

(1) <u>MANIFOLDS</u>

Def: TOPOLOGICAL MANIFOLD Mn is a T2+N2 topological space locally homeomorphic to $\{x^n > 0\} \in \mathbb{R}^n$. The boundary ∂M corresponds to $\{x^n = 0\}$; it is well-def. <u>b</u>f: <u>PL MANIFOLD</u> (M, A) is a topological manifold with a (maximal) PL attas $\mathcal{A} = \mathcal{L} \varphi : \mathcal{A}^n \longrightarrow \mathcal{M} \text{ embedding } \mathcal{J}$ whose interior covers $\mathcal{M} \ll \text{ with } \mathcal{P} \mathcal{L}$ transition functions: $\varphi(\Delta^n) \subseteq M \supseteq \psi(\Delta^n)$ φ $\int s$ $s \psi$ Δ^n piecewise linear (i.e., Δ^h can be written as a finite union of simplices & the map is linear on each of them) Def: SMOOTH MANIFOLD (M, A) is a top mild with a maximal smooth at las $\{\varphi: \bigcup_{i=1}^{q \in \mathbb{N}} M\}$ and C^{∞} transition functions and C^{∞} transition functions.

$$CAT = TOP, PL, or C^{\infty}$$

$$W^{n} CAT-mfd, W_{0} \in W codim-O closed submfd.$$

$$M^{n} CAT-mfd, W_{0} \in W codim-O closed submfd.$$

$$M^{n} CAT-HANDLE DECOMPOSITION of W rel M is a filtration $W_{0} \in W_{1} \in W_{2} \in ...$

$$A CAT-HANDLE DECOMPOSITION of W rel M is a filtration $W_{0} \in W_{1} \in W_{2} \in ...$

$$A CAT-HANDLE DECOMPOSITION of W rel M is a filtration $W_{0} \in W_{1} \in W_{2} \in ...$

$$A CAT-HANDLE DECOMPOSITION of W rel M is a filtration $W_{0} \in W_{1} \in W_{2} \in ...$

$$A CAT-HANDLE DECOMPOSITION of W rel M is a filtration $W_{0} \in W_{1} \in W_{2} \in ...$

$$A CAT-HANDLE DECOMPOSITION of W rel M is a filtration $W_{0} \in W_{1} \in W_{2} \in ...$

$$A CAT-HANDLE DECOMPOSITION of W rel M is a filtration $W_{0} \in W_{1} \in W_{2} \in ...$

$$A CAT-HANDLE DECOMPOSITION of W rel M is a filtration $W_{0} \in W_{1} \in W_{2} \in ...$

$$A CAT-HANDLE DECOMPOSITION of W rel M is a filtration $W_{0} \in W_{1} \in W_{2} \in ...$

$$A CAT-HANDLE DECOMPOSITION of W rel M is a closed codim-O submfd s.t.$$

$$A CAT-HANDLE DECOMPOSITION of W rel M is a cot submfd s.t.$$

$$A CAT-HANDLE DECOMPOSITION of W rel M is a cot submfd s.t.$$

$$A CAT-HANDLE DECOMPOSITION of W rel M is a cot submfd s.t.$$

$$A CAT-HANDLE DECOMPOSITION of W rel M is a cot submfd s.t.$$

$$A CAT-HANDLE DECOMPOSITION of W rel M is a cot submfd s.t.$$

$$A CAT-HANDLE DECOMPOSITION of W rel M is a cot submfd s.t.$$

$$A CAT-HANDLE DECOMPOSITION of W rel M is a cot submfd s.t.$$

$$A CAT-HANDLE DECOMPOSITION of W rel M is a cot submfd s.t.$$

$$A CAT-HANDLE DECOMPOSITION of W rel M is a cot submfd s.t.$$$$$$$$$$$$$$$$$$$$

the except maybe for TOP in dim 4, where it's open
RK: IF W, M, N all have
$$\pi_1 = 1$$
 and are htopic to a CW cx,
than h-cob \Leftrightarrow H*(W, M; Z) = 0 \Leftrightarrow H*(W, N; Z) = 0.
(for e we we'd ned the op to CW cx.)
Itm. (h-cobordism, Smelle 1960s) CAT = TOP, PL, C[∞].
Set Wⁿ⁺⁴ be a CAT-cobordism from M to N with
 $\pi_1(W) = \pi_1(M) = \pi_1(N) = 1$ and H*(W, M; Z) = 0.
IF n > 5, then I CAT-isomorphism $W \cong I \times M$
which is the identity on $M \longrightarrow \{0\} \times H$. Thus, $M \cong_{CAT} N$.
(4) PROOF of the h-cobordism thm
I will do the smooth case.
PL case is the same (Rowke - Saucherson)
TOP case requires checking that some techniques go through
(e.g. tangent bundles, transversality, handle decompositions, ...)
This is done by Kicky-Siebenmann.
O. The starting point

Pick a handle decomposition for W rel Mo. GOAL: modify it to remove all handles ~ I × Mo.

 $\begin{array}{l} \operatorname{codim} A + \operatorname{codim} B &= (n - \ell + 1) + k > n = \operatorname{dim}(\partial W_i) \\ \Rightarrow A + B &= \phi \\ \text{ bu can isotope } h^{\ell} \text{ off of } h^k. \end{array}$

Notation until the end of the proof

$$W_i := (n+1) - mfd$$
 after
attaching all
the *i*-handles
 $M_i := \partial W_i - M$
 $M_i := \partial W_i - M$

Interluce: hande moves

1) Geometric pair caucellation

3. Hardle hondogy
Def: HANDLE CHAIN COMPLEX

$$C_{k} = \mathbb{Z} \langle k - handles \rangle$$
, $\partial_{k} : C_{k} \rightarrow C_{k-1}$
 $\partial_{k} h^{k} = \sum_{h^{k-1}} \langle \partial_{k} h^{k}, h^{k-1} \rangle h^{k-1}$
 $\# (A^{k-1} \cap B^{n+1-k})^{a}$ algebraic inters
 $\# (A^{k-1} \cap B^{n+1-k})^{a}$ number in M_{k-1}
att. sphere belt sphere
Thm: $H_{*}(C_{k}) \cong$ singular homology of (W, H)
PE: Source as for cellular homology
Application to h-colo. theorem
 $C_{2} \stackrel{\partial_{3}}{\leftarrow} C_{3} \xleftarrow{} \cdots \xleftarrow{} C_{n-2} \stackrel{\partial_{n-1}}{\leftarrow} C_{n-1}$
Since $H_{*}(W, M; \mathbb{Z}) = 0$, after a chauge of baxis
(achieved w/ sequence of handleslider) we have
 $\left[\partial_{k}\right] = \left[\begin{array}{c} 0 & I \\ 0 & 0 \end{array}\right]$

Each k-handle is paired with either a (k-1) - or (k+1) - handle and they are <u>algebraically complementary</u> $(\#(A \cap B) = 1)$. If we can make them geom. complem., then we can cancel them all and win. up to this pt n>4 works 4. The Whitney trick (n>5) A^{k} = attaching sphere of h^{k+1} complem. dimensions in M_{K}^{n} B^{n-k} = belt sphere of h^k Suppose ×, y ∈ A ∩ B and x A we wish to caucel intersections (of apposite signs). $\gamma = path in A$ from x to y + path in B from y to x. Lemma: Mk is simply connected if n> 4. Pf: For all k < n-1 this follows from the fact that we are doing surgery on attaching spheres of codim > 2: $M_{K} \rightarrow \text{remove } \mathcal{P}(A^{K}) \rightarrow \text{ attach belt } \rightarrow M_{K+1}$

Er
$$K=n-1$$
, tom the decomp. upside down.
Now $M_{n-1} = N_2$, which is simply connected as long
as $2 < n-1$, i.e. $n \ge 4$.
Lemma: $M_k - (A \cup B)$ is simply connected if $n \ge 5$
 $PE: 2 < k < n-1$
Then $codim_{H_k}A$, $codim_{H_k}B > 2$
 \Rightarrow removing A and B does not affect τ_1 .
 $k=2$
(*) $codim A > 2$, so that's fine. (need $n \ge 5$)
As for B , we have that $M_2 - B \cong M_1 - (att. sphere of h^2)$
if he is the unique 2-handle
 $codim \ge 4$, so it's fine.
 $k=n-1$: torn it upside down

Recall: y obtained by concatenating paths between × and y
x is homotopically trivial in H_k-(A∪B) by lemma.
So By Whitney's embedding thm (n≥2 dim D + 1),
we can assume D ≤ H_k embedded. (need n≥5).
Frank k-1 bundle
E_y = the subbundle of N_{DIMk} redicted to x that is:
•) tangent to A along ∂_AD
•) normal to B along ∂_BD normal bundle of the
disc is trivial
E_y defines a path in Gr_{k-4} (Rⁿ⁻²)
It extends to all of D iff this path is null-handpic.
So If n≥5,
$$\pi_4$$
 (Gr_{k-4} (Rⁿ⁻²)) = Z/2Z
×y aposite signs ⇔ 0 if path preserves orient. A
×y some signs ⇔ 1 if path reverses orient.
RK: If n=4, k=2, π_4 (Gr_k(R²)) = Z,
so E_y extends to E_D iff this path induces the O element.
The distribution ne Z is called FRAMING.

After extending E to the disc, we can define an isotopy of A supported in a neighbourhood of D that removes the two intersections

THE END

<u>Rk</u>: Remarkably, the proof of the h-cobordism theorem works also in TOP in dim 4 [Freedman 1982]. It is <u>FALSE</u> in PL/C[∞] [Donaldson 1987].

$$\begin{array}{c|c} D_{1} & \xrightarrow{id_{D_{1}}} \\ \psi & \xrightarrow{} \\ \psi & \xrightarrow{} \\ \psi & \xrightarrow{} \\ \end{array} \end{array} \begin{array}{c|c} D_{1} & \psi & D_{2} \\ \psi & \xrightarrow{} \\ \psi & \xrightarrow{} \\ \psi & \xrightarrow{} \\ \psi & \xrightarrow{} \\ \end{array} \end{array} \begin{array}{c|c} D_{1} & \psi & D_{2} \\ \psi & \xrightarrow{} \\ \end{array} \end{array} \begin{array}{c|c} \psi & \psi & \psi & y \\ \psi & y & y$$

Rk: In PL you need to do it simplex by simplex (can shill get
singular pointo).
Rk: In C[∞] the Alexander trick is false.
Milnor showed that in dim 7 there are exactly 28
C[∞]-inequivalent twisted spherex.
The TOP/PL Bincaré conjecture
The TOP/PL Bincaré conjecture holds in every
$$n \neq 4$$
.
Reof: n=0,1,2: easy
n=3: Brelman
[n>6] We prove that every hty sphere Σ '' is a twisted sphere,
then invoke Alexander's trick.
 $\frac{D_2}{\sum_{k=0}^{n}} \sum_{k=0}^{n} (D_1 \cup D_2)$ is an h-cdb. $S^{n-1} \rightarrow S^n$
 $\xrightarrow{h-cd}$. it is CAT-iso to product colo. +
CAT-iso is id on the bollom.

-1

Thm: If $n \neq 4$, every C^{∞} hty S^{n} is a twisted sphere. Pf: Same as TOP/PL PC, but without using the Alexander trick.

A panoramic view

Rk: The following statements are equivalent:
1)
$$C^{\infty}$$
 h-cdb (3)
2) C^{∞} hty $S^{4} \Rightarrow$ twisted S^{4}
3) C^{∞} PC (4)
Pf: $1 \Rightarrow 2$: always true
 $2 \Rightarrow 1$: h-cdb in dim 3 Ferefinan
 $Z \Rightarrow 1$: h-cdb in dim 3 Forman M=N=S^{3}.
Cap off with two capies of \mathbb{B}^{4} .
B⁴
B⁴
B⁴
Hty S⁴
Thus, the h-cdb is \mathbb{B}^{4} - $\mathbb{B}^{4} \approx \mathbb{I} \times S^{3}$.
 $3 \Rightarrow 2$ obvious
 $2 \Rightarrow 3$ follows from a thin of Cerf, who proved
that there are no non-trivial C^{∞} twisted S^{4}
 $(\tau_{0}(Diff(S^{3})) = 1)$

 \Box

<u> </u>	$\frac{\mathbf{Rk}}{\mathbf{k}}: \mathbb{C}^{\infty} \mathbb{PC} (4) \iff \mathbb{E} \text{very contractible smooth } X^4 \text{ with} \\ \frac{\partial X}{\partial X} = S^3 \text{ is } \cong_{\mathbb{C}^{\infty}} \mathbb{B}^4$														
<u>Rk</u> : <u>Def</u> : Q	$\frac{\mathbf{Rk}}{\mathbf{M}}: \mathbb{C}^{\infty} \mathbf{PC}(7) \text{ is false (Milnor 1956)}$ $\underline{\mathbf{Nef}}: \mathbb{O}_{n} = \text{twisted spheres}/\text{diffeo}$ $\mathbb{O}_{n} \text{ measures the failure of } \mathbb{C}^{\infty} \mathbf{PC}(n) \text{ for } n \neq 4.$														
	0	1	2	3	4	J 5	6	7	8	9	10	11	12	13	14
(k) _n	1	1	1	1	1	1	1	Z28	Zz	$\mathbb{Z}_{2}^{\oplus_{4}}$	Z	Z ₉₉₂	1	\mathbb{Z}_3	\mathbb{Z}_{z}

2. Characterisation of discs <u>Thm</u>: X^n cpt, CAT-mfd, $n \ge 6$, with $\pi_1(X) = \pi_1(\partial X) = 1$. Then the following are equivalent: $4) \times \simeq_{CAT} \mathbb{D}^{n}$ 2) X _{it} pt 3) $H_{*}(X) = H_{*}(pt)$?⊈: 1⇒2⇒3 Let $W = X - \mathbb{D}^{h}$. <u>3 ⇒1</u> $X \begin{bmatrix} W \\ \mathbb{D}^n \end{bmatrix} = W \text{ is an h-cohordism}$ $\underset{h-cob}{\Longrightarrow} W \cong I \times S^{n-4} \implies X \cong_{CAT} \mathbb{D}^{n}. \square$ <u>Thm</u>: X^{5} cpt, $\pi_{1}=1$, $H_{*}(X)\cong H_{*}(pt)$. Then

 $\begin{array}{l} \partial X \cong_{CAT} S^4 \implies X \cong_{CAT} \mathbb{D}^5 \quad \left[CAT = C^{\circ} \text{ or } TOP \right] \\ \hline Pf: \ \underline{C^{\circ}}: \ Cop \ off \ with \ \mathbb{D}^5 \ aud \ we \ CAT \ PC(5) \ ond \ Palais. \\ \hline \underline{TOP}: \ Remove \ \mathbb{D}^5 \ aud \ we \ Freedman's \ top \ h-cab. \\ \hline Theu \ re-glue \ in \ \mathbb{D}^5. \end{array}$

3. Schoenflies problem Thm (TOP Scheenflier, Brown 1960) Sⁿ⁻¹ $S^{n-1} \hookrightarrow S^n$ TOP <u>bicollared</u> embedding. Then, up to <u>homeo</u>, (S^n, S^{n-1}) is std. $\underline{\text{Thm}}(\mathbb{C}^{\infty} \text{ Schoenflies}, n \ge 5)$ $S^{n-1} \longrightarrow S^n C^\infty$ embedding, $n \ge 5$. Then, up to C^{∞} ambient isotopy, (S^{h}, S^{h-1}) is std. $Pf: \Sigma$ is bicollared $\implies S^n - \Sigma$ has 2 connected cptr, each of which simply connected, with $\partial = S^{n-1}$, and $H_* = H_*(pt).$ By the characterisation of discs $\Sigma = \partial \mathbb{D}^n$ Falais (S^h, S^{h-1}) std. \underline{Rk} : $S^{n-1} \hookrightarrow S^n$ in the end has image in the equator, but maybe the diffeo with the equator is non-standard. <u>**Rk</u></u>: C^{\infty} Schoenflies n \leq 3 is true, n = 4 is open.</u>**