Smooth G-manifolds

(1) PLUMBING and XES Freedman $\Rightarrow \exists ! top 4 - manifold X_{E_3} w / \pi_1 = 1 and Q_{\mathcal{H}_{E_3}} \cong E_3.$ <u>Today</u>: X_{E_3} does not admit a smooth structure (Rokhlin). An applicit construction of X Eq <u>Def</u>: A weighted labelled graph is a finite graph Γ with • each vertex $v \in V(\Gamma)$ has a weight $n_v \in \mathbb{Z}$; • each edge $e \in E(\Gamma)$ has a label + or -. <u>Def</u>: The plumbed manifold P_{Γ} is obtained by the following: • for each $v \in V(\Gamma)$, take the D'-bundle over S² with Euler number n_v [these are classified by $H^2(S^2; \mathbb{Z}) \cong \mathbb{Z}$]; • for each $e \in E(\Gamma)$, glue the disc bundles corresponding to the vertices of e identifying the disc bundles over D = v(pt): swap fiber start S² and section S² The map $\mathbb{D}^2 \times \mathbb{D}^2 \longrightarrow \mathbb{D}^2 \times \mathbb{D}^2$ is the swap composed with (id, id) or (z, z), depending on the sign of e.

 $\underline{\mathsf{Ex}}$: Q_{Pr} is represented by the adjacency matrix of Γ $(n_{v} \text{ on the diagonals}, \#(+ \text{ labels}) - \#(- \text{ labels}) \text{ off diag.}).$ <u>Rk:</u> If Γ is a tree, the label +/- of the edges doesn't matter, because you can change the orientation of each S^2 so that all intersections are positive. Start with $\Gamma = -2 -2 -2 -2 -2 -2 -2$ Es weighted graph ~ P_{E_8} 4-manifold with boundary. (det = 1 $H_1(\partial P_{E_q}; \mathbb{Z}) = 0$, since it is presented by E_3 $\underline{E_{\star}}$ A closed connected Υ^3 with $H_1(\Upsilon;\mathbb{Z}) = 0$ is a $\mathbb{Z}HS^3$ (INTEGER HOM. SPHERE), i.e. $H_*(Y; \mathbb{Z}) \cong H_*(S^3; \mathbb{Z})$. <u>Rk</u>: OPE, is a ZHS³ called <u>Bincaré homology sphere</u>. Thm (Freedman) Every ZHS3 bounds a contractible topological 4-manifold (3.k.a. a "fake ball"). Def: The Eg MANIFOLD is the topological 4-mfd X_{Eg} = P_{Eg} u (fake ball)

Thm (Rakhlin)
$$A$$
 closed oriented SPIN (\ll even, $\pi_1 = 1$, C^{∞})
4-mfd has $\sigma(Q_X) \equiv O$ (mod 16).

Application:
$$X_{E_g}$$
 is closed, oriented, even, and $\pi_1 = 1$ (Van Kampen).
Since $\sigma(X_{E_g}) = -8$, it is not smoothable.

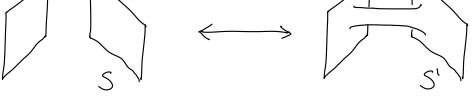
Robblin's invariant
Given Y ZHS³, there exists a simply connected spin 4-mild X
with
$$\partial X = Y$$
.
Not: $\mu(Y) := \frac{\sigma'(X)}{g} \pmod{2}$
Robblin's them implies that $\mu(Y)$ is well-defined.
Idea of Robblin's theorem
*) Spin^(C) utructures an manifolds (tomorrow)
*) $\Omega_n^{spin^{C}} = {(M^n, s)| se Spin(C)(M)}/{spin(C)} cobordism$
*) $\Omega_n^{spin^{C}} \cong \Omega_4^{char} = {(X^4, \Sigma^2)|[\Sigma] char. }{char. }{char. bordism}$
($(X, \Sigma) \sim (X', \Sigma')$ if $\exists (W^5, Y^3)$ cobordism and $[Y] = PD(W_2(TW)]$
*) $\vartheta : \Omega_4^{char} \longrightarrow Z \oplus Z$ is an isom.
 $(X, \Sigma) \longmapsto (d(X), \frac{1}{3}(\Sigma: \Sigma - d(X)))$
The two canonical generators are $(\mathbb{CP}^2, \mathbb{CP}^4) \longmapsto (1, 0)$
and $(\mathbb{CP}^2 \# \overline{\mathbb{CP}^2}, 3\mathbb{CP}^1 \# \overline{\mathbb{CP}^4}) \longmapsto (0, 1)$

$$\begin{split} \underline{Idea}: & \text{Unimodularity} \Rightarrow \forall x \neq 0 \quad \exists y \in H \text{ st. } x \cdot y = 1. \\ \text{Then } W = \langle x, y \rangle \text{ has int. form } \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} & (\text{unimod.}), \text{ so dim}W = 2. \\ \text{and } H = W \oplus W^{\perp}. \text{ Restrict to } W^{\perp} \text{ and proceed by induction.} \\ \underline{Examples}: H = F_{2} \langle x, y \rangle = \{0, z, y, z + y\} & \text{with } x \cdot y = 1. \\ \exists \text{ two quadratic enhancements } \begin{array}{c} 9 & H^{0,0} & H^{4,1} \\ 0 & 0 & 1 \\ 1 & 0 & 0 \\ y & 0 & 1 \\ 1 & 1 \\ \end{bmatrix} \\ \frac{H^{0,0}}{1} & \text{and } H^{1,1} & \frac{y}{1} & 1 \\ \end{bmatrix} \\ \frac{Rk}{H^{0,0}} \oplus H^{0,0} \cong H^{4,1} \oplus H^{4,1} & (\text{by a change of banis}) \\ \underline{Lemma}: & (H,q) \text{ quadratic enhancement. Then } \\ & (H,q) \cong \begin{cases} n \cdot H^{0,0} \oplus H^{4,1} & \frac{def}{1} & \text{Arf}(H,q) = 0 \\ (n-1) \cdot H^{0,0} \oplus H^{4,1} & \frac{def}{1} & \text{Arf}(H,q) = 1 \\ \end{bmatrix} \\ \frac{Fi}{Fick} a \text{ sympl. basis of } H & \longrightarrow H \cong H_{4} \oplus \dots \oplus H_{n}. \\ Each H_{i} \text{ is isomorphic to either } H^{0,0} & \text{arf}(H, 1) \\ \text{Trade pairs of } H^{1,1} & \text{whill yau have at most one. } \\ \end{bmatrix} \\ \hline We \text{ still do not know that } Arf = 0 \text{ and } Arf = 1 \text{ are mutually} \\ exclusive. This is guaranteed by the following lemma : \\ \end{array}$$

Lemma (voting lemma):
$$(H, q)$$
 quadr. enhancement. Then
 $\{|q^{-1}(0)|, |q^{-1}(1)|\} = \{2^{2n-1} - 2^{n-1}, 2^{2n-1} + 2^{n-1}\},\$
and Arf q is the value attained most of the times.
Pf: Induction on the length of $H = H_1 \oplus \cdots \oplus H_n$.

Arf invariant of knotr

$$K \in S^3$$
 knot, S Seifert surface for K .
 $(H_1(S; \mathbb{F}_2), \cdot)$ is unimodular, symmetric, bilinear. Then
 $q_{S,K}(a) := UK(a^{\dagger}, a) \pmod{2}$
is a quadratic enhancement. $[UK(a^{\dagger}, b) - UK(b^{\dagger}, a) = a \cdot b]$
 $ef: Arf K := Arf(q_{S,K})$
Thm: Arf K is well-befined.
 $Pf: All Seifert surfaces for a link in S^3$ are obtained by a
sequence of surgeries on embedded arcs.



Take a symplectic basis x1, y1, ..., xn, yn for H, i.e. the intersection form is represented by a block diagonal matrix Extend such a bases with x' and y' as indicated in the figure. ×' V' (By our isotopy of the endpoints of the surgery arc, we can assume that y' is disjoint from all other xi and yi.) We get a new symplectic basis, and $lk((x')^+, x') = 0$, so the new H summand is H^{0,0}, so Arf K doesn't change. <u>**Rk**</u>: Same works in Y ZHS³. <u>Rk</u>: Arf can be extended to links by considering the induced q on $H_1(\Sigma; \mathbb{F}_2)/H_1(\partial \Sigma; \mathbb{F}_2)$.

Arf invariant of a surface Σ^2 in X^4 Let $H_1(X^4; \mathbb{Z}) = 0$ and $\Sigma \longrightarrow X^4$ prop. embedded surface. For $x \in H_1(\Sigma^2; \mathbb{Z})$, let C be an immersed curve representing x. $C = \partial D$ for some surface $D \subseteq X$. 32 fromings of D at 2D: *) the framing coming from Σ . $(TZ \cap N_{D|X})|_{\partial D}$ gives a section of $(N_{D|X})_{\partial D}$ *) the framing coming from D D is a connected surface with $\partial \implies$ it has trivial normal bundle (because it is orientable and D is the equiv. to VS^{1}) \sim restricts to a trivialisation of $(N_{D|X})|_{\partial D}$. Let O(D) be the difference of these framings, which is an integer (# twists to make one section agree with the other), \underline{M} : For $H_1(X; \mathbb{Z}) = 0$ and Σ characteristic, let $q_{X,\Sigma}(x) := D \cdot \Sigma + O(D) + d(C) \pmod{2}$ double pts of C in Z This is a quadratic enhancement of $(H_1(\Sigma; \mathbb{F}_2), \cdot)$.

Note that if you tube D w/ a closed surface, the quantity
D.
$$\Sigma$$
 does not chauge and 2 if Σ is characteristic.
Def: For $H_1(X) = O$ and Σ characteristic prop. embedded, let
 $Arf(X, \Sigma) := Arf(q_{X,S}).$
[The definition can be extended to $H_1(X) \neq O$ as well.]
Theorem (Rokhlin, Freedman-Kirby, Klug)
Let X' be a topological 4-mfd with $\partial X = Y$ a ZHS³.
Let $\Sigma = X$ be a prop. emb. orient. surface with $K = \partial \Sigma$ Knot.
If Σ is characteristic, then
 $Arf(X, \Sigma) + Arf(K) = \frac{\sigma(X) - [\Sigma]^2}{8} + \mu(Y) + ks(X)$
 $(mod 2)$

(4) OTHER SMOOTH EXCLUSIONES
Thm (Donaldson '82, '87) X⁴ closed, oriented, smooth, definite.
Then
$$Q_{X}$$
 is diagonalisable (i.e. \cong n.(1) or n.(-1))
pas. def. neg. def.

Car:
$$X_{Eg} \# X_{Eg}$$
 is not smoothable.
Note that Rokhlin is not enough, because $O'(X_{Eg} \# X_{Eg}) = -16$.
 $Pf: Q_{Eg} \oplus Q_{Eg}$ is neg. def., but it is $\neq 16 \cdot (-1)$.
In the indefinite case, we know that if X is smooth, closed, indefinite,
 $Q_X \cong \begin{cases} a \cdot (-1) \oplus a^{t}(1) & \text{if add} \\ b Eg \oplus c H & \text{if even} \end{cases}$
Rokhlin $\Rightarrow b = 2 \cdot d$, for some $d \in \mathbb{Z}_{2}$.
 $Rk: IF c_{7} 3d$, $b Eg \oplus cH$ is realised by $b \cdot K3 \# (c-3b)(S^{2} S^{2})$.
Cari (11/8) IF $c < 3d$, the intersection form is not realisable
by a smooth, closed 4-mfd.
Equivalently, $\forall X'$ smooth closed spin, $b_{2}(X) \ge \frac{11}{8} \cdot |O(X)|$.
 Thm (Functor's 10/g thm 'O1, Hapkins - Lin - Shi - Xu '19)
IF $2d \cdot Eg \oplus cH$ is realisable by a smooth closed X^c, then
 $\begin{cases} 2d+2 & \text{if } d \equiv 1, 2, 5, 6 \pmod{8} \\ 2d+3 & \text{if } d \equiv 0 \pmod{8} \end{cases}$

 $\begin{array}{l} \underline{\operatorname{Cor}}: X^{4} \ \mathrm{closed}, \mathrm{smooth}, \pi_{1} = 1, \mathrm{even}, \ \mathrm{not} \ \mathrm{homeo} \ \mathrm{to} \ S^{4}, \mathrm{S}^{2}, \mathrm{S}^{2}, \mathrm{K3}, \\ \\ \mathrm{Theu} \quad \left[b_{2}(X) \geqslant \frac{10}{9} \cdot \left| \sigma(X) \right| + 4 \right]. \end{array}$

5 KIRBY DIAGRAMS Goal: represent a smooth 4-mfd via an efficient handle decomp. O-handle: WLOG I! O-handle B^{4} , with $\partial B^{4} = S^{3}$, we work 1-hondles: Attaching sphere is an $S^{\circ} \subseteq S^{3}$. Attaching region is $S^{\circ} \times B^{3}$.

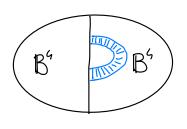
 $\pi_{k-1}(O(n-k))$

In order to glue the handle we need to identify $S^{\circ} \times B^{3} \subseteq S^{3}$ with $(\partial D') \times D^{3} \subseteq 1$ -handle. The choices up to diffeomorphism are given by $\pi_{k-1}(O(n-k)) \cong [S^{k-1}, Diff(D^{n-k})]$. framings $k=1 \implies \pi_{o}(O(3)) = \mathbb{Z}_{2\mathbb{Z}}$, depending on the orientation. IF X oriented, then every 1-handle is oriented —o unique way to attach it

After attaching the 1-handle we obtain S1 × S2, which we can view as the result of gluing the boundaries of $S^3 \setminus (B^3 \perp B^3)$. <u>Convention</u>: we glue $S^2 \leftrightarrow S^2$ via reflection in median plane. <u>2-handles</u> These are attached along a union of $S^{1's}$, i.e. a link in $\#(S' \times S^2)$. <u>Framing</u>: $\pi_1(O(2)) \cong \mathbb{Z} \sim framings are a \mathbb{Z}$ -torsor, and can be represented by a pushoff of S^4 in S^3 . IF Y=S3 (i.e., no 1-handler), then I canonical framing $(\text{longitude} \leftrightarrow 0)$, so we can identify $\{\text{framings}\} \leftrightarrow \mathbb{Z}$. e.g. () vs

Plumbings revised a b d tree o a b de is a Kirby diagram for Xp Each of these unknots bounds a disc \mathbb{D}_{v} in \mathbb{B}^{2} . The discs intersect according to the tree. The union of the nodus B⁴ (O-handle) of the discs gives the O-handle, and the said disco are just the cores.

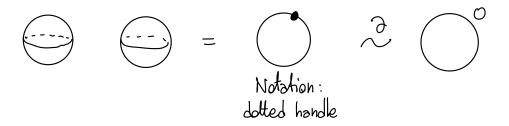
The remaining part of $X_{\rm P}$ are 2-handles, altoched along the boundary of the discs, i.e. the unknots of the Kirby diagram. The framings of the 2-handles are the self-intersections of the spheres (by remark above), which are exactly the weights of the tree. 1-handles revised



$$S^4 = B^4 \cup B^4$$
 receivering because
 $\exists \underline{O} - framed$ 2-handle sitting in B^4
attached along the unknot.

 $\mathbb{B}^{4} \cup (2 \text{-handle}) = O \text{-trace on unKnot}$ $\mathbb{B}^{4} - (2 \text{-handle}) \cong S' \times \mathbb{B}^{3} \cong \mathbb{B}^{4} \cup (1 \text{-handle})$

Thus, $B^{\prime}u(1-h)$ can be represented as a O-framed 2-handle removed from B^{\prime} .



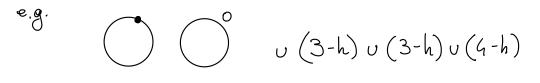
<u>Rk</u>: One can remove a disc from B⁴ with boundary any slice kndt. There is a description for such a manifold.

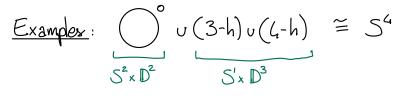
Surgery (3D)

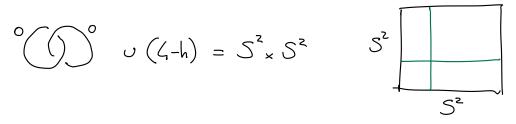
$$K \in S^{3}$$
 knot $\rightarrow \mu = meridian$, $\lambda = longitude
are a basis of $H_{4}(3DK) = \mathbb{Z} \oplus \mathbb{Z}$
 $S^{3}_{P/q}(K) := (S^{3} - \mathcal{Y}(K)) \cup_{\varphi} (S^{1} \times \mathbb{D}^{2})$
where $\varphi(\partial \mathbb{D}^{2}) = p\mu + q\lambda$.
Fact/Ex: $S^{3}_{P/q}(K)$ is well-defined up to diffeo.
 $(P/q) - SURGERY$ over K
Surgery trace (4D)
 $X_{n}(K) := \mathbb{B}^{4} \cup (n - framed 2 - handle along K)$
Ex: $\partial(X_{n}(K)) = S^{3}_{m/4}(K)$.
Hint: When you attach a 2-handle the ∂ is modified by
vemoving a copy of $S' \times \mathbb{D}^{2}$ (att. tube) and gluing in a copy
of $S^{4} \times \mathbb{D}^{2}$ (belt tube).$

<u>Back to Kirby diagrams</u>: 3-handles and G-handles. These are easy thanks to the following theorem.

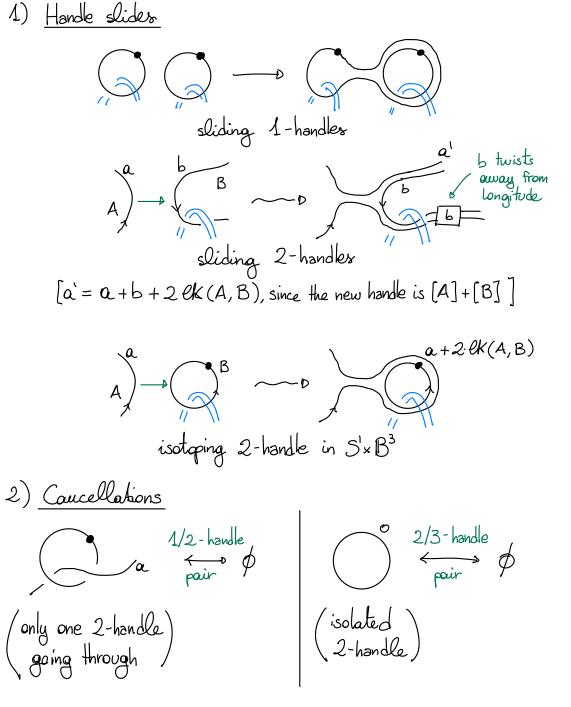
Thm (Laudenbach-Poenance) Every diffeomorphism of $\#^{n}(S' \times S^{2})$ extends to a unique differ of $\#^{n}(S' \times \mathbb{B}^{3})$. The 3-handles and the 4-handle together give a $4^{\circ}(S' \times \mathbb{B}^3)$. By LP there is a unique may to glue it to the previous part of the Kirby diagram if X is a closed 4-mtd.







Kirby moves



Thm:
$$X^{4}$$
 cannected closed oriented smooth.
Every two Kirby diagrams are related by a sequence of
Kirby mover.
(5) THE FAKE \mathbb{CP}^{2}
 $\bigcap^{1} \cup (4-h.) = \mathbb{CP}^{2}$
 $\bigcap^{1} = X_{1}(RHT)$ has $\partial a ZHS^{3}$ (in fact it is \overline{P}]
 $\overline{P}^{1} = X_{1}(RHT)$ has $\partial a ZHS^{3}$ (in fact it is \overline{P}]
Treadman $\Rightarrow \times \mathbb{CP}^{2} = (X_{1}(RHT)) \cup \mathbb{C}$ is a TOP 4-mfd.
contractible piece
 $\underline{Rk}: \mathbb{CP}^{2}$ and $\times \mathbb{CP}^{2}$ have both $\pi_{1} = A$ and $Q_{x} = (1)$.
Are they homeomorphic? That depends on ks!
 \mathbb{CP}^{2} smooth $\Rightarrow k_{3}(\mathbb{CP}^{2}) = 0$
 $K = LHT$ bounds a disc D in $(*\mathbb{CP}^{2} \setminus \mathbb{B}^{4})$, namely,
the core of the 2-hande.
 $Call this X$

