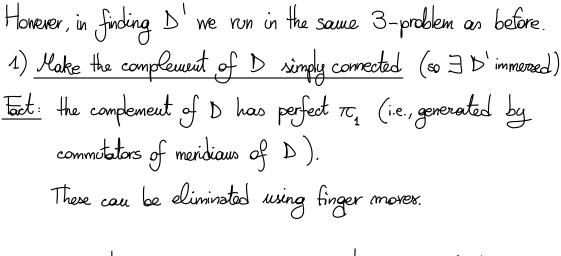
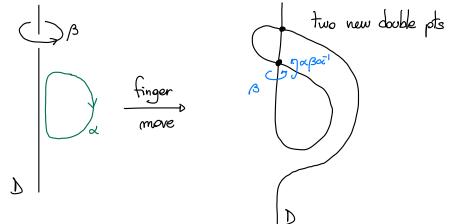
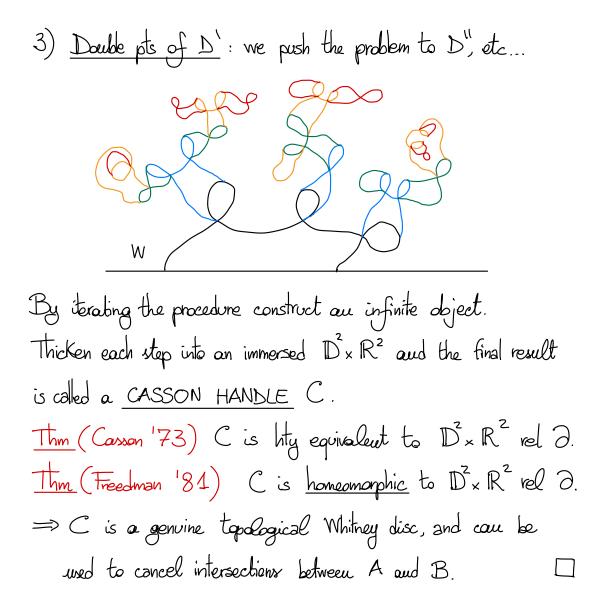
Topological 4-manifolds





 $\beta \text{ and } \propto \beta \alpha^{-1} \text{ commute in a nbd of the double pt}$ (e.g. $\exists \text{ torus } S' \times S' \subseteq \mathcal{V}(\text{ double pt}) - D$, and its π_1 is abelian).

2) <u>Framing of D'</u> Can be fixed with an algebraically dual sphere to D.



2 THE INTERSECTION FORM

Def: X⁴ cpt oriented topological (-mfd. Its intersection form is $Q_{\times} : H^2(X, \partial X; Z) \times H^2(X, \partial X; Z) \longrightarrow Z$ given by $Q_{\times}(\alpha, \beta) = \langle \alpha \cup \beta, [X] \rangle$ F fundamental class

<u>Properties</u> *) By Paincaré duality, Q_X is defined on $H_z(X;\mathbb{Z})$ *) Factors through $H^2(X, \partial X; \mathbb{Z}) / Tors$ *) Chauge of basis $[Q_X] = C' \cdot [Q_X] \cdot C$ $\text{for } C \in GL_n(\mathbb{Z}) \quad (\text{so } \det C = \pm 1)$ \Rightarrow det Q_X is well-defined. *) $Q_{-x} = -Q_{x}$ *) If X is not orientable, you can still define it over $\mathbb{Z}/2\mathbb{Z}$. Prop: Let X be a cpt oriented smooth/topological 4-mtd Then every $x \in H_2(X; \mathbb{Z})$ can be represented by a smoothly / lacely flatly embedded closed surface. C near each pt it lacks like $\mathbb{R}^2 \longrightarrow \mathbb{R}^6$ in charts $(x,y) \mapsto (x,y,0,0)$

This proposition follows from general results about representing
homology classes in low (co-) dimension.
Prop. also works for:
*)
$$H_2(X, \partial X)$$
 and properly enlected surfaces with boundary.
*) non-crientable Σ and $Z/2Z$, coefficients
*) non-crientable Σ and non-crit surfaces
Sketch of a proof for C^{∞} , closed, oriented X
 $\int U(1) - bundles / X \xrightarrow{?}_{\sim} \xrightarrow{C_1} H^2(X;Z)$
 $L_N \longrightarrow X \longrightarrow X$

Pick the O-section so and a generic section. Then $[s_o \pitchfork s] = PD(\alpha)$.

 $\underline{\mathsf{Thm}}(\mathsf{geometric} \ \mathsf{interpretation}, \mathsf{of} \ \mathsf{Q}_{\mathsf{X}})$ Let X be cpt, oriented, smooth, $\alpha, \beta \in H^2(X, \partial X)$. IF $[\Sigma_{\alpha}], [\Sigma_{\beta}] \in H_{2}(X)$ are the Reincare' duals, then $Q_{X}(\alpha,\beta) = \#(\Sigma_{\alpha} \wedge \Sigma_{\beta})$

$$\mathbb{Q}_{\overline{\mathbb{CP}^2}} = (-1) \quad \longrightarrow \quad \mathbb{Q}_{\mathbb{CP}^2 \# \overline{\mathbb{CP}^2}} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

$$\begin{split} & \mathcal{Q}_{S^2 \times S^2} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} =: H \\ & \mathbf{Rk} : \mathcal{Q}_{S^2 \times S^2} \otimes \mathbb{R} \cong \mathcal{Q}_{\mathbb{CP}^2 \# \overline{\mathbb{CP}^2}} \otimes \mathbb{R}, \text{ but over } \mathbb{Z} \\ & \text{they are different. For example:} \\ & \bullet) \forall \alpha \in H_2(S^2 \times S^2), \mathcal{Q}_{S^2 \times S^2}(\alpha, \alpha) \equiv 0 \pmod{2} \\ & \bullet) \text{ the same is not true for } \mathbb{CP}^2 \# \overline{\mathbb{CP}^2}. \text{ oreal} \\ & \text{In terms of invariants, we say that } \mathcal{Q}_{S^2 \times S^2}^2 \text{ and} \\ & \mathcal{Q}_{\mathbb{CP}^2 \# \overline{\mathbb{CP}^2}} \text{ have different parity, while they have the same vank and rignature and they are both indefinite.} \\ & \text{Itm: } S^2 \times S^2 \text{ and } \mathbb{CP}^2 \# \overline{\mathbb{CP}^2} \text{ are the any two } S^2 \text{ buncles over } S^2. \\ & \text{Integrates on the gluing, which is an } S^2 \text{ buncle over } S^1. \\ & \text{The passible results are classified by} \\ & \pi_1(\mathrm{Diff}^+(S^2)) \cong \pi_1(\mathrm{SO}(3)) = \mathbb{Z}/2\mathbb{Z}. \\ & \mathrm{Subsections over } S^2 \text{ are both } S^2 \text{ buncles over } S^2, \\ & \mathrm{Subsections } \mathbb{CP}^2 \# \mathbb{CP}^2 \text{ are both } \mathbb{CP}^2 \text{ and } \mathbb{CP}^2 \text{ for } \mathbb{CP}^2. \\ & \mathrm{Subsections } \mathbb{CP}^2 = \mathbb{CP}^2 \text{ buncles over } S^2. \\ & \mathrm{The passible results are classified by} \\ & \pi_2(\mathrm{Diff}^+(S^2)) \cong \pi_1(\mathrm{SO}(3)) = \mathbb{Z}/2\mathbb{Z}. \\ & \mathrm{Subsections } \mathbb{CP}^2 \# \mathbb{CP}^2 \text{ are both } S^2 \text{ buncles over } S^2, \\ & \mathrm{Subsections } \mathbb{CP}^2 \# \mathbb{CP}^2 \text{ are both } \mathbb{CP}^2 \text{ and } \mathbb{CP}^2 \text{ for } \mathbb{CP}^2. \\ & \mathrm{Subsections } \mathbb{CP}^2 \# \mathbb{CP}^2 \text{ are both } \mathbb{CP}^2 \text{ and } \mathbb{CP}^2. \\ & \mathrm{Subsections } \mathbb{CP}^2 \oplus \mathbb{CP}^2 \text{ are both } \mathbb{CP}^2 \text{ and } \mathbb{CP}^2 \text{ for } \mathbb{CP}^2. \\ & \mathrm{Subsections } \mathbb{CP}^2 \oplus \mathbb{CP}^2 \text{ are both } \mathbb{CP}^2 \text{ and } \mathbb{CP}^2. \\ & \mathrm{Subsections } \mathbb{CP}^2 \oplus \mathbb{CP}^2 \text{ are both } \mathbb{CP}^2 \text{ and } \mathbb{CP}^2 \text{ for } \mathbb{CP}^2. \\ & \mathrm{Subsections } \mathbb{CP}^2 \oplus \mathbb{CP}^2 \text{ are both } \mathbb{CP}^2 \text{ and } \mathbb{CP}^2. \\ & \mathrm{Subsections } \mathbb{CP}^2 \oplus \mathbb{CP}^2 \text{ are both } \mathbb{CP}^2 \text{ and } \mathbb{CP}^2. \\ & \mathrm{Subsections } \mathbb{CP}^2 \oplus \mathbb{CP}^2 \text{ are both } \mathbb{CP}^2 \text{ and } \mathbb{CP}^2. \\ & \mathrm{Subsections } \mathbb{CP}^2 \oplus \mathbb{CP}^2. \\ & \mathrm{Subsections } \mathbb{CP}^2 \oplus \mathbb{CP}^2 \text{ are both } \mathbb{CP}^2 \text{ and } \mathbb{CP}^2. \\ & \mathrm{Subsections } \mathbb{CP}^2 \oplus \mathbb{CP}^2. \\ & \mathrm{Subsections }$$

K3 surface
Def: A K3 surface is a smooth, simply-connected complex surface
mth
$$c_4 = 0$$
.
e.g. $\{x^4 + y^4 + z^4 + w^4 = 0\} \subseteq \mathbb{CP}^3$
Ead: All K3 surfaces are diffeomorphic (as real 4-mtds).

$$\begin{bmatrix} -2 & 1 \\ 1 &$$

Invariants of QX

•) <u>RANK</u>: $rk Q_X = rk(\Lambda)$ •) <u>SIGNATURE</u>: $\mathscr{O}(X) = \mathscr{O}(Q_X \otimes_{\mathbb{Z}} \mathbb{R})$ We also define b_z^{\pm} as the ranks of maximal (±)-definite subsp. •) <u>DEFINITENESS</u>: Q_X is (\pm) -definite or indefinite [for mfds w/ ∂ you can have semidefinite] $Q_{\times}(\alpha, \alpha) > 0$ •) <u>PARITY</u> Q_X is <u>EVEN</u> if $Q_X(x, x) \equiv 0 \pmod{2}$ $\forall x \in \Lambda$ Q_X is <u>ODD</u> otherwise. \underline{Rk} : Q_X is even iff all diagonal entries of $[Q_X]$ are even. (G) PROPERTIES of Qx Unimodularity $\underline{\mathsf{Def}}$: Let $\Lambda = \mathbb{Z}^n$, $Q: \Lambda \times \Lambda \longrightarrow \mathbb{Z}$ sym. bil. form. Q is called <u>UNIMODULAR</u> if $L: \land \longrightarrow \land^* = H_{om}(\land; \mathbb{Z})$ $x \longmapsto Q(x, \cdot)$

is an isomorphism.

Lemma: Given a basis b for
$$\Lambda$$
 and its dual basis b for Λ^* ,
the matrices $[Q]_i$ and $[L]_i^{b^*}$ are the same.
Cor: Q unimodular $\iff \det Q = \pm 1$.
 $Q: [X_{1,...,X_n}]$ basis of Λ
 $\{x_i^*, \dots, x_n^*\}$ dual basis for Λ^* (i.e. $x_i^*(x_j) = S_{ij}$)
Then $L(x_i) = \sum Q(x_i, x_j) \times x_j^*$, so the matrix $[L]$
is the same as $[Q]$ in these bases.
Lemma: IF Q_X is the int. form of X and $Y = \partial X$, then
 $H_2(X)/Tors \longrightarrow H^2(X;Z)/Tors$
is the natural map induced by $H_2(X) \xrightarrow{i_*} H_2(X,Y)$.
Roof: $X \mapsto \alpha_x \in H^2(X)/Tors$ defined by $\alpha'_x(y) = Q_X(x,y)$.
Then, $\alpha'_x(y) = Q_X(x,y) = \# (\sum_x h \sum_y) = \int PD(x)$
 $= (PD(x))(y)$ surfaces repr. X and $y = D$

Connected sum

<u>Thm</u>: Given cpt top. mfds X_1 and X_2 , $Q_{X_1 \# X_2} \cong Q_{X_1} \oplus Q_{X_2}$. P_{\pm} : Removing a B^4 and gluing along an S^3 does not change the 2nd homology (& intersection form).

<u>**Rk**</u>: In TOP the converse (for $\pi_1 = 1$) manifolds holds: if $\pi_1(X) = 1$ and $Q_X \cong Q_1 \oplus Q_2$, then \exists TOP mfds X_1 and X_2 s.t. $Q_{X_i} \cong Q_i$ and $X \cong_{\text{TOP}} X_1 \# X_2$

Rk: The converse does not hold in C^{∞} . For example Q_{K3} splits on H, but $K3 \neq X_1 \# X_2$ with $b_{z}^{+}(X_{i}) \ge 1$. [Use mixed invariant.]

 $\begin{array}{l} \underline{\mathsf{Thm}}\left(\overline{\mathsf{treedman}}, \underline{\mathsf{Caylor}}\right) \\ \mathcal{Let} \quad X^4 \text{ smooth } \mathsf{cpt}, \ \pi_1(X) = 1 \ \text{and} \ \mathbb{Q}_X \cong \mathbb{Q}_1 \oplus \mathbb{Q}_2. \\ \\ \overline{\mathsf{Then}} \exists \mathsf{smooth} \quad X_1 \text{ and} \ X_2 \ \mathsf{st.} \ \mathbb{Q}_{X_i} \cong \mathbb{Q}_i \ \text{and} \\ \\ X \cong_{\mathcal{C}^{\infty}} X_1 \cup_Y X_2, \ \text{where} \ Y \text{ is a} \ \mathbb{Z} \underbrace{\mathsf{HS}^3}_{4}. \\ \\ \\ A \ 3-\mathsf{nrtd} \ w/ \ \mathsf{the same} \ \mathbb{Z}-\mathsf{homology} \ \mathsf{as} \ \mathbb{S}^3 \end{array}$

<u>Signature</u> Thm (Novikov's additivity) Let X_1, X_2 cpt oriented mfd, with $\partial X_1 \cong \partial X_2$. Then $\sigma(X_1 \cup X_2) = \sigma(X_1) + \sigma(X_2)$. \underline{Pf} : Use Q homology throughout, and let $Y = \partial X_1$, $X = X_1 \cup X_2$. Mayer-Vietoris gives us a first exact sequence $\longrightarrow H_{z}(Y) \xrightarrow{(i_{1}, -i_{2})} H_{z}(X_{1}) \oplus H_{z}(X_{2}) \xrightarrow{j} H_{z}(X) \xrightarrow{\partial} H_{1}(Y) \rightarrow \quad ()$ If $K_{\ell} := Ker(H_2(Y) \xrightarrow{\ell_{\ell}} H_2(X_{\ell}))$, then the sequence below is exact too (evercise): $\bigcirc \longrightarrow \mathsf{K}_1 + \mathsf{K}_2 \longrightarrow \mathsf{H}_2(\mathsf{Y}) \xrightarrow{(i_4, i_2)} \frac{\mathsf{H}_2(\mathsf{X}_1) \oplus \mathsf{H}_2(\mathsf{X}_2)}{\mathsf{im}(i_4, -i_2)} \longrightarrow$ (* *) $\longrightarrow \frac{H_z(X_1)}{im(i_1)} \oplus \frac{H_z(X_2)}{im(i_2)} \longrightarrow O$

Lemma: There is a subspace
$$C \in H_2(X)$$
 such that

$$H_2(X) \cong \left(\frac{H_2(Y)}{K_1 + K_2} \oplus C\right) \stackrel{\perp}{\oplus} \frac{H_2(X_1)}{im(i_1)} \stackrel{\perp}{\oplus} \frac{H_2(X_2)}{im(i_2)}$$
orthogonal direct sums
The maps $\frac{H_2(X_1)}{im(i_2)} \hookrightarrow H_2(X)$ and $\frac{H_2(Y)}{K_1 + K_2} \hookrightarrow H_2(X)$
are induced by the inclusions, up to multiple by a nonzero scalar.
Under the above iduitification, we have that
 $Ker(\Im: H_2(X) \longrightarrow H_1(Y)) \cong \frac{H_2(Y)}{K_1 + K_2} \oplus \frac{H_2(X_1)}{im(i_1)} \oplus \frac{H_2(X_2)}{im(i_2)}$
and therefore $\Im: C \xrightarrow{\sim} in \Im$ is an isomorphism.
[Note that by the lemma $K_1 + K_2 = Ker(i: H_2(Y) \rightarrow H_2(X))$.]
Proof lemma
From \bigstar we have
 $\frac{H_2(X_1) \oplus H_2(X_2)}{im(i_1, -i_2)} \cong \frac{H_2(Y)}{K_1 + K_2} \oplus \frac{H_2(X_1)}{im(i_2)} \oplus \frac{H_2(X_2)}{im(i_2)}$

Since
$$\operatorname{Ann}(\widehat{\mathbb{Q}}_{X_{ij}}) = \operatorname{im}(i_{ij})$$
, the intersection form induced on
 $W := \frac{\operatorname{H}_{2}(X_{i})}{\operatorname{im}(i_{1})} \oplus \frac{\operatorname{H}_{2}(X_{2})}{\operatorname{im}(i_{2})}$
is non-singular, so we have a splitting $\operatorname{H}_{2}(X) \cong W \oplus W^{\perp}$.
Using \circledast we have that the kernel of the map
 $\partial : \operatorname{H}_{2}(X) \longrightarrow \operatorname{im}(\partial) \subseteq \operatorname{H}_{1}(Y)$
is exactly
 $\operatorname{Ker} \partial \cong (\frac{\operatorname{H}_{2}(Y)}{\operatorname{K}_{1} + \operatorname{K}_{2}} \oplus (\frac{\operatorname{H}_{2}(X_{i})}{\operatorname{im}(i_{1})} \oplus \frac{\operatorname{H}_{2}(X_{2})}{\operatorname{im}(i_{2})}) = W$

We leave it to the reader to check that the maps

$$\frac{H_2(X_i)}{im(i_i)} \hookrightarrow H_2(X) \quad \text{aud} \quad \frac{H_2(Y)}{K_1 + K_2} \hookrightarrow H_2(X)$$

are induced by the inclusion and $2 \cdot i$ (twice the inclusion),
respectively.
Thus, if we choose a complement C of $\frac{H_2(Y)}{K_1 + K_2}$ in W^{\perp} ,
we have that $\partial: C \xrightarrow{\longrightarrow} im \partial$ is an isomorphism. \Box Lemma

Thus, we get contributions to
$$\sigma(X)$$
 only from

$$\frac{H_{z}(X_{1})}{im(i_{4})} \quad \text{and} \quad \frac{H_{z}(X_{2})}{im(i_{2})}$$

$$\frac{Rk}{im(i_{e})} \sigma\left(\frac{H_{z}(X_{e})}{im(i_{e})}\right) = \sigma\left(H_{z}(X_{e})\right), \quad \text{because}$$

$$im(i_{e}) = Ann\left(Q_{X_{e}}\right).$$
Thus, $\sigma(X) = \sigma(X_{1}) + \sigma(X_{z})$

Rk: The additivity theorem fails if
$$X_1$$
 and X_2 are
glued along part of their boundaries (otherwise we
would get $\sigma(X) = O \quad \forall X^4$ smooth just by attaching
handles, which have $\sigma = O$).

 \Box

$$\frac{Rk}{2}$$
: On the other hand, the additivity thm still works if we glue X_1 and X_2 along some boundary components.

Signature and cobordisms Thm: Two closed oriented 4-mfds X and X' are cobordant if and only if $\sigma(X) = \sigma(X')$. (5) <u>CLASSIFICATION</u> Indefinite unimodular forms <u>Meyer's lemma</u>: Let $Q: \Lambda \times \Lambda \longrightarrow \mathbb{Z}$ bil. sym. unimodular form. If Q is indefinite, then $\exists x_0 \in \Lambda \text{ s.t. } Q(x_0, x_0) = 0.$ [The difficult part here is going from \mathbb{R} to \mathbb{Q} .] Meyer's lemma is used to prove the following classif. result. Thm (Serre) Q and Q' sym bil. unimodular form. Suppose that Q and Q' are indefinite. Then $Q \cong Q' \iff \begin{cases} \operatorname{rk} Q = \operatorname{rk} Q \\ \operatorname{sol}(Q) = \operatorname{sol}(Q') \\ \operatorname{some parity} (\operatorname{both even or both odd}) \end{cases}$

Cor: Q even unimodular
$$\Rightarrow \sigma(Q) \equiv 0 \pmod{8}$$
.
Using Van der Blij's lemma, we have the following classif.
Q indef. $\Rightarrow Q \cong b \cdot E_8 \oplus c \cdot H$
where $b = -\frac{\sigma(Q)}{8}$, $c = \frac{rkQ - |\sigma(Q)|}{2}$
(Here if $b < 0$ change all the signs of the matrix E_8 .)
Definite unimodular forms
Too many!
IF Q is even, we know that $rkQ \equiv to(Q) \equiv 0 \pmod{8}$.
 $rkQ = 3$: only E_8 (up to sign, here and below)
 $rkQ = 16$: $E_8 \oplus E_8$, E_{16}
 $rkQ = 32$: > 80 millions
 $rkQ = 40$: > 10^{54}
Tor add definite forms it's much worse.

Topological 4-manifolds Fact (Kirby-Siebenmann): given a closed, crist, topological 4-mfd X, $\exists ks(X) \in \mathbb{Z}_{2\mathbb{Z}}$ s.t.: •) $k_{s}(X_{1} \# X_{2}) = k_{s}(X_{1}) + k_{s}(X_{2})$ •) X admits a smooth structure \Rightarrow ks(X) = 0.

In general, for a topological n-mfd, $ks(X) \in H^{4}(X, \mathbb{Z}_{2\mathbb{Z}})$ is the primary destruction to endowing X with a PL structure. For n > 5 this distruction is complete, and the PL structures (if \exists) are classified by $H^{s}(X; \mathbb{Z}_{2\mathbb{Z}})$. For n=4 it is only an obstruction.

Thm (Freedman '82) Let Q be bil. sym. unimod. form.
) Q even ⇒ ∃! X TOP-mfd w/Q_X ≅ Q.
) Q add ⇒ ∃ exactly 2 TOP-mfd w/Q_X ≅ Q, distinguished by their ks invariant.