof of the Theorem. We suppose that the circumsphere
of the (regular) dodecahedron is the unit sphere S2 with centre 0, and
one of its vertices is at the north pole. We write “face” for a face of the
dodecahedron.

We choose a permutation of the five colours, such that the vertex of
the dodecahedron at the north pole has colour 1, and its three neighbours
have colours 2, 3, 4, in the order as in Figures 3 and 4. We will extend the
colouring to C2, C3, C4, and the south pole, consecutively.

The face F1 with one vertex at the north pole, and neighbouring vertices
of colours 2, 3, has two yet uncoloured vertices, which must have colours
4, 5. These can be coloured in two ways: as in Fig. 3, and as in Fig. 4. (In
Fig. 3 the face Fi is denoted by writing in it its subscript i, but in Roman
numerals.)

We begin with the case shown in Fig. 3. The remaining two faces F2,
F3, having the north pole as a vertex, and having neighbouring vertices of
colours 3, 4, and 4, 2, both have two yet uncoloured vertices, which must
have colours 2, 5, and 3, 5, respectively. The vertex of F1 of colour 5 forces
that F3 has vertices of cyclic order (21453) in the positive sense. Then the
vertex of F3 of colour 5 forces that F2 has vertices of cyclic order (41352)
in the positive sense. Thus the vertices on C2 are uniquely coloured.
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We turn to the six vertices on C3. We call F4, F5, F6 the faces neigh-
bourly to F2, F3, and F3, F1, and F1, F2, but different from F1, F2, F3.
Then each of F4, F5, F6 has two yet uncoloured vertices, which have to
have colours 1, 3, and 1, 4, and 1, 2, respectively. Among these six vertices
on C3, taken in cyclic order, there cannot be two neighbourly vertices of
colour 1. Therefore each second of them in this order has colour 1. By the
vertex of colour 4 of F1, the cyclic order of the vertices of F5 is (52341)
in the positive sense, and then the cyclic orders of the vertices of F6 and
F4 are (53421), and (54231), in the positive sense, respectively. Thus the
vertices on C3 are uniquely coloured.

We turn to the three vertices on C4. We call F7, F8, F9 the faces neigh-
bourly to F6, F1, F5, and F4, F2, F6, and F5, F3, F4. These have unique
yet uncoloured vertices, which therefore have colours 3, 4, 2, respectively.
Thus the vertices on C4 are uniquely coloured.

At last the south pole has neighbours of colours 3, 4, 2 and second
neighbours of colours 1, 2, and 1, 3, and 1, 4, respectively. Therefore its
colour is 5.

Thus for Fig. 3 the colouring is uniquely determined.
For Fig. 4 an analogous simple argument shows the same, which we

leave to the reader.
Since at the beginning of the proof we fixed a permutation of the five

colours, both Fig. 3 and Fig. 4 represent in fact 5! = 120 solutions.
Clearly Figures 3 and 4 have a chirality (left- or right-handedness),

left-right or right-left zigzag in Property P1), and odd or even cyclic per-
mutations in Property P2). Thus the 120 colourings represented by Fig. 3
are different from the 120 colourings represented by Fig. 4.

From this there follows that applying an even permutation to the five
colours takes the 120 colourings represented by Fig. 3 or Fig. 4 to some
colouring represented by the same figure from Figures 3 and 4, and preserves
the cyclic orientation of the faces (i.e., the parity of the cyclic permutation).
However, applying an odd permutation to the five colours takes the 120
colourings represented by Fig. 3 or Fig. 4 to some colouring represented by
the same figure from Figures 3 and 4, but changes the cyclic orientation of
the faces.

Since by (2) the symmetry group of the dodecahedron is

Ih = I×{id,−id} ∼= A5(T1, . . . , T5)×{1,−1} ∼= A5(1, . . . , 5)×{1,−1} (3)

(here A5(T1, . . . , T5) is identified with A5(1, . . . , 5) by letting to Ti corre-
spond i, and ±id is identified with ±1), therefore we choose the “sim-
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plest” orientation reversing symmetry −id of the dodecahedron. Then all
colourings of the dodecahedral graph, satisfying our requirements, can be
obtained from that in Fig. 3 (alternatively, in Fig. 4), by an arbitrary
permutation of the five colours, i.e., by applying an arbitrary element of
S5(1, . . . , 5), and by possibly applying still the linear transformation −id,
which we identify with −1. We mean this in the following sense: id, identi-
fied with 1, acts on a colouring identically (i.e., preserves it), and −id, iden-
tified with −1, acts on a colouring so that in the new colouring the colour
of any vertex −v is the colour of the vertex v in the original colouring. (Of
course, this action is the natural one, but observe that by definition ±id
act on R

3, and not on the set of our colourings. Cf. also the definition of
the action of S5(1, . . . , 5) on our colourings, at the end of the Introduction.)
Observe that here we have the direct product S5(1, . . . , 5)× {1,−1}, since
application of an element of S5(1, . . . , 5) leaves the set of the colour classes
invariant (only permutes them), but the application of −id changes the set
of the colour classes. Therefore the number of all colourings is 2·120 = 240.

This proves the first two statements of the theorem. The statement
about the colour classes can be verified from Figures 3 and 4. �

Observe that both the statement and the proof of our Theorem are
combinatorial. However, one can prove our Theorem also geometrically, as
follows.

Second proof of the Theorem. Recall that the circumsphere of the
dodecahedron is the unit sphere S2 about 0. Therefore any colour class
of a colouring satisfying the hypotheses of our Theorem is a subset of S2.
Moreover, among its points there occur no smallest and second smallest
Euclidean distances among the vertices of the dodecahedron (these are the
the Euclidean distances between the north pole and the points of C1 and
C2). In other words, the Euclidean distances between points of any colour
class are at least the third smallest Euclidean distance among the vertices of
the dodecahedron (i.e., the Euclidean distance between the north pole and
the points of C3), i.e., the edge length of a (regular) tetrahedron inscribed
in S2 (cf. the beginning of §2).

However, a subset of S2 with this italicized property has at most four
points, with equality only if these four points are the vertices of a (regular)
tetrahedron, cf. [5], Part 2, §35, p. 227 (in the German edition Ch. II.2.6, p.
215). Since all five colour classes have altogether 20 points, each colour class
has four points, which are the vertices of a tetrahedron, and also belong to
the vertex set of the dodecahedron. The number of all such tetrahedra is
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10, and they are depicted in Figures 3 and 4. Then all five colour classes
are either as depicted in Fig. 3, or as depicted in Fig. 4, or some colour class
is as depicted in Fig. 3 and some other colour class is as depicted in Fig.
4. Since the colour classes are disjoint, from Figures 3 and 4 we see that
in the last case any two such colour classes are centrally symmetric images
of each other with respect to 0. Hence the number of colour classes is two,
a contradiction. Knowing the colour classes, one can finish this proof as in
the combinatorial proof. �

Identifying ±id with ±1, we write

G := S5(1, . . . , 5) × {id,−id} ∼= S5(1, . . . , 5)× {1,−1} (4)

Observe that any element of G takes a colouring satisfying our requirements
to another such colouring. Also conversely, any such colouring can be taken
over to any other such colouring by an element of G. Therefore we can say
that, up to the action of elements of G, we have “geometrically” a unique
colouring.

If H is an arbitrary subgroup of G, we can ask for the number of our
colourings, up to the action of an element in H. This number is

|G|/|H| = 240/|H|. (5)

For the statement of W. W. Rouse Ball – H. S. M. Coxeter [13], using (1),
and identifying id with 1, we consider

H := I × {id} ∼= A5(T1, . . . , T5)× {1} ∼= A5(1, . . . , 5)× {1} (6)

(here for the second isomorphism sign cf. (3)), and then, using (5), we have
the following

Corollary. ([13]) The number of the colourings of the dodecahedral graph,
satisfying the requirements of our Theorem, up to the application of any
element of I×{id} ∼= A5(T1, . . . , T5)×{1} ∼= A5(1, . . . , 5)×{1}, is 4. They
can be distinguished as follows.

1) The colour classes are the sets of vertices of the five regular tetrahe-
dra, forming either of the two compounds of five regular tetrahedra inscribed
in the regular dodecahedron (these two possibilities are depicted in Figures
3 and 4).

2) Further they can be distinguished by odd/even cyclic permutations of
the colours of the vertices on one (or all) positively oriented face(s) of the
regular dodecahedron, or left-right/right-left zigzags in Figures 3 and 4.
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These two choices being independent, we have altogether four possibili-
ties. �
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