

(1) <u>HEEGAARD FLOER HOMOLOGY</u> $Y^{3} = closed oriented 3-mfd } \longrightarrow HF^{\circ}(Y,s) \quad oe\{+,-,\infty,n\}$ s $\in Spin^{\circ}(Y) \qquad a graded module over F[U]$ Sketch of the definition (Ozsváth - Szabó) Pick a handle decomposition of Y with only one O-handle and one 3-handle. Let I be the surface after the 1-handles. 1-h. On Z we have two sets of pairwise disjoint simple closed curves: • $\underline{\alpha} := \{\alpha_1, ..., \alpha_g\}$ belt spheres of the 1-handles • B = { B1, ..., Bg } attaching spheres of the 2-handles Morse - theoretic perspective : $f: Y \longrightarrow \mathbb{R}$ self-indexing Morse function. $\Sigma_{i} := f^{-1} \begin{pmatrix} 3/2 \end{pmatrix}$ +2 ⇒₹₹ $\underline{x} := \Sigma \cap W^{s}(\text{index}-1 \text{ orif. pts})$ +1 $\underline{B} := \sum \cap W^{\mu}(\text{index} - 2 \text{ crit. pts})$ 10

The madule Heegaard diagram Input data: $\mathcal{H} = (\Sigma, \alpha, \beta, z)$, $z \in \Sigma - (\alpha \cup \beta)$ bpt. $G_{\mathcal{H}} := \left\{ (x_1, \dots, x_g) \mid x_i \in \alpha_i \cap \beta_{\sigma(i)} \text{ for some } \sigma \in S_g \right\}$ $\underline{\mathsf{Def}}: \mathsf{CF}^{-}(\mathcal{H}) := \mathbb{F}[\mathsf{U}] \langle \mathsf{G}_{\mathcal{H}} \rangle.$

<u>Lemma</u>: The basept z gives a map $S_z: G_{\mathcal{H}} \longrightarrow Spin^{\mathcal{C}}(Y)$. $\frac{\text{Fact}}{\text{Fact}} : \text{Spin}^{\mathbb{C}}(Y) \cong \left\{ V \text{ non-vanishing vector field on } Y \right\},$ where $V \sim W$ if they are isotopic in $Y - \mathbb{B}^3$ (equivalently, on the 2-skeleton of Y).

Each intersection pt identifies a trajectory X: from an inder-1 to an index-2 crit. pt. $z \in \mathbb{Z}$ identifies a trajectory χ_z from the inder-O to the index-3 critical pt. The vector field Vf is non-singular away from these brajectories.

Moreover,
$$\nabla f$$
 has degree O on each sphere $\Im \Im(\chi_i)$,
because in each $\Im(\chi_i)$ there are 2 crit. pts of apposite parity
(hence deg ∇f is +1 near one of them and -1 near the other).
Modify ∇f inside each $\Im(\chi_i)$ to be non-singular.
Thus, we have a splitting $CF(\mathcal{H}) = \bigoplus CF(\mathcal{H}, s)$.
Tor the differential we need a different perspective.
Symmetric produts
Def: Sym⁹ $\Sigma = \{\chi_{1,...,\chi_g}\}$ unordered types $\}$
Rk: It is a manifold: Sym⁹ $C \xrightarrow{} C^9$
 $\{\chi_{1,...,\chi_g}\} \longmapsto (\kappa-\chi) \cdots (\chi-\chi_g)$
Def: $T_{\chi} := \alpha_1 \times \cdots \times \alpha_g \in Sym^9 \Sigma$
 $T_{\beta} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \alpha_1 \times \cdots \times \alpha_g \in Sym^9 \Sigma$
 $T_{\alpha} := \alpha_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \alpha_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \alpha_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \alpha_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_{\alpha} := \beta_1 \times \cdots \times \beta_g \in Sym^9 \Sigma$
 $T_$

Recall:
$$\omega \in \Omega^{2}(X^{2n})$$
 is symplectic if $d\omega = 0$ and ω^{n} is a volume form on X^{2n} .
 $L^{n} \in X^{2n}$ is Lagrangian if $\omega|_{L} = 0$.
Floer's idea: Given (X, ω) and L_{0}, L_{1} Lagrangians, we want to do Harse theory on
 $\mathcal{V} := \{ \mathcal{Y} : \mathbf{I} \to X \mid \mathcal{Y}(0) \in L_{0}, \mathcal{Y}(1) \in L_{1} \}$
using as "Harse function" an ACTION FUNCTIONAL A.
Key pts:
*) Crit $(\mathcal{A}) = L_{0} \cap L_{1}$ (const. patrs)
*) trajectorier b/w critical pts x and y L_{0}
are maps $\omega : \mathbf{I} \times \mathbb{R} \longrightarrow X$ satisfying
boundary conditions and Cauchy-Riemann $(\frac{\partial}{\partial t} + J \frac{\partial}{\partial s})(\omega) = 0$
actually need to particula to J_{s}

$$\frac{\text{The differential}}{\Im} \overline{\Im} : CF(\mathcal{H}) \longrightarrow CF(\mathcal{H}) , x \in G_{\mathcal{H}}$$

$$\overline{\Im} := \sum_{\substack{\varphi \in T_{n}(X; Y) \\ ind \varphi = 1}} \underbrace{\# \mathcal{H}(\varphi) \cdot \bigcup^{n_{2}(\varphi)} y + extend}_{\substack{\varphi \in extend \\ inearly}} \underbrace{\# \mathcal{H}(\varphi) \cdot \bigcup^{n_{2}(\varphi)} y + extend}_{\substack{\varphi \in extend \\ inearly}} \underbrace{\# \mathcal{H}(\varphi) \cdot \bigcup^{n_{2}(\varphi)} y + extend}_{\substack{\varphi \in extend \\ inearly}} \underbrace{\# \mathcal{H}(\varphi) \cdot \bigcup^{n_{2}(\varphi)} y + extend}_{\substack{\varphi \in extend \\ inearly}} \underbrace{\# \mathcal{H}(\varphi) \cdot \bigcup^{n_{2}(\varphi)} y + extend}_{\substack{\varphi \in extend \\ inearly}} \underbrace{\# \mathcal{H}(\varphi) \cdot \bigcup^{n_{2}(\varphi)} y + extend}_{\substack{\varphi \in extend \\ inearly}} \underbrace{\# \mathcal{H}(\varphi) \cdot \bigcup^{n_{2}(\varphi)} y + extend}_{\substack{\varphi \in extend \\ inearly}} \underbrace{\# \mathcal{H}(\varphi) \cdot \bigcup^{n_{2}(\varphi)} y + extend}_{\substack{\varphi \in extend \\ inearly}} \underbrace{\# \mathcal{H}(\varphi) \cdot \bigcup^{n_{2}(\varphi)} y + extend \\ inearly \\ extended y = 1 \\ extended \\ \bigvee^{\varphi \in G_{\mathcal{H}}} y = extended \\ y = (2^{2} \times Sym^{g-1}(\Sigma)) \\ (all intersections are positive if these are J-hol. submitted) \\ \underbrace{\forall extended}_{g} x = (2^{2} \times Sym^{g-1}(\Sigma)) \\ (all intersections are positive if these are J-hol. submitted) \\ \underbrace{\forall extended}_{g} x = (2^{2} \times Sym^{g-1}(\Sigma)) \\ (all intersections are positive if these are J-hol. submitted) \\ \underbrace{\forall extended}_{g} x = (2^{2} \times Sym^{g-1}(\Sigma)) \\ (all intersections are positive if these are J-hol. submitted) \\ \underbrace{\forall extended}_{g} x = (2^{2} \times Sym^{g-1}(\Sigma)) \\ (all intersections are positive if these are J-hol. submitted) \\ \underbrace{\forall extended}_{g} x = (2^{2} \times Sym^{g-1}(\Sigma)) \\ (all intersections are positive if these are J-hol. submitted) \\ \underbrace{\forall extended}_{g} x = (2^{2} \times Sym^{g-1}(\Sigma)) \\ (all intersections are positive if these are J-hol. submitted) \\ \underbrace{\forall extended}_{g} x = (2^{2} \times Sym^{g-1}(\Sigma)) \\ (all intersections are positive if these are J-hol. submitted) \\ \underbrace{\forall extended}_{g} x = (2^{2} \times Sym^{g-1}(\Sigma)) \\ (all intersections) \\ \underbrace{\forall extended}_{g} x = (2^{2} \times Sym^{g-1}(\Sigma)) \\ (all intersections) \\ \underbrace{\forall extended}_{g} x = (2^{2} \times Sym^{g-1}(\Sigma)) \\ (all intersections) \\ \underbrace{\forall extended}_{g} x = (2^{2} \times Sym^{g-1}(\Sigma)) \\ (all intersections) \\ \underbrace{\forall extended}_{g} x = (2^{2} \times Sym^{g-1}(\Sigma)) \\ (all intersections) \\ (all intersections) \\ (all intersections) \\ (all intersections) \\ (all interse$$

Fundamental properties *) $HF^{\circ}(\mathcal{H},s)$ does not depend on the Heegaard diagram ~ $HF^{\circ}(Y,s)$ an invariant of (Y,s) $H^{1}(Y)$ *) $HF^{\circ}(Y, s)$ carries an action of $\Lambda^{*}(\frac{H_{1}(Y)}{Tors})$ [homological] *) $s \in Spin^{\circ}(Y) \xrightarrow{\text{torsion}} \Longrightarrow Absolute (D-grading (deg U = -2))$ *) <u>Structure: HF⁻(Y,s)</u> for storsion Direct sum of "towers" F[U] and "finite pieces" F[U] (UK) υĻ Įυ U(•) U υ() U υÇ) U υ(10 υ(Fact: IF the triple cup product on Y vanishes, then 3! tower in Ker (A-action), called BOTTOM TOWER. $\underline{\text{Def}}: d_b(Y, s):= \text{grading of the (homogeneous) generator}$ of the bottom tower. (bottom-most correction term)

 $3) Y = S^3$

Cobordism maps

A spin^c cobordism $(Z, s): (Y_0, t_0) \longrightarrow (Y_1, t_1)$ induces a map $F_{Z,s}$ in HF $(O-S_Z, Juhász-Thurston-Zemke)$ If to and t_1 are torsion, $F_{Z,s}$ is graded and $\deg F_{Z,s} = \frac{c_1(s)^2 - 2\chi(2) - 3\varrho(2)}{4}$

Non-vanishing theorem In the above setting, suppose that:
*) to and
$$t_1$$
 are torsion
*) Yo and Y_1 have vanishing triple cup product $f \Rightarrow are defined$
*) $H_1(Y_0; \mathbb{Q}) \xrightarrow{\longrightarrow} H_1(\mathbb{Z}; \mathbb{Q})$ is an isomorphism.
*) $H_1(Y_0; \mathbb{Q}) \xrightarrow{\longrightarrow} H_1(\mathbb{Z}; \mathbb{Q})$ is an isomorphism.
*) Z_i is negative semidefinite.
Then \mathcal{F}_{Z_iS} is non-vanishing between the bottom towers.
 $Car: d_L(Y, t)$ is invariant under spin $\mathbb{Q}H$ -coloordism.
 $Idea:$ Given $\mathbb{Q}H$ -colo.
 Z_1 and Z_2 , you get
non-vanishing
degree - O maps. \Box of $HF(Y_1, t_i)$ of $HF(Y_2, t_2)$ of $HF(Y_1, t_i)$

Enctoriality properties: *)
$$F_{I,Y,S} = id_{HF(Y,S)}$$

*) $F_{Z_2 \cup Z_1} = F_{Z_2} \circ F_{Z_1}$, $Z_2 = Y_1$
where $F_2 = \sum_{S \in Spin S_2} F_{Z,S} = Z_1 = Y_0$
2) DONALDSON'S THEOREM
d-invariants and 4-manifolds
Then $Y^3 w/$ vanishing triple cup product, the Spin (Y) torsion.
Suppose that $(Y, t) = \partial(W, S)$, such that
•) $H^4(W; Q) \longrightarrow H^4(Y; Q)$ is trivial, and
•) W is negative semidefinite.
Then
 $C_1(S)^2 + b_2(W) \le 4 \cdot d_b(Y, t) + 2 \cdot b_1(Y)$
reface $S' \times B^3$ with $D^3 \times S^2$
Idea: WLOG $b_1(W) = 0$, by doing surgery on non-trivial laps.
Let $Z := W - B^4$, which is a spin abordism $(S_1^3, t_0) \longrightarrow (Y, t)$.
FACT: The cobordism induces a non-trivial map between the
bottom towers.

<u>Elkies lemma</u>

<u>Thm</u> (Elkies) Let $Q: \Lambda \times \Lambda \longrightarrow \mathbb{Z}$ be a bilinear symmetric unimadular form on $\Lambda \cong \mathbb{Z}^n$ such that $\forall w \in \Lambda$ characteristic $Q(w,w) \ge rk(\Lambda)$ Then (Λ, Q) is the diagonal lattice, i.e., $Q \cong \begin{pmatrix} 1 \\ 1 \end{pmatrix}$. <u>Idea</u>: Study the formal <u>THETA SERIES</u> of (Λ, Q) : $\begin{array}{l} \partial_{\Lambda}(t) := \sum_{\substack{v \in \Lambda \\ \forall v \in \Lambda \\ \end{array}} e^{i\pi \cdot Q(v,v) \cdot t} \\ \text{standard lattice} \\ \text{and composere it with that of } \partial_{\underline{Z}_{n}^{n}} = (\partial_{\underline{Z}_{n}})^{n} \\ & \quad \text{in general, } \partial_{\Lambda_{1} \oplus \Lambda_{2}} = \partial_{\Lambda_{1}} \cdot \partial_{\Lambda_{2}} \end{array}$ Facts: 1) $\Theta_{\Lambda}(t)$ is convergent on $H = \{I_{m,2} > 0\} \subseteq \mathbb{C}$. (using periodicity of $e^{i\pi t}$) 2) $\theta_{\Lambda}(t+2) = \theta_{\Lambda}(t)$ 3) Poisson inversion formula the volume of $\mathbb{R}^n/$ $\Theta_{\Lambda}(i:t) = t^{-\frac{n}{2}} \cdot v^{-1} \cdot \Theta_{\Lambda^*}((it)^{-1})$ (Tollows from the Poisson formula for Tourier transforms.)

$$\begin{split} \widehat{\Theta}_{\mathbb{Z}}(t) & \text{cants add integers, so} \\ \widehat{\Theta}_{\mathbb{Z}}(t) &= 2\left(e^{\frac{i\pi t}{4}} + e^{g \cdot \frac{i\pi t}{4}} + \cdots\right) \\ &= 2e^{\frac{i\pi t}{4}} \cdot \left(1 + e^{2\pi i t} + e^{6\pi i t} + \cdots\right) \\ &\stackrel{\circ}{\forall} \quad \text{as } t \to i\infty \\ \text{Thus, } \left(\widehat{\Theta}_{\mathbb{Z}}(t)\right)^n \sim C_4 \cdot e^{\frac{i\pi n t}{4}} \quad \text{as } t \to i\infty \\ \text{Vau der Blij's lemma } \left(Q(w, w) \equiv n \pmod{8}\right) \text{ implies} \\ & \widehat{\Theta}_{\Lambda}(t) = \sum_{m \equiv n \pmod{8}} a_m \cdot e^{\frac{i\pi m t}{4}} \quad \text{lengths of char. vectors} \\ &\widehat{\Theta}_{\Lambda}(t) = e^{\frac{i\pi n t}{4}} \cdot \left(a_n + \sum_{m > n \pmod{8}} a_m \cdot e^{\frac{(m-n)\pi i t}{4}}\right) \\ &\stackrel{\circ}{\to} a_n t \to i\infty \\ &\text{Thus, } \widehat{\Theta}_{\Lambda}(t) / (\widehat{\Theta}_{\mathbb{Z}}(t))^n \text{ is bounded at } i\infty \\ & \text{Fadt 5} \\ & \text{R}(t) \text{ bounded near } \pm 1, \text{ so } \\ & \text{R}(t) \text{ has no poles.} \\ \end{split}$$

\implies (Liouville thm) $R(t) \equiv \text{constant}$, which must be 1	
because $\lim_{t \to i\infty} R(t) = 1$	
$\Rightarrow \Theta_{\Lambda} \equiv \Theta_{\underline{\mathbb{Z}}^{n}}$	
$\Rightarrow \land and \mathbb{Z}^n$ have the same number of vectors of length	1,
Let $\pm v_1,, \pm v_n$ be the unit vectors of Λ .	
By Cauchy-Schwarz $ Q(v_i,v_j) < 1$ if $i \neq j$, but since	
Λ is integral this implies $Q(v_i, v_j) = \delta_{ij}$.	
Thus, $V_1,, V_n$ is an orthonormal set in Λ , which spaces a	
$\underline{\mathbb{Z}}^{n} \in \Lambda$.	
$\frac{Rk}{Er} : \text{ For a sublattice } \Lambda' \subseteq \Lambda, \left[\Lambda : \Lambda'\right] = \frac{\det \Lambda'}{\det \Lambda}.$	
Thus, if Λ contains a copy of \mathbb{Z}^n , it is \mathbb{Z}^n .	

Donaldson's theorem

Let
$$X^4$$
 closed oriented smooth 4-mfd, with Q_X neg. definite.
Then $Q_X \cong n (-1)$, where $n = b_2(X)$.

$$\begin{array}{l} \displaystyle \underset{Rcof}{\operatorname{Proof}}: & \operatorname{By} \ \text{removing a } \operatorname{B}^{4} \ \text{we get a negative definite } (4-\operatorname{mfd} W) \\ & \operatorname{with} \ \partial W = S^{3}. \ \operatorname{Thus,} \ \text{for every spin}^{c} \operatorname{structure } s \in \operatorname{Spin}^{c}(W), \\ & \left((c_{1}(s))^{2} + b_{2}(W) \leqslant O \right) \\ \hline & \left((c_{1}(s))^{2} + b_{2}(W) \leqslant O \right) \\ \hline & \left((c_{1}(s))^{2} + b_{2}(W) \leqslant O \right) \\ \hline & \left((c_{1}(s))^{2} + b_{2}(W) \leqslant O \right) \\ \hline & \left((c_{1}(s))^{2} + b_{2}(W) \leqslant O \right) \\ \hline & \left((c_{1}(s))^{2} + b_{2}(W) \leqslant O \right) \\ \hline & \left((c_{1}(s))^{2} + b_{2}(W) \leqslant O \right) \\ \hline & \left((c_{1}(s))^{2} + b_{2}(W) \leqslant O \right) \\ \hline & \left((c_{1}(s))^{2} + b_{2}(W) \leqslant O \right) \\ \hline & \left((c_{1}(s))^{2} + b_{2}(W) \leqslant O \right) \\ \hline & \left((c_{1}(s))^{2} + b_{2}(W) \leqslant O \right) \\ \hline & \left((c_{1}(s))^{2} + b_{2}(W) \leqslant O \right) \\ \hline & \left((c_{1}(s))^{2} + b_{2}(W) \leqslant O \right) \\ \hline & \left((c_{1}(s))^{2} + b_{2}(W) \ast O \right) \\ \hline & \left((c_{1}(s))^{2} + b_{1}(W) \ast O \right) \\ \hline & \left((c_{1}(s))^{2} + b_{1}(W) \ast O$$

The Wu formula gives a map $IL(w_2) \longrightarrow Char(\Lambda, Q_X)$, which is modelled over $H^2(X) \longrightarrow H^2(X)/Tors$, hence surjective. Step 2: Every integral lift of Wz is the Chern class of a spin^c structure, by exactness of $\check{H}^{1}(X; \mathcal{C}^{\infty}Spin^{c}(n)) \longrightarrow \check{H}^{1}(X; \mathcal{C}^{\infty}SO(n)) \oplus \check{H}^{1}(X; \mathcal{C}^{\infty}U(1))$ $\xrightarrow{W_2+C_4} H^2(X; \mathbb{Z}/2\mathbb{Z}).$ 🗆 Claim. Thus, for every char. vector we $\operatorname{Char}(Q_X)$, w. w $\leq -n$.

By Elkies lemma, the lattice is the (negative) diagonal \Box lattice.