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Abstract. Let K = {K0, ...,Kk} be a family of convex bodies in Rn, 1 ≤ k ≤ n−1.

We prove, generalizing results from [9], [10], [13], [14], that there always exists an
affine k-dimensional plane Ak ⊆ Rn, called a common maximal k-transversal of K,

such that for each i ∈ {0, ..., k} and each x ∈ Rn

Vk(Ki ∩ Ak) ≥ Vk(Ki ∩ (Ak + x)),

where Vk is the k-dimensional Lebesgue measure in Ak and Ak + x. Given a family

K = {Ki}
l
i=0

of convex bodies in Rn, l < k, the set Ck(K) of all common maximal k-

transversals of K is not only non-empty but has to be “large” both from the measure
theoretic and the topological point of view. It is shown that Ck(K) cannot be included

in a ν-dimensional C1 submanifold (or more generally in an (Hν , ν)-rectifiable, Hν -

measurable subset) of the affine Grassmannian AGrn,k of all affine k-dimensional
planes of Rn, of O(n + 1)-invariant ν-dimensional (Hausdorff) measure less than

some positive constant cn,k,l, where ν = (k − l)(n − k). As usual, the “affine”
Grassmannian AGrn,k is viewed as a subspace of the Grassmannian Grn+1,k+1 of

all linear (k + 1)-dimensional subspaces of Rn+1. On the topological side we show
that there exists a nonzero cohomology class θ ∈ Hn−k(Gn+1,k+1; Z2) such that

the class θl+1 is concentrated in an arbitrarily small neighborhood of Ck(K). As an
immediate consequence we deduce that the Lyusternik-Shnirel’man category of the

space Ck(K) relative to Grn+1,k+1 is ≥ k − l. Finally, we show that there exists a

link between these two results by showing that a cohomologically “big” subspace of
Grn+1,k+1 has to be large also in a measure theoretic sense.

1. Introduction

A convex body K ⊆ Rn is a compact convex set with non-empty interior. A
maximal k-section of a convex body K ⊆ Rn is a set K ∩Ak, where Ak ⊆ Rn is an
affine k-dimensional plane such that for each x ∈ Rn

Vk(K ∩ Ak) ≥ Vk(K ∩ (Ak + x)) .

1991 Mathematics Subject Classification. Primary 52A20; Secondary 52A40, 55M20, 53C65.
Key words and phrases. Convex bodies, plane sections of maximal volume, Grassmannians,

canonical bundles, integral geometry, homogeneous spaces of Lie-groups.

The research of the first named author was (partially) supported by Hungarian National Foun-
dation for Scientific Research, Grant No. T-016094 and the research of the second and the third

named authors was (partially) supported by the Serbian Science Foundation, Grants No. 04M01

and 04M03

Typeset by AMS-TEX

1



2 E. MAKAI, S. VREĆICA AND R. ŽIVALJEVIĆ

Here Vk denotes the normalized Lebesgue measure defined on affine k-dimensional
subspaces in Rn (i.e., the measure of a unit cube is 1). Given a family K of convex
bodies, a common maximal k-transversal of K is an affine k-dimensional plane Ak

for which K ∩ Ak is a maximal k-section of K for each element K of K.
In this paper we give lower bounds on the size of the set Ck(K) of all common

maximal k-transversals of K, both from the measure theoretic and topological point
of view. It is obvious that Ck(K) is “in general” empty if |K| > k + 1, where |K|
is the cardinality of the family K. We show that the condition |K| ≤ k + 1 that is
“in general” necessary for the existence of a common maximal k-transversal of K is
also sufficient (Theorem 6). When the size of the family K decreases below k + 1,
we show that the set Ck(K) increases both measure theoretically and topologically
(Theorems 7 and 8). Theorem 9 is a link between these two results, which shows
that a sufficiently cohomologically nontrivial compact C1 submanifold (or more
generally a compact (Hν , ν)-rectifiable, Hν -measurable subset) of a Grassmannian
must also have a sufficiently large measure in its own dimension. Our methods are:
reduction to a topological coincidence question for a family of continuous cross-
sections of a vector-bundle, integral geometry in homogeneous spaces, topology of
Grassmannians, cohomological technics and Poincaré duality. Before we formulate
precise statements of these theorems, let us review some other related combinatorial
geometric results which serve as a motivation for studying these questions.

2. A review of motivating results

We will always assume that n ≥ 2. For C ⊆ Rn, we denote by linC and affC
the linear and affine subspace of Rn spanned by C, respectively. O(n) denotes
the orthogonal group in Rn, that is the group of all linear isometries of Rn, while
SO(n) is the special orthogonal group {T ∈ O(n) | det T = 1}. The line segment
with end-points x and y is denoted by [x, y].

Now we recall some definitions, cf. also [6], 2.10.1-2. For a metric space X and
m ≥ 0 the m-dimensional Hausdorff-measure Hm is an outer measure defined on
all subsets of X as follows: for A ⊂ X ,

Hm(A) = sup
δ>0

(

inf

{

∞
∑

i=1

diam(Ai)
m · πm/2

/

(

2mΓ(1 +
m

2
)
)

|

A ⊂
∞
⋃

i=1

Ai ⊂ X, ∀i, diam(Ai) ≤ δ

})

,

where diam means diameter. All closed subsets of X are Hm-measurable (see [6],
pp. 54, 170). If m is a positive integer, one calls A ⊂ X , with Hm(A) < ∞,
(Hm, m)-rectifiable, if

∀ε > 0, ∃Aε ⊂ X, Hm(A \ Aε) < ε,

and Aε is the image of a bounded subset of Rm by a Lipschitz map defined on
this subset, cf. [6], pp. 251-252. The 0-dimensional Hausdorff measure H0(A) of a
set A equals its cardinality, if A is finite, and equals ∞ if A is infinite. One calls
A ⊂ X (H0, 0)-rectifiable if A is finite, [6], p. 252.
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If X is a Euclidean space and A is a compact C1 m-dimensional submanifold,
then A is (Hm, m)-rectifiable, and Hm(A) coincides with the differential geometric
m-dimensional volume (Theorems 3.2.26 and 3.2.39 in [6]).

There are several star shaped sets associated with a convex body K ⊆ Rn. For
0 ∈ int K the double chordal symmetral 2∆̃K of K (cf. [7], Definition 5.1.3) is

defined by 2∆̃K := {λu | u ∈ Sn−1, |λ| ≤ V1(K∩(Ru))}, where Ru = {ru | r ∈ R};
∆̃K is an 0-symmetric star-shaped set having the same chord lengths through 0
in all directions as K. The difference body of K (cf. [1], §12, Section 53, or [7],
Section 3.2) is K + (−K); equivalently, it can be defined as {λu | u ∈ Sn−1, |λ| ≤
max{V1(K∩(Ru+x)) | x ∈ Rn}}. The inclusion 2∆̃K ⊆ K+(−K) readily follows
from the definitions.

Theorem 1. ([10] Th.3.1, [17] proof of Th.4) For any convex body K ⊆ Rn

with 0 ∈ intK the boundaries of the associated double chordal symmetral and the
difference body have a non-empty intersection:

bd (2∆̃K) ∩ bd (K + (−K)) 6= ∅. �

Geometrically, this theorem says that 0 belongs to some affine diameter [x, y]
of K, that is to a non-degenerate line segment [x, y] = aff{x, y} ∩ K such that for
each z ∈ Rn, V1([x, y]) ≥ V1(K ∩ (aff {x, y} + z)). Equivalently, in a more usual
formulation, there exist two different parallel supporting hyperplanes of K, passing
through x and y, respectively, cf. [10], p. 293. The geometrical reformulation
of the statement of the theorem remains true even without the assumption 0 ∈
int K. A purely geometrical proof can be found in [10], while the proof in [17] uses
elementary index theory as presented in [18]. [9], Theorem 1 proves the geometrical
reformulation in the case 0 6∈ K, but its arguments are easily modifiable to obtain
the case 0 ∈ K as well.

For 0 ∈ intK the intersection body IK of K, introduced in [12] (cf. also [7],
Definition 8.1.1), is defined by IK := {λu | u ∈ Sn−1, |λ| ≤ Vn−1(K ∩u⊥)}, where
u⊥ = {x ∈ Rn | 〈x, u〉 = 0}. The cross-section body CK of K, introduced in
[15] (cf. also [7], Definition 8.3.1) is defined by CK := {λu | u ∈ Sn−1, |λ| ≤
max{Vn−1(K ∩ (u⊥ + x)) | x ∈ Rn}}. Again there is an inclusion of the form
IK ⊆ CK and a theorem relating the boundaries of these bodies.

Theorem 2. ([13] Th.1 obtained jointly with R. Gardner) For any convex
body K ⊆ Rn with 0 ∈ intK one has bd (IK) ∩ bd (CK) 6= ∅. �

Geometrically, this theorem says that 0 belongs to a maximal (n−1)-dimensional
section K ∩ u⊥ of K, for some u ∈ Sn−1. In other words the section K ∩ u⊥ has
the property that, for each x ∈ Rn, Vn−1(K ∩ u⊥) ≥ Vn−1(K ∩ (u⊥ + x)). This
geometrical reformulation holds even without the assumption 0 ∈ int K. Actually,
not only that there must exist some u ∈ Sn−1 for which K ∩u⊥ is maximal in the
sense above, but the set of all such unit vectors cannot be included in a compact C1

(n− 2)-dimensional submanifold (or more generally in an (Hn−2, n− 2)-rectifiable,
Hn−2-measurable subset) of Sn−1, of (n − 2)-volume (or more generally (n − 2)-
dimensional Hausdorff-measure) less than cn−2, where cn−2 is the volume of the
sphere Sn−2. Moreover, here cn−2 cannot be replaced by any larger number. It
is implicit in the proof of Theorem 2 that there always exists a maximal (n − 1)-
section K ∩ u⊥ of K such that u⊥ contains any given linear (n − 2)-dimensional
subspace of Rn prescribed in advance. The proof of this result is purely geometrical
in combination with a simple continuity argument.
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It was natural to try to generalize Theorems 1 and 2 both to the case of families
of convex bodies and to the case of arbitrary k-dimensional maximal sections. As
before Grn,k is the Grassmann manifold of all linear k-dimensional subspaces of
Rn.

Theorem 3. ([14] Theorem 4) For any convex bodies K0, K1 ⊆ Rn there exists
a line A1 ⊆ Rn such that K0 ∩A1 is an affine diameter of K0 and K1 ∩A1 is an
affine diameter of K1. �

Theorem 4. ([14] Theorem 3) Let 1 ≤ k ≤ n − 1 be an integer. Then for any
convex body K ⊆ Rn the origin 0 belongs to some maximal k-section K∩Ak of K.
Actually, the set of all such k-dimensional linear subspaces Ak cannot be included
in a ν-dimensional compact C1 submanifold (or more generally, in an (Hν , ν)-
rectifiable, Hν-measurable subset) of the Grassmannian Grn,k, of O(n)-invariant
ν-measure (or more generally, ν-dimensional Hausdorff measure) less than some
positive constant cn,k, where ν = (k − 1)(n − k). This is sharp in the sense that
there exists some convex body K such that the above set is a smooth compact ν-
dimensional submanifold of finite O(n)-invariant ν-measure. �

The O(n)-invariant ν-dimensional Hausdorff measure (ν = (k − 1)(n − k)) is
meant with respect to an O(n)-invariant Riemannian metric ds2 on Grn,k. This
O(n)-invariant metric is described at the linear k-dimensional subspace L0

k =
lin {e1, ..., ek} spanned by the first k basic vectors e1, ..., ek as follows. The tangent
space to Grn,k at the point L0

k is the set of all linear functions A : lin {e1, ..., ek} →
lin {ek+1, ..., en}, and the Riemannian metric at L0

k is given by

ds2 =
∑k

i=1

∑n
j=k+1〈Aei, ej〉

2 = Tr(A∗ · A),

where Tr means trace. Since O(n) acts transitively on Grn,k, this extends uniquely
to a Riemannian metric on Grn,k, by the formula that ds2 at the left-translate
g′(A) of A, for g ∈ O(n), equals ds2 at A, as given above. (Here g′ denotes the
derivative of the action by g, between the respective tangent spaces at L0

k and
gL0

k.) Still we have to see, that this extension exists, i.e., if g′
1(A1) = g′

2(A2),

then Tr(A∗
1 · A1) = Tr(A∗

2 · A2). Letting g = g−1
2 g1, we have gL0

k = L0
k and

A2 = g′(A1). That is, g is the direct sum of two orthogonal matrices h1 acting
on L0

k and h2 acting on lin{ek+1, ..., en} and graphA2 = g · graphA1, or A2 =

h2A1h
−1
1 . (For the relation about the graphs observe that at L0

k locally Grn,k can
be considered as the vector space of all linear maps L0

k → lin {ek+1, ..., en}, by
identifying these linear functions with their graphs. Then the action by g becomes
a linear map, whose derivative g′ is a linear transformation, that pointwise coincides
with g, after this identification.) Then Tr(A∗

2 · A2) = Tr((h−1
1 )∗A∗

1h
∗
2h2A1h

−1
1 ) =

Tr((h−1
1 )∗A∗

1A1h
−1
1 ) = Tr(h1A

∗
1A1h

−1
1 ) = Tr(A∗

1A1), as required. It is implicit in
the proof of Theorem 4 that there always exists a maximal k-section K ∩Ak of K
such that Ak contains any linear (k − 1)-dimensional subspace Lk−1 prescribed in
advance.

Theorem 5. ([14] Theorem 5) For any convex bodies K0, ..., Kn−1 ⊆ Rn there
exists an affine (n − 1)-dimensional plane An−1 ⊆ Rn such that for any i ∈
{0, ..., n− 1}, Ki ∩ An−1 is a maximal (n − 1)-section of Ki. �

The proofs of Theorems 3, 4 and 5 used partly geometrical arguments, sometimes
involved ones, together with elementary topological tools like Grünbaum’s theorem
on non-existence of continuous even unit tangent vector fields on Sn−1, Brouwer’s
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fixed point theorem, and the Borsuk-Ulam theorem on the non-existence of odd
continuous mappings Sn−1 → Sn−2.

Observe that the equivalent (geometrical) form of Theorem 1 which refers to the
maximal 1-sections (without assuming 0 ∈ int K) is a special case of Theorem 3,
when one body is chosen to be the unit ball centered at 0. Similarly, the geometrical
form of Theorem 2 (again without assuming 0 ∈ int K) is a particular case of
Theorem 4 (up to the value of the constant cn,k). Moreover, the assertion after
Theorem 2 about the existence of a maximal (n − 1)-section K ∩ u⊥ of K such
that u⊥ contains any linear (n − 2)-dimensional subspace Ln−2 ⊆ Rn, prescribed
in advance, is a special case of Theorem 5 as well. Indeed, it is sufficient to apply
Theorem 5 to the family {K, B1, . . . , Bn−1}, where Bi are unit balls which have
the property that the affine hull of their centers is equal to Ln−2.

The main objective of this paper is to extend Theorems 3, 4 and 5 to the general
case of k-sections, where 1 ≤ k ≤ n − 1.

3. Statements of new results

In this section we formulate several results about common maximal k-sections
for families of convex bodies in Rn. The first result is an existence result. It is
shown that common maximal k-transversals exist if the given family K = {Ki}

l
i=0

of convex bodies consists of l + 1 ≤ k + 1 elements. The proof of this theorem is
topological and follows from the assertion that (wn−k)k ∈ Hk(n−k)(Grn,n−k; Z2)
is nonzero, where wn−k is the top Stiefel-Whitney class of the canonical (n − k)-
plane bundle over Grn,n−k. The following two theorems (Theorems 7 and 8) are
of more quantitative nature. In Theorem 7 we show that measure theoretically the
set Ck(K) of all common maximal k-transversals ofK is “sufficiently large” with
respect to a measure defined on the Grassmannian Grn+1,k+1. The argument is
based on a generalized Cauchy-Crofton-Poincaré formula from integral geometry.
In Theorem 8 we show that the set Ck(K) is cohomologically nontrivial in the
following sense. There exists a cohomology class θ ∈ Hn−k(Grn+1,k+1; Z2) such
that for each open neighborhood U of Ck(K), the class θl+1 is contained in the image
of the homomorphism H(l+1)(n−k)(Gr, Gr \ U) → H(l+1)(n−k)(Gr), where Gr :=
Grn+1,k+1 and the cohomology is taken with Z2-coefficients. Finally, in Theorem 9
we establish a link between Theorems 7 and 8 by showing that any compact subset
cohomologically nontrivial in the sense of Theorem 8 must be measure theoretically
“large” in the sense of Theorem 7. This means that Theorem 8 is formally more
general than Theorem 7. Note however that the key non-topological ideas in the
proof of Theorem 9 are already present in the proof of Theorem 7, so this theorem
can also be seen as a companion of Theorem 7.

Theorem 6. Let 1 ≤ k ≤ n − 1 be an integer. Then for each family K =
{K0, K1, ..., Kk} of convex bodies in Rn there exists an affine common maximal k-
transversal. In other words there exists an affine k-dimensional plane Ak such that
for each x ∈ Rn and each i ∈ {0, ..., k}, Vk(Ki ∩ Ak) ≥ Vk(Ki ∩ (Ak + x)), where
Vk is the normalized Lebesgue measure defined on affine k-dimensional subspaces
of Rn.

Simple examples show that there exist families K = {Ki}
k
i=0 of convex bodies

in Rn such that the common maximal k-section, whose existence was asserted in
the previous theorem, is unique (cf. remarks following Theorem 9). If the size of
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the family K is l + 1, where l < k, then the set Ck(K) of all common maximal
k-sections is not only non-empty but is quite big both from a measure theoretic
and a topological point of view. The exact statements are given in the following
two theorems.

We assume that Rn is embedded in the real projective space RPn in the usual
way. Thus an affine k-dimensional plane Ak of Rn becomes a projective k-dimensional
plane of RPn, that can be identified with a linear (k + 1)-dimensional plane of
Rn+1 (namely with lin (Lk + en+1), where Lk ⊆ Rn is embedded in Rn+1 by
(x1, ..., xn) 7→ (x1, ..., xn, 0)). Thus the set of all affine k-dimensional planes of Rn

will be considered as a (dense open) subset of the Grassmannian Grn+1,k+1, and the
O(n+1)-invariant (k−l)(n−k)-measure is defined as the (k−l)(n−k)-dimensional
Hausdorff-measure with respect to the O(n + 1)-invariant Riemannian metric ds2

on Grn+1,k+1, defined like after Theorem 4 (for n, k rather than n + 1, k + 1).

Theorem 7. Let 1 ≤ k ≤ n − 1 and 0 ≤ l ≤ k be integers and let ν := (k −
l)(n − k). Suppose that K = {K0, K1, ..., Kl} is a family of l + 1 convex bodies
in Rn and let Ck(K) be the space of all common maximal k-transversals of K.
Then Ck(K) cannot be included in an (Hν , ν)-rectifiable, Hν-measurable subset of
Grn+1,k+1, of O(n+1)–invariant ν-dimensional Hausdorff-measure less than some
positive constant cn,k,l. This is sharp in the sense that there are choices of K such
that Ck(K) is a compact C∞ ν-dimensional manifold of finite O(n + 1)-invariant
ν-measure.

Definition 1. Let K be a compact subset of a compact manifold M . We say
that a cohomology class θ ∈ Hp(M ; Z2) is concentrated in an arbitrarily small
neighborhood of K if, for each open neighborhood U of K, the class θ is contained
in the image of the map Hp(M, M \ U ; Z2) → Hp(M ; Z2).

Definition 2. Suppose that A is a subspace of the topological space X. The
Lyusternik-Shnirel’man category CatX(A) of A relative to X is the minimum car-
dinality of a family F of closed sets such that

⋃

F = A and each element F ∈ F is
contractible to a point by a homotopy that moves F inside X.

As before, we consider the affine Grassmannian AGrn,k of all affine k-dimensional
planes in Rn as a subspace of the manifold of all k-dimensional planes in the projec-
tive space RPn which can be considered also as the Grassmannian Gr = Grn+1,k+1

of all linear (k + 1)-dimensional subspaces of Rn+1.

Theorem 8. Let us make the same assumptions about n, k, l and K as in The-
orem 7. Given v ∈ Rn, let [Mv] be the Z2-fundamental class of the submanifold
Mv := {L ∈ AGrn,k | v ∈ L}. Let θ ∈ Hn−k(Grn+1,k+1; Z2) be the cohomology
class which is the Poincaré dual of [Mv]. Then θk+1 6= 0 and the class θl+1 is
concentrated in an arbitrarily small neighborhood of Ck(K) in Grn+1,k+1, in the
sense of Definition 1.

Corollary 1. The Lyusternik-Shnirel’man category of the space Ck(K) of all com-
mon maximal k-transversals relative to Gr := Grn+1,k+1 is at least k − l + 1,

CatGr(Ck(K)) ≥ k − l + 1 .
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Theorem 9. Suppose that C ⊆ Grn+1,k+1 is a compact subset such that the class

θl+1 ∈ H(n−k)(l+1)(Grn+1,k+1; Z2), defined in Theorem 8, is concentrated in an
arbitrarily small neighborhood of the subset C. Then the conclusion of Theorem 7
holds for the subset C. In other words, for ν = (k−l)(n−k), the O(n+1)-invariant
ν-measure of any (Hν , ν)-rectifiable, Hν-measurable subset of Grn+1,k+1 containing
C is at least cn,k,l, where cn,k,l is the same constant as in Theorem 7.

Before turning to the proofs we make some remarks. For l = k Theorem 7
reduces to Theorem 6. Theorem 6 is sharp in the sense that in general for k + 2
convex bodies K0, ..., Kk+1 ⊆ Rn there does not exist an affine k-dimensional
plane Ak such that Ki ∩ Ak is a maximal k-section of Ki: take k + 2 unit balls
with centers not lying in an affine k-dimensional plane. Similarly, for k + 1 convex
bodies K0, ..., Kk ⊆ Rn in general there do not exist two affine k-dimensional
planes with the stated property: take k + 1 unit balls with centers not lying in an
affine (k − 1)-dimensional plane. Moreover, Theorem 6 includes Theorems 3 and
5, while Theorem 7 includes Theorem 4, by choosing l = 1, K0 = K, K1 the unit
ball with center 0.

4. Proofs of the theorems

Proof of Theorem 6.
We begin with the observation that it suffices to prove the theorem for strictly
convex bodies. Recall that a convex body K is strictly convex if bdK does not
contain a line segment. This observation is based on the fact that each convex
body can be approximated (in the sense of the Hausdorff distance) by strictly
convex smooth (C1) bodies ([1], §6, Sect. 27). Also, if Km ⊆ Rn, m ∈ N , is a
sequence of convex bodies converging in the Hausdorff metric to a convex body
K ⊆ Rn and Am

k ⊆ Rn a sequence of affine k-dimensional planes converging to
an affine k-dimensional plane Ak ⊆ Rn (in the topology inherited from Grn+1,k+1)
then, if Km∩Am

k is a maximal k-section of Km for all m, then K∩Ak is a maximal
k-section of K. The details of this argument can be found in [14]. We conclude from
here that the general result follows from the result in the special case of strictly
convex bodies, so from here on we assume that all bodies Ki are strictly convex.

Our general plan of the proof is to reduce the problem of the existence of com-
mon maximal k-transversals to a topological coincidence question for a family of
continuous cross-sections of a vector bundle over a Grassmannian manifold. A
similar plan was applied in [14] and to other combinatorial geometric problems in
[20] and [4]. Let Lk ⊆ Rn be a linear k-dimensional subspace in Rn. Then any
k-dimensional affine subspace of Rn, parallel to Lk, is of the form Lk + x, where
we may choose x from the linear subspace L⊥

k that is the orthogonal complement
of Lk. Let π : Rn → L⊥

k be the orthogonal projection onto L⊥
k . For x ∈ π(Ki) let

fi(x) = Vk(Ki∩(Lk +x))1/k. By the Brunn-Minkowski theorem ([1], §11, Sect. 48)
fi is a concave function on π(Ki). By strict convexity of Ki, for x ∈ relbd (π(Ki))
the intersection Ki ∩ (Lk + x) consists of one point, hence fi(x) = 0 for such x.
(The relative boundary (relbd) and relative interior (relint) are taken with respect
to L⊥

k .) Hence fi(x) is a continuous function on π(Ki) which attains its maximum
in relint (π(Ki)), and for such a point of maximum x we have that Ki ∩ (Lk + x) is
a k-dimensional convex body.

Moreover, this maximum point x is unique. Indeed, if there were two maximum
points x1, x2 ∈ relint (π(Ki)), then by concavity of fi on π(Ki) we would have
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f(x1) = f
(

1
2(x1 + x2)

)

= f(x2). From here and the well-known fact that the
Brunn-Minkowski inequality is strict unless the convex bodies are homothetic (cf.
[1], §11, Sect. 48), we deduce that Ki∩(Lk +x1) and Ki∩(Lk +x2) are translates of
each other. Since Vk(Ki ∩ (Lk +x1)) = Vk

(

Ki ∩
(

Lk + 1
2(x1 + x2)

))

, the inclusion
1
2 [(Ki ∩ (Lk + x1)) + (Ki ∩ (Lk + x2))] ⊆ Ki ∩

(

Lk + 1
2 (x1 + x2)

)

turns out to be

an equality, hence also Ki ∩
(

Lk + 1
2 (x1 + x2)

)

is a translate of Ki ∩ (Lk + x1).
Therefore bdKi contains a line segment, contradicting strict convexity of Ki.

So we have a function L⊥
k 7→ xi(L

⊥
k ) where xi(L

⊥
k ) is the unique point where fi

attains its maximum. It is not difficult to show that this function is continuous.
Indeed, if Lm

k → Lk is a convergent sequence in Grn,k, then any limit point of
xi((L

m
k )⊥) equals xi(L

⊥
k ) and all xi((L

m
k )⊥) lie in a compact set. This is sufficient

to imply the continuity of the function L⊥
k 7→ xi(L

⊥
k ). The details of the above

arguments can be found in [14].
The theorem clearly follows if we can find a plane Lk ∈ Grn,k and some x ∈ L⊥

k

such that Ki∩(Lk +x) is a maximal k-section of Ki for each i ∈ {0, ..., k}. In other
words we have to prove that for some Lk ∈ Grn,k we have a coincidence x0(L

⊥
k ) =

· · · = xk(L⊥
k ). Note that each of the functions xi can be considered as a continuous

cross-section of the canonical (n − k)-plane bundle over the Grassmann manifold
Grn,n−k. Recall that the total space of this bundle is {(L⊥

k , x) | L⊥
k ∈ Grn,n−k, x ∈

L⊥
k ⊆ Rn} with the topology inherited from the product space Grn,n−k × Rn, and

its projection is (L⊥
k , x) 7→ L⊥

k . Let us consider the k continuous cross-sections
x1(L

⊥
k ) − x0(L

⊥
k ), ..., xk(L

⊥
k ) − x0(L

⊥
k ) of this bundle. By [5] or [20], Proposition

2, any k continuous cross-sections of this bundle have a common zero. In other
words, there exists a plane L⊥

k ∈ Grn,n−k such that x0(L
⊥
k ) = · · · = xk(L⊥

k ), which
completes the proof of the theorem. �

In the proof of the following theorem the integral geometric considerations, lead-
ing to the proof of (3) in the (Hν , ν)-rectifiable, Hν -measurable case, were kindly
communicated to us by R. Howard.

Proof of Theorem 7.
1. We want to prove that the set Ck(K) cannot be included in an (Hν , ν)-rectifiable,
Hν -measurable subset of O(n+1)-invariant ν-dimensional Hausdorff measure smaller
than a positive constant cn,k,l. For l = k the set Ck(K) is not empty, an (H0, 0)-
rectifiable set is just a finite set, and 0-dimensional Hausdorff-measure of a finite set
is just cardinality of the set. Hence we may choose cn,k,k = 1. Now let 0 ≤ l < k.
Let us choose k − l additional bodies Kl+1, ..., Kk. It is convenient to choose these
bodies to be unit balls such that their centers are affinely independent. Obviously
each affine (k − l − 1)-dimensional plane can arise as the affine hull of these cen-
ters, for an appropriate choice of these balls. Then by Theorem 6 there exists
an affine k-dimensional plane Ak ⊆ Rn such that for each i ∈ {0, ..., l} we have
that Ki ∩ Ak is a maximal k-section of Ki, and Ak contains an arbitrary affine
(k− l−1)-dimensional plane Ak−l−1 given in advance. Moreover, we may take also
projective (k − l − 1)-dimensional planes Pk−l−1 rather than affine ones. In fact, if
a projective (k − l − 1)-dimensional plane Pk−l−1 lies in the infinite hyperplane of
Rn, e.g., is the infinite hyperplane of lin {e1, ..., ek−l}, then we choose the centers of
the unit balls Kl+1, ..., Kk at λe1, ..., λek−l, and let λ → ∞. Again by Theorem 6
there exist affine k-dimensional planes Ak(λ) which give maximal k-sections of all
bodies K0, ..., Kl and which converge to a (projective) k-dimensional plane Ak that
necessarily contains Pk−l−1. But then, for each i ∈ {0, ..., l} we have that Ki∩Ak is
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a maximal k-section of Ki (cf. [14], cited in the beginning of the proof of Theorem
6).

For a projective (k − l − 1)-dimensional plane Pk−l−1 ⊆ RPn (real projective
n-dimensional space) let

Sk(Pk−l−1) = {Pk | Pk ⊆ RPn is a projective k-dimensional plane,Pk−l−1 ⊆ Pk}.

Recall that Ck(K) = {Ak | Ak ⊆ Rn is an affine k-dimensional plane such that
(∀i ∈ {0, ..., l}) Ki ∩ Ak is a maximal k-section of Ki}. Henceforward we will
consider Ck(K) as a set of projective k-dimensional planes. Then the above assertion
about projective (k − l − 1)-dimensional planes can be reformulated as follows:
(1)
for each projective (k−l−1)-dimensional plane Pk−l−1 ⊆ RPn, Ck(K)∩Sk(Pk−l−1) 6= ∅.

The set Ck(K) of affine, thus projective k-dimensional planes in Rn will be
considered as a subset of Grn+1,k+1, and we will identify the projective (k− l− 1)-
dimensional plane Pk−l−1 with a linear (k− l)-dimensional subspace Lk−l of Rn+1.
Moreover, we will write Sk(Pk−l−1) as Sk+1(Lk−l), and we will consider it as a set
of linear (k + 1)-dimensional subspaces of Rn+1. Thus

(2) for each Lk−l ∈ Grn+1,k−l, Ck(K) ∩ Sk+1(Lk−l) 6= ∅.

Now we recall some integral geometric considerations from [3] and [11]. We
follow the notation of [11] but will use that the results hold in the generality
given in [3]. Let G be a Lie group, K ⊆ G a compact (thus Lie) subgroup
of G, and G/K the homogeneous space of left cosets ξK of K in G. Then
G acts on G/K by g(ξK) = (gξ)K. Let π : G → G/K denote the natural
projection, whose derivative will be denoted by π′. Suppose that G has a
Riemannian metric ds2, that is left invariant on G, moreover is right invariant
under elements of K. We denote the corresponding bilinear form on G by
〈 , 〉. This induces a G-invariant Riemannian metric ds′2 on G/K. The
corresponding bilinear form is denoted by 〈 , 〉′, and it is described as follows:

〈X, X〉′T (G/K)x
= 〈[π′|(kerπ′(ξ))⊥]−1X, [π′|(kerπ′(ξ))⊥]−1X〉TGξ

,

where x ∈ G/K, and ξ is any element of π−1(x). (Observe that π′|(kerπ′(ξ))⊥ is a

linear isomorphism of the orthogonal complement (ker π′(ξ))⊥ of kerπ′(ξ) in TGξ

onto T (G/K)x, and that this definition is independent of the choice of ξ.)

Let Hp be the p dimensional Hausdorff measure on G/K and let M be a
(Hp, p) rectifiable subset of G/K. (Cf. [6] §3.2.14 or Section 2 of this paper
for the definition.) Basically these are subsets of finite Hp measure that can
be covered up to a set of Hp zero by a countable number of Lipschitz images
of subsets of Rp. This includes the class of rectifiable sets (which are the
Lipschitz images of bounded subsets of Rp). If M is also Hp measurable then
(cf. [6] Theorem 3.2.19) for Hp almost all x ∈ M there is a p dimensional
subspace tangent space Tanp(Hp⌊M, x) which we will just denote by T (M)x

and its orthogonal complement in T (G/K)x will be denoted by T⊥(M)x. (To
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simplify notation we will sometimes suppress the dimension and just say that
M is H rectifiable and measurable.) If M is an embedded p dimensional sub-
manifold of class C1 and finite volume then M is H rectifiable and measurable
and Vol (M) = Hp(M).

Let M ⊂ G/K be an (Hp, p) rectifiable subset of G/K which is Hp mea-
surable and N ⊂ G/K be an (Hq, q) rectifiable subset of G/K which is Hq

measurable and p + q ≥ dim(G/K). Set m = dim(G/K). Then for almost all
g ∈ G the intersection M ∩gN is an Hp+q−m measurable (Hp+q−m, p+q−m)
rectifiable subset of G/K. Moreover if G is unimodular (in particular, com-
pact, cf. [11], Remark 2.4) then the integral geometric formula the so called
Poincaré’s formula (compare [11], Theorem 3.8, stated for the smooth case)

∫

G

Hp+q−n(M ∩ gN) dg =

∫∫

M×N

σK(T⊥(M)x, T⊥(N)y) dHp × dHq(x, y)

holds. Here dg is the volume form on G associated with the Riemannian
metric ds2 on G, cf. [11], Remark 2.6, and the Hausdorff measures are taken

with respect to the Riemannian metric ds′
2
. Further σK(T⊥(M)x, T⊥(N)y)

(cf. [11] Def. 3.3) is a type of “integrated absolute value of sine of angle” and
for our purposes all that matters is that 0 ≤ σK(T⊥(M)x, T⊥(N)y) ≤ Vol (K)
(Vol (K) taken in the sense of the Riemannian metric ds2, cf. the inequality
0 ≤ σ(V, W ) ≤ 1 from [11], 2.1) so that

(3)

∫

G

Hp+q−m(M ∩ gN) dg ≤ Vol (K) · Hp(M) · Hq(N).

This can be seen by modifying the arguments in either [3] or [11]. We briefly
indicate how to do the modifications of the arguments of [11]. First note that
the proof of the Basic Integral Formula ([11] page 7; assuming G is unimodular
this is essentially the special case of the formula above where K = {e} is the
trivial subgroup of G) only depends on Sard’s theorem, the coarea formula,
and some changes of variables in integrals. If in deriving formula (2-12) on
page 8 of [11] the smooth coarea formula is replaced by the form given by
Federer (cf. [6] Theorem 3.2.22, p. 258) we get the same formula except that
now M and N are as above and (using the notation of [11] p. 8) the fibers
f−1[g] are Hp+q−n measurable (Hp+q−n, p + q − n) rectifiable subsets of G
for almost all g ∈ G. The rest of the proof is pretty much word for word
the same. Therefore the Basic Integral Formula of [11] holds when M and N
are H rectifiable and measurable subsets of G. The Poincaré’s formula ([11]
Theorem 3.8 p. 15) follows from the Basic Integral Formula by purely formal
considerations (basically changes of variables in integrals) so it will also hold
for H rectifiable measurable sets M and N .

We apply this inequality to G = SO(n + 1), K = [SO(k + 1) × SO(n −
k)] ∪ [(O(k + 1) \ SO(k + 1)) × (O(n − k) \ SO(n − k))], where O(k + 1) acts
on lin {e1, ..., ek+1} and O(n−k) acts on lin {ek+2, ..., en+1}, where {e1, ..., en+1} is
the standard orthonormal base of Rn+1. Then K is the stabilizer of lin {e1, ..., ek+1}
in SO(n + 1), hence G/K can be identified with Grn+1,k+1, with π : G → G/K
given by π(g) = g(lin{e1, ..., ek+1}) for g ∈ SO(n + 1).
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We define the biinvariant Riemannian metric ds2 on G as follows. We have that
TGI , the tangent space of G at I, i.e., the Lie algebra of G, is the set of all skew-
symmetric n+1 by n+1 matrices. Then for TGI ∋ (aij) we let ds2 =

∑

i<j a2
ij =

1
2Tr[(aij)

∗(aij)]. This has a left-invariant and a right-invariant extension to G,
which however coincide, to give a biinvariant extension ([11], 3.12.a).

Next we consider the derivative of π at I, i.e., π′(I) : TGI → T (G/K)π(I). We
recall from the remarks following Theorem 4 that T (G/K)π(I) is the set of all
linear transformations lin {e1, ..., ek+1} → lin {ek+2, ..., en+1}. Then we have for

(aij) ∈ TGI that π′(I)(aij) = (aij)
1≤j≤k+1
k+2≤i≤n+1 ∈ T (G/K)π(I). Therefore ker π′(I) =

{(aij) ∈ TGI | aij = 0 for j ≤ k + 1 < i}. Hence for its orthogonal complement
(kerπ′(I))⊥ in TGI in the sense of the above Riemannian metric ds2 we have
(kerπ′(I))⊥ = {(aij) ∈ TGI | aij = 0 for i, j ≤ k + 1 and for i, j > k + 1}.

By definition, ds′2 in G/K, at (aij)
1≤j≤k+1
k+2≤i≤n+1 ∈ T (G/K)π(I) is obtained the

following way. We extend (aij)
1≤j≤k+1
k+2≤i≤n+1 to an n + 1 by n + 1 matrix (aij) ∈

(kerπ′(I))⊥, i.e., to a skew-symmetric matrix satisfying aij = 0 for i, j ≤ k + 1
and for i, j > k + 1, and evaluate ds2 for the obtained matrix. This however

gives us
∑

i<j a2
ij =

∑

i>j a2
ij =

∑n+1
i=k+2

∑k+1
j=1 a2

ij . That is, on T (G/K)π(I) the

SO(n + 1)-invariant Riemannian metric ds′2 on G/K = Grn+1,k+1 considered by
[11] equals the O(n+1)-invariant Riemannian metric ds2 on Grn+1,k+1, introduced
after Theorem 4 (for n, k rather than n + 1, k + 1), and considered in this theorem.
Since both of these Riemannian metrics are SO(n + 1)-invariant, they coincide on
the whole G/K.

Now suppose that Ck(K) is included in an (Hν , ν)-rectifiable, Hν-measurable
subset M of Grn+1,k+1, where ν = (k − l)(n − k). We are going to show that
the O(n + 1)-invariant ν-dimensional Hausdorff-measure of M , in the sense of the
O(n+1)-invariant Riemannian metric ds′2 on Grn+1,k+1 considered in this theorem,
is at least a suitably chosen positive constant cn,k,l.

By (2) we have for each Lk−l ∈ Grn+1,k−l that M ∩ Sk+1(Lk−l) 6= ∅. Observe
that for any Lk−l ∈ Grn+1,k−l we have that Sk+1(Lk−l) is a compact C∞ manifold,
diffeomorphic to Grn−k+l+1,l+1, that has dimension (l + 1)(n− k). Let us fix some
L0

k−l ∈ Grn+1,k−l. We have for any g ∈ SO(n+1) that Sk+1(gL0
k−l) = gSk+1(L

0
k−l).

Let N = Sk+1(L
0
k−l). Then for each g ∈ SO(n + 1) we have M ∩ gN = M ∩

gSk+1(L
0
k−l) = M ∩ Sk+1(gL0

k−l) 6= ∅. Further, ν + dim N = (k − l)(n − k) + (l +
1)(n − k) = (k + 1)(n − k) = dim Grn+1,k+1 = dim(G/K).

Applying the above cited results from [11], for almost all g ∈ SO(n+1) we have
that M ∩ gN is a finite subset of Grn+1,k+1, and we have by (3)

(4)

∫

SO(n+1)

H0(M ∩ gN)dg ≤ Vol (K) · Hν(M) · H(l+1)(n−k)(N),

where

K = [SO(k + 1)× SO(n− k)]∪ [(O(k + 1) \ SO(k + 1))× (O(n− k) \ SO(n− k))].

Since for almost all g ∈ SO(n + 1) we have that M ∩ gN is a finite set, in which
case 1 ≤ H0(M ∩ gN), we have

(5) Vol (SO(n + 1)) ≤

∫

SO(n+1)

H0(M ∩ gN)dg.
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The inequalities (4) and (5) together imply

(6) Hν(M) ≥ cn,k,l,

for a suitably chosen positive constant cn,k,l, as asserted.
2. It remains to be shown that, for some choice of the convex bodies K0, ..., Kl in

Rn, the set Ck(K) of affine k-dimensional planes Ak ⊆ Rn in question is a compact
C∞ ν-dimensional submanifold of Grn+1,k+1, of the considered O(n+1)-invariant
ν-measure some finite number, for ν = (k − l)(n − k).

Let K0, ..., Kl ⊆ Rn be unit balls, whose centers span an affine l-dimensional
plane A0

l ⊆ Rn. Then Ck(K) = Sk(A0
l ) = Sk+1(L

0
l+1), where L0

l+1 is the linear

(l + 1)-dimensional subspace of Rn+1, corresponding to the affine (thus projective)
l-dimensional plane A0

l . Further Sk+1(L
0
l+1) is diffeomorphic to Grn−l,k−l, therefore

Sk+1(L
0
l+1) is a compact C∞ ν-dimensional submanifold of Grn+1,k+1, hence has a

finite O(n + 1)-invariant ν-measure. �

Remark. Using [11] it is not difficult to give the constant cn,k,l from the above proof
explicitly also for l < k. In fact, (4) and (5) give Hν(M) ≥ Vol (SO(n+1))/[Vol (K)·
Vol (N)]. Here Vol (K) = 2Vol (SO(k + 1)) · Vol (SO(n − k)). Moreover, we have
N = Sk+1(L

0
k−l)

∼= Grn−k+l+1,l+1. Further, like in [11], 3.12.(a), since ds2 is
biinvariant on G and π is a Riemannian submersion, we have Vol (Grn−k+l+1,l+1) =
Vol (SO(n−k+l+1))/[2Vol (SO(l+1))·Vol (SO(n−k))]. It remains to observe that
by [11], 3.12(a), formula (3-15), for any natural number m we have Vol (SO(m)) =
Vol (S1)Vol (S2)...Vol (Sm−1).

Proof of Theorem 8.
Like in Theorem 6, it suffices to prove also this theorem for strictly convex bodies
only. Namely, let Km

0 , ..., Km
l , m ∈ N , be strictly convex bodies converging (in the

sense of the Hausdorff distance) to K0, ..., Kl. As in the beginning of the proof of
Theorem 6, by [14], for Km = {Km

0 , ..., Km
l } we have for any subsequence mi ∈ N

that Ami

k ∈ Ck(Kmi), Ami

k → Ak imply Ak ∈ Ck(K). Therefore Ck(Km) (which
are contained in a compact subset of Grn+1,k+1 independent of m), lie, for m
sufficiently large, in an arbitrarily small open neighborhood of Ck(K), prescribed
in advance.

Next we recall some well known facts about the topology of Grassmannians.
Standard references are [16], [8], [2] as well as other more elementary topological
textbooks. We include the relevant details to make the proof as self-contained as
possible.

The direct sum decomposition Rn+1 ∼= Rn ⊕R and the identification of Rn with
the hyperplane H := {x ∈ Rn+1 | xn+1 = 1} allows us to view the affine Grass-
mann manifold AGrn,k of all affine k-dimensional planes in Rn as a submanifold of
Grn+1,k+1. More precisely, the manifold AGrn,k is embedded in Grn+1,k+1 by the
map which sends a k-dimensional plane L ∈ AGrn,k to the (k +1)-dimensional lin-
ear subspace of Rn+1 spanned by L. From now on, AGrn,k will be often identified
with its image in Grn+1,k+1. The space N0 := Grn+1,k+1 \ AGrn,k is identified as
the Grassmann manifold Grn,k+1 of all “horizontal” (k + 1)-dimensional planes in
Grn+1,k+1. The “dual” manifold N1 of all “vertical” (k + 1)-dimensional planes in
Grn+1,k+1, i.e., the planes which contain the basic vector en+1, is clearly homeomor-
phic to Grn,k. Indeed, each vertical (k +1)-dimensional plane L in Rn+1 = Rn ⊕R
intersects the horizontal space Rn in a k-dimensional plane L′ and conversely each
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L′ ∈ Grn,k determines the corresponding L ∈ N1. A very important observation,
already used in the proof of Theorem 6, is that the space

AGrn,k = Grn+1,k+1 \ Grn,k+1

of all non-horizontal (k+1)-dimensional linear subspaces of Rn+1 is homeomorphic
to the total space of the canonical (tautological) (n − k)-dimensional bundle ξn−k

over Grn,k
∼= Grn,n−k. Recall that a k-dimensional plane P ∈ AGrn,k is of the

form P = Lk + en+1 + v where Lk is the unique parallel horizontal k-dimensional
linear subspace in Rn and v ∈ Rn. Note that there exists a unique vector v ∈ L⊥

k

in the linear subspace of Rn orthogonal to Lk such that P = Lk + en+1 + v.
This defines a bijective correspondence P 7→ (Lk, v) which proves the assertion
that AGrn,k is a tautological, (n − k)-dimensional bundle over Grn,k. Note that
the zero section of this bundle is naturally identified with the manifold N1. This
follows from the fact that the zero section consists of the planes P = (Lk, v) for
which v = 0. Note that this implies that AGrn,k = Grn+1,k+1 \ Grn,k+1 is an
open “tubular” neighborhood of N1 which can also be seen as the normal bundle
ν(N1) to N1 in Grn+1,k+1. All the (co)homologies are understood to be with Z2

coefficients. Let [N1] be the fundamental class of N1, i.e., the generator of the
group Hk(n−k)(N1) ∼= Hk(n−k)(Grn,k) ∼= Z2. By a slight abuse of notation, let
[N1] be also the image of this class in Hk(n−k)(Grn+1,k+1) upon the embedding
N1 → Grn+1,k+1. The Poincaré dual of the class [N1], denoted by θ, is a cohomology
class in Hn−k(Grn+1,k+1). Actually, by the usual link between the Poincaré duality
and the Thom isomorphism theorem, see e.g. [2] or [16] (Theorem 10.2), Chapter
VI, especially Section 11, θ can be seen as a class in H∗(ν(N1), ν(N1) \ N1) ∼=
H∗(Grn+1,k+1, Grn+1,k+1 \ Grn,k+1). Moreover, the Thom isomorphism theorem
says that each class ω ∈ H∗(ν(N1), ν(N1) \ N1) has a unique decomposition of the
form ω = w θ where w ∈ H∗(ν(N1)) ∼= H∗(N1). In particular θ2 = wn−k θ where
wn−k is the top Stiefel-Whitney class of the bundle ν(N1) → N1 or equivalently
the Z2-Euler class of the bundle ξn−k over Grn,k defined above. Hence,

(7) θk+1 = (wn−k)k θ .

It is a well known fact, already used in the proof of Theorem 6, that (wn−k)k 6= 0.
A cohomological proof of this observation can be found in [5], see also [20], while
an alternative proof, based on Schubert calculus, is in [8], section 1.5. From here
we deduce that θk+1 = wk

n−k θ 6= 0 which follows from wk
n−k 6= 0.

Let xi : Grn,n−k → ξn−k, i = 0, ..., l, be the sections of the bundle ξn−k
∼= ν(N1) ∼=

AGrn,k, introduced in the proof of Theorem 6. Recall that xi(L
⊥
k ) = x′

i(Lk) is
by definition the unique point in L⊥

k such that Lk + xi(L
⊥
k ) is the maximal k-

section of the strictly convex body Ki. Let Xi = Im(xi), considered as a subset

of ξn−k ⊂ Grn+1,k+1. By definition, Ck(K) =
⋂l

i=0 Xi. Note that Xi is a C0

submanifold of ξn−k since xi is a continuous cross-section, and that the fundamental
class [Xi] of Xi, seen as a class in H∗(Grn+1,k+1), is equal to [N1]. The last assertion
follows from the fact that xi is linearly homotopic to the zero cross-section. The
same argument shows that θ is the Poincaré dual of any class of the form [Mv],
where Mv is the submanifold of AGrn,k defined in the statement of Theorem 8.
We conclude that θ, the Poincaré dual of [N1] = [Xi] = [Mv], is concentrated in an
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arbitrarily small open neighborhood Ui of Xi, which means that θ is in the image
of the map

Hn−k(Grn+1,k+1, Grn+1,k+1 \ Ui) −→ Hn−k(Grn+1,k+1) .

From here it follows, essentially by the argument of Theorem 11.10 in [2], Ch. VI,
p. 373, that θl+1 is in the image of the map

H(l+1)(n−k)(Grn+1,k+1, Grn+1,k+1 \
l
⋂

i=0

Ui) −→ H(l+1)(n−k)(Grn+1,k+1) ,

which means that θl+1 is concentrated in an arbitrarily small neighborhood of the
set Ck(K), in the sense of Definition 1. �

In the proof of Corollary 1 we assume that the cohomology we work with is
a continuous extension of the singular cohomology theory, say the Čech or the
Alexander-Spanier-Kolmogoroff cohomology theory. This is only a technical as-
sumption, similar to the corresponding assumptions in Poincaré-Lefschetz duality
theorems.

Proof of Corollary 1.
Suppose that CatGr(Ck(K)) ≤ k − l. This means that there exists a family F =

{F1, ..., Fk−l} of closed subspaces of Gr = Grn+1,k+1 such that
⋃k−l

j=1 Fj = Ck(K)
and each Fi is contractible to a point by a homotopy which moves Fi inside Gr.
More precisely, this means that the inclusion map Fi →֒ Gr is homotopic to a
constant map and as a consequence of this, the induced map Hn−k(Gr, Z2) →
Hn−k(Fi, Z2) is trivial. Moreover, by the continuity of the cohomology theory,
there exists an open set Vi ⊃ Fi such that the homomorphism Hn−k(Gr, Z2) →
Hn−k(Vi, Z2) is also trivial. From the cohomology exact sequence of a pair we
conclude that there exists a class θi ∈ Hn−k(Gr, Vi; Z2) which is mapped to the class
θ by the homomorphism Hn−k(Gr, Fi; Z2) → Hn−k(Gr, Z2). By Theorem 8, the
class θl+1 is concentrated in an arbitrarily small neighborhood of Ck(K). It follows

that there exists a class θ0 ∈ H(n−k)(l+1)(Gr, Gr \ V ; Z2), where V :=
⋃k−l

i=1 Vi,

which is mapped to the class θl+1. We conclude that the class θ0θ1 · · · θk−l ∈
H(n−k)(k+1)(Gr, Gr; Z2) ∼= 0 is mapped to the class θk+1. This is a contradiction
to the fact from Theorem 8, that θk+1 6= 0. �

Proof of Theorem 9.
The key topological property of the set Ck(K), used in the proof of Theorem 7, was
the relation (1). We will show that the set C has the same property, i.e. that
(1a)
for each projective (k−l−1)-dimensional plane Pk−l−1 ⊆ RPn, C∩Sk(Pk−l−1) 6= ∅ .

After we establish (1a), the rest of the proof will be just the repetition of the proof of
Theorem 7. So let us concentrate on the proof of (1a). Given a (k−l−1)-dimensional
plane Pk−l−1, let M be the manifold of all projective k-dimensional planes P such
that Pk−l−1 ⊆ P and let [M ] be its fundamental class. Alternatively, the manifold
M can be described as the space of all linear (k+1)-dimensional subspaces in Rn+1

which contain the (k − l)-dimensional linear space Lk−l associated to Pk−l−1. The
Poincaré dual of the class [M ] is the class θk−l, where θ is the class introduced
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in the formulation of Theorem 8. One way to see this is, in light of the fact that
θ is the Poincaré dual of classes [Mv] (see Theorem 8), is to observe that [M ] =
[Mv1

]∩ . . .∩ [Mvk−l
], where vi are points which span Lk−l. In other words, the class

θl+1 is, by assumption, concentrated in an arbitrarily small neighborhood of C and
θk−l, being a Poincaré dual, is concentrated in an arbitrarily small neighborhood
of the manifold M . Since the nonzero class θk+1 = θl+1 θk−l is concentrated in
an arbitrarily small neighborhood of C ∩ M , we conclude that this set is non-
empty and the relation (1a) follows. Note that this proof is essentially a repetition
of the argument already used in the proof of Corollary 1, see also the proof of
Theorem 11.10 from [2], Ch. VI, p. 373. �

5. Counterexamples for non-convex bodies

One can ask if one could replace the convex bodies Ki with more general, say
compact sets. However, for 1-dimensional sections this is not the case, as shown by
an example kindly communicated to us by J. Matoušek.

Example 1. (J. Matoušek) The geometrical form of Theorem 1, without as-
suming 0 ∈ intK (and hence the stronger Theorem 3), is false for the compact set
K = {x ∈ Rn | r1 ≤ ‖x‖ ≤ r2}, where 0 < r1 < r2 (and for K1 = K and K2 the
unit ball of Rn, respectively). In particular, for n = 2 the (geometrical forms) of
Theorems 1 to 8 and Corollary 1 (without assuming 0 ∈ int K at Theorems 1 and
2), with the maximal k-sections, are not valid for all compact sets.

Proof. If a line A1 in Rn has a distance x from 0, then

V1(K ∩ A1) = 2(
√

max(r2
2 − x2, 0) −

√

max(r2
1 − x2, 0)),

that attains its maximum for x = r1. Hence all maximal 1-sections are those with
A1 being tangent to the ball of radius r1 about 0, and none of these lines A1 contains
0.

Based on this example, we can give further examples, for k-dimensional sections,
1 ≤ k ≤ n − 1.

Example 2. For each k ∈ {1, ..., n− 1} the statement of Theorem 6 (and that of
its special case Theorem 5) is not valid for all compact sets Ki.

Proof. Let K1 = K × Bk−1, where K = {x ∈ lin {e1, ..., en−k+1} | r1 ≤ ‖x‖ ≤ r2}
(with 0 < r1 < r2) and Bk−1 = {x ∈ lin {en−k+2, ..., en} | ‖x‖ ≤ 1}, and let
K2, ..., Kk+1 be k unit balls centered at 0, en−k+2, ..., en. Let Ak ⊆ Rn be an
affine k-dimensional plane, and suppose that Ki ∩Ak is a maximal k-section of Ki

for any i ∈ {2, ..., k+1}. Then Ak passes through the centers of K2, ..., Kk+1, hence
is of the form Ak = A1 × lin {en−k+2, ..., en}, where 0 ∈ A1 ⊆ lin {e1, ..., en−k+1}
is a linear 1-dimensional subspace. Then, by Example 1, Vk(K1 ∩ Ak) = V1(K ∩
A1) · Vk−1(B

k−1) < V1(K ∩ (A1 + x)) · Vk−1(B
k−1) = Vk(K1 ∩ (Ak + x)) for x ∈

lin {e1, ..., en−k+1} orthogonal to A1 and ‖x‖ = r1, hence K1∩Ak is not a maximal
k-section of K1.

Acknowledgement. The authors would like to express their gratitude to Imre
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