
Topological 4-manifolds



1 TOPOLOGICAL h-COBORDISM In dim 4

Freedman (1982) showed that the h-cobordism holds in TOP

in dim 4~ classification of t= 1 closed G-manifolds.

Thm (TOPh-COB dim 4)

Let W5 : M < N" TOP-cobordism with

it
. (w) = <

,
(M) = x

,
(N) = 1 and Hx(w ,

M ; <) = 0.

Then W Fop IXM ,
and the homeo is id on M-103xM .

Sketch :

* Take a TOP-handle dec
.W rel M (Quinn) .

* Rearrange handle by increasing index & trade all 0-

1-
, 4- ,

and 5-handles.

- W consists justof 2- and 3-handles.

* The handle chain complex is 0 -CEC -O
,

and since H
* (W ,

M ; <) =0
,
the

map 23 is an

isomorphism wo after change of basis (achieved with

handlelides) you get paired-up 2-and 3-handles.



* h and ho are algebraickly complementary ,
but now the

Whitney trick faile.
↑

e
U

= peth from se to
y ona

~ path from y to x on B

McC= the G-mfd after the 2-handles & before the 3-handles

is still simply connected
-I immersed disc D in M

2
with boundary j

Problems to solve

1) W may
intersect A and B

We know that its (Mz-A)= y (My - B) = 1
, by the

same reasoning as in the std h-coberdism prot.
(Freedman] - immersed spheres Ta and Ti that are geometrically
dual to A and B

, respectively mo Do some "Casson moves"

and get a new collection of As and Bs such that

#1(Mc - (AsuBs)) = 1



2) D
may

have the
wrong framing

Take sums with an algebraically dual sphere Tp with

TD : TD = #1 as necessary.

3) D may have double points
Near a double pt you have 2 brancheso connect them with a loop yL Ef j' = 2D,inthecomplement of (AB,
then we can apply the Whitney trick & get rid

of the double pt.

&

FHow to create a kink :



However
,

in finding D'we run in the same 3-problem as before.

1) Make the complement of D simply connected (so 7 D'immersed

Fact : the complement of D has perfect its (i . e ., generated by
commutators of meridians of D) .

These can be eliminated using finger motes
.

& ·
two new double pts

② Finger
papit

D

I &
D

B and CB5" commute in a ubd of the double pt
(e .g . 5 torus S'xS' = V(double pt) -D ,

and its
1

is abelian).
319a5

2) Framing of D'
Can be fixed with an algebraically dual sphere to D.



3) Double pts of D' : we push the problem to D", etc..

g
erd

W

By iterating the procedure construct an infinite object.
Thicken each step into an immersed DXR2 and the final result

is called a CASSON HANDLE C.

Thm (Casson'73) C is hty equivalent to D < R2rel2 .

Thm (Freedman '81) C is homomorphic to D2xR
=

rel 2.

=> C is a genuine topological Whitney disc ,
and can be

used to cancel intersections between A and B. #



2 THE INTERSECTION FORM

Def : X "cpt oriented topological 4-mfd. Its intersection form is

Q : H2(X
,
2X ; () x +(x

,
2X =Y- T

given by Qx(x ,B) = cus , /XX fundamental class

Properties
* By Peincare duality , QX is defined on Hz(X :2)

* Factors through H2 (X ,
&X ;<) Tors

* Changeof basis [QX) = C . [QX] C
for CeGLn([] (so det = = 1)

=> det Qx is well-defined.

* Q y =
-Qx

* EFX is notorientable
, you can still define it over 2/24.

Prop : Let X be a cpt oriented smooth topological 6-med
Then

every xcHz (X ; 1) can be represented by a

smoothly bealy flatly embedded closed surface.
↳

near each pt it looks like RR" in charts
(x,y)(x,y ,

0
, 0)



This proposition follows from general results about representing
homology classes in low (co-) dimension .

Prop
.
also works for :

* Hi(X
,
2x) and properly embedded surfaces with boundary

* non-orientable & and /2 coefficients

*) non-opt X and non-ept surfaces

Sketch of a prot for Co,

closed
,
oriented X

[U(1)-bundles X3H(X :2)
↓

4- X - &

Pick the O-section so and a generic section. Then

(Sons] = PD(x) .

Thm (geometric interpretationof Qx)
Let X becpt , oriented ,

smaeth
,

X
,BeH2(X ,

2x).

# ([] , [[p] EHz(X) are the Poincare duals
,
then

smeeth Qx(x ,B) = # (2ah [p)
surfaces ↑ algebraic count



If : < is represented by a 2-form
yo supported in a rbd of Za .

In coordinates
, if E = (x =

y
= 03 , na can be chosen as

ya = f(x ,y)dxndy
wheref,) is a bump function near O w/ Spf,g) = 1

.

Analogously ,
choose a similar p

for B.

Saus = [Sf(x,g)f(z ,w) . ( dxndyndand)
↓M peZanEp O(p) sign depends on

sign of intersection

= #([hp) A

3 EXAMPLES Of INTERSECTION FORM

Qg : He(S") = O
, so nothing interesting here.

QC = (1)
,

i
.
e. He(Cl2) = -

,
and the matrix

representing QCL2 is (1).

Q = (1) moQ = (e) .



Q(01)
RK : QSQREQC#2@R ,

but over I

they are different. For example :

· Fach(SS") , Qus(x ,
a) = 0 (mod 2)

· the same is not true forR#2

In terms of invariants ,
we say that Queen

odd
&CP#KP2 have different parity ,

while they have the
same rank and signature and they are both indefinite

.

Thm : S& S2 and#I are the only two S& bundles
over S?

Ede : All S2-bundles over D are trivial us it only

depends on the gluing ,
which is an S2-bundle over S.

The possible results are clarified by
# (Diff

+ (S2)) = +
,
(So(3)) = /2%) .

-/
blow up a pencil of lines in KI" and geta CPfibration

SS2 and# are both S-bundles over
S

,
but

they are different because the inters
.

forms are different .
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K3 surface
Def : A K3 surface is a smooth

, simply-connected complex surface
with 2 = 0.

e
.g . (x+ y +z +w =03k#
Fact : All #3 surfaces are Effeomorphic (as real 4-mfds).

-
-

-21

1 -21

1 -21

1 -21

Quz = 2 .

1 -21 1
⑦ 3.H

1 -21

L

1 -2

-2

*Eg matrix
- -

The metrix Eg is the adjacency matrix of the Ef graph :

·...

·

Remarks :

·) det Eg = + 1 (K3 is closed)
· Ef (and Q3) is even

· Ef is neg.
definite => 5(k3) = - 16

, vW(k3) = 22
.



Invariants of QX
·) RANW : rkQx = rky(x)
·) SIGNATURE : 6(X) = S(QXOR)

We also define b as the ranks of maximal (1)-definite subsp.

·DEFINITENESSdefinite
er indefinest

XX+ 0

-
Qx(x,x))0

· ) PARITY

Q is EVEN if QX(x, x) = O (mod2) VeeN

QX is ODD otherwise.

RK : Qy is even iff all diagonal entries of [Qx] are even

4 PROPERTIES of QX

Unimodularity
Def : Let

- -=, Q :1x1
sym .

bil
.

form.

Q is called UNIMODULAR if

L : 1 >&*= Hem(;)
x-> Q(X,)

is an isomorphism.



Lemma : Given a basis b for A and its dual basis b
*

for*,

the matrices,(Q) and (L]* are the same.

Ear : Or unimodular detQ = #1.

If : Ex , , .
. ., Xn3 basis of A

2*,..; x* ] dual basis for* (ie . x (xj) = Sij)
Then ((xi) = [Q(xi, xj)X ,

so the matrix []

is the same as [Q] in these bases. Il

Lemma : IfQX is the int. Form of X and Y= &X
,
then

Hz(X) > Hom (Hz(X);)
T
ers

IIS UCT"Hi(X
,
Y; FH(XiT)/Tr

is the natural map induced by Hz(X) Hz(X ,

Y).

Proof : x GaeH2(X)/Ters defined by <u(y) = Qx(x , Y).

Then
, da(y) = Qx(x, y) = # (2xh[y) = (PD(x)

↓ (PD(x)(y) po Zy

surfaces repr. X and
y A



Thm : If Hs(X ;<) = 0
,
then [Qx] presente Hr(T)

In
any case

, Hy(Y) = 0 => QX unimodular.
~

includes the case of X closed

Pf : Consider the LES

-> Ha(X)= Hz(X ,Y)- He(Y) - Hz(x) -

Ef Hy(X) = 0
,

they

Tors(Hz(X ,Y) Ters (H2(X) Tors (He(x)) = 0,

so we get an exact sequence

Hz(X)/Tors
** > Hz(X,Y)/Ters-He(Y) - 0

#* = LX after removing torsion ,

and is represent. by [Qx].

If H(Y) = 0 (with no assumption on Hs(X)
,
there

by exactness Lx is surjective ,
hence injective :

O- Kerf--- 0
~ free

,
so SES splits

=> Kerf Kerf = O A

RR : Ann(Qx) = ker((x) = ix (Hz(y))a H(X



Connected sum

Thm : Givencpt top .

Mids X
1
and Xc , QX

.
#** QX,QX

If: Removing a B and gluing along an So does not

change the 2nd homology (& intersection form).

RK : In TOP the converse (for its = 1) manifolds holds :

if )X) = 1 and QX = Q1 * Q2 ,
the

7 TOP mfds X1 and X2 st . QX
:

* Qi and

* Etop X1#Xe .

RK : The converse does not hold in Co

For example Quz splits an H
,

but W3 EX1#X2
with b(i) = 1. [Use mixed invariant .)

Thm (Freedman-Taylor)
Let X" Smooth opt,s(X) = 1 and QX = Q1 * Q2 ·

Then 7 smooth X
1
and X2 st . QX: Qi and

X EcsXYXe ,
where Y is a

THS
↑

A 3-mfd w/the same-homology an S



Signature
Thm (Novitor's additivity)
Let X1 , X2 ept oriented mid ,

with 2Xz = &X2
.

Then er (X ,yx2) = e(X1) + w(Xe)
.

If : Use & homology throughout ,
and let Y= &Xy

,

X = X
, rXz

Mayer-Victoris gives us a first exact sequence

(2,- [z)
-> Hz (k) - He(X ,) Hz(xz)EHz(x)-Hz(y)+

If Ke := Her (Hz()Hz(Xe) ,
then the

sequence

below is exact too (exercise) :

0 - N
,
+ kz- Hz(y) (n)Ha(x

,)8Hz(Xz)
->

im (is ,
- (2)
#

->



Lemma : There is a subspace CCHz(X) such that

Hz(X) =(c) Ha(x)iH↑ im (is) a im(2)
orthogonal direct sums

The maps
Hz(Xi) -> Hz(X) and Ha(Y) He(X)
im (ij) ki+ Wa

are induced by the inclusions , up to multipl . by a nonzero scalar.

Under the above identification ,
we have that

Ker( : Ha() <Ha)=t (X)
and therefore J :C ind is an isomorphism .

[Note that by the lemma K + Kz = Her (2 : Hy() + H
=
(x)). ]

Proof lemma

From we have

Hz(x) # Hz(Xz)
=HHXQxim (i ,, - 22)



Since Ann(QXj) = im (ij) ,
the intersection form induced on

W : = taHim (22)
is non-singular, so we have a splitting Hz(X) = WOW

Using ① we have that the Kernel of the map
2 : Hz(X) im(2) = He(i)
-

want
is exactly W

+

U

Ferz
We leave it to the reader to check that the maps

H2(Xi) -> Hz(X) and Heim (ij)

are induced by the inclusion and 2 : i (twice the inclusion),

respectively.
Thus

,
if we choose a complement(of in w

we have that 2 :Cim2 is an isomorphism. A Lemma



Claim : The restriction of the pairing

Q:Hex -
is non-singular In particular, dim(2) = dim

Pf : LetxeHz(Y) (k , + K2)
. By the Lemma ix(x) 0,

so J ye Hz(X) dual to it ,
i

.

e
. Qx(ix(x) , y) = 1.

Since ix(x) =Wt
,

we can assume that if e W
+

too.

Moreover
,
since trictsto 0 on ix(Hz(Y)

,
we

↑ because one element can be
can choose je C. pushed off into a collarof

Vice versa , givene C ,
let s be a dual of CycHs(),

defined by x.25 = 1 in Y.

Then Qx (ix(x) , y) = x .2 = 1
,
because the pairing

is happening in Y.
Il Claim

Pick basis [x: 3 For t and a dual basisi for
Then QX/spanaxiiz = [*] ,

because Xi = Y
,

so

it is O-framed (can be pushed off in a collar of Y).



Thus
,

we get contributions toa(X) only from

He (X , ) and Hz(X2)
im (21) im (22)

Rk : or(t(e))= (H(Xe) ,

becausa

im (ie) = Ann (QXe) ·

Thus
, o(X) = e(X ,) + o(Xz) It

RK : The additivity theorem fails if X1 andI are

glued along part of their boundaries (otherwise we

would get 5(X) = 0 XX" smooth just by attaching
handles

,

which have 5 = 0).

&R : On the other hand
,
the additivity the still works if we

glue X1 and X2 along some boundary components .



Signature and coberdisms
Thm : Two closedoriented G-mfds X and X' are caberdant

if and only if G(X) = w(X).

5 CLASSIFICATION

Indefinite unimodular forms
Meyer's Lemma: Let Q : Ax1 >L bil

. sym .

unimodular form .

EF Q is indefinite ,
then 5 xt1 s

.

t
. Q(0 , x0) = 0.

(The difficult part here is going from R to Q . ]

Meyer's lemma is used to prove the following classif . result .

Thm (Serre) Q and Q
sym
bil

.

unimodular form.

Suppose that Q and Q are indefinite. Then
Q = rRQ

Q =Q's(Q) = S(Q)E
same parity (both even or both odd)



Odd case :

odd
② indef. => Qat .(1) · (1)

unimod
.

where a
F

=

vRQ = r(Q)

2

[Note that rRQ = O(Q) (mod2) if AnnQ = 0
.]

Even case : there is an extra algebraic restriction here :

S(Q) = 0 (mod8)
.

This follows from the more general Van der Bij's lemma
.

Def: Given a symmetric bilinear unimodular form (1 ,
Q),

an element we A is called :

· ) CHARACTERISTIC If FyzA
Q(w , y) = Q(y ,y) (mod2)

·) ORDINARY otherwise

Thm (Van der Blij's lemma
(

,
Q) sym .

bil
.
unimodular

,
we characteristic. Then

② (w
,
w) = 0(Q) (mod 8)



Car: even unimodular (Q) = 0 (mod 8).

Using Vau der Blij's Lemma
,

we have the following classif

②eveem * b .EgcH

where b = - o(Q) , c =

rQ - S(Q)

2

(Here if b < O change all the signs of the matrix Eg)

Definite unimodular forms
Too

many !

If Q is even
,

we know that vRQ = 16(Q) = 0 (mod8).

rkQ = 8 : only Eg (up to sign ,

here and below

rkQ = 16 : EgEg , E16

rkQ = 24 : 24 different forms

rkQ = 32: 80 millions

rkQ = 40 :< 1051

For add definite forms it's much worse .



Topological 4-manifolds
Fact (Wirby-Siebenmann) : given a closed

,
snct

, topological
4-mfd X , Eks(X) */24 st:
· ) Rs(X1 #Xz) = ks(X1) + Rs(Xz)

· X admits a smeeth structure => Rs(X) = 0
.

In general , for a topological n-mfd , ks(X)eH"(X</2)
is the primaryebstruction to endowing X with a PL structure.

For n = 5 thisobstruction is complete ,
and the PL structures

(If 5) are classified by H (X:2).
For n = 4 it is only an obstruction.

Thm (Freedman'82) Let Q be bil
. sym ,

unimed
.

form.

· ) Q even => 7 ! X TOP-mfd w/QX =Q
.

· Q odd => J exactly 2 TOP-mfd w/QX = Q
,

distinguished by their ks invariant.


