

(1) ADJUNCTION FORMULA
Then: Lat
$$\Sigma \subseteq X$$
 smooth, cnct, cx curve in a cx surface.
Then: $\langle k_{X}, [\Sigma] \rangle + [\Sigma]^{2} = 2g(\Sigma) - 2$.
Pf: $TX|_{\Sigma} = T\Sigma \oplus N_{X}(\Sigma)$
 $c_{1}(det T^{*}X)$, the
canonical class
 $c_{1}(TX|_{\Sigma}) = c_{1}(T\Sigma) + c_{1}(N_{X}(\Sigma))$
 $\langle c_{1}(TX|_{\Sigma}), [\Sigma] \rangle = \langle c_{1}(T\Sigma), [\Sigma] \rangle + \langle c_{1}(N_{X}(\Sigma)), [Z] \rangle$
 $\langle c_{1}(entriconomical)$
 $c_{1}(entriconomical)$
 $c_{2}(entriconomical)$
 $c_{2}(entriconomical)$
 $c_{2}(entriconomical)$
 $c_{2}(entriconomical)$
 $c_{2}(entriconomical)$
 $c_{2}(entriconomical)$
 $c_{2}(entriconomical)$
 $c_{3}(entriconomical)$
 $c_{4}(entriconomical)$
 $c_{2}(entriconomical)$
 $c_{2}(entriconomical)$
 $c_{3}(entriconomical)$
 $c_{4}(entriconomical)$
 $c_{5}(entriconomical)$
 $c_{6}(entriconomical)$
 $c_{7}(entriconomical)$
 $c_{7}(entriconomical)$
 $c_{7}(entriconomical)$
 $c_{7}(entriconomical)$
 $c_{8}(Entriconomical)$
 $c_{8}(Entriconomical)$
 $c_{9}(entriconomical)$
 $c_{9}(entriconomical)$
 $c_{9}(entriconomical)$
 $c_{9}(entriconomical)$
 $c_{1}(entriconomical)$
 $c_{2}(entriconomical)$
 $c_{2}(entriconomical)$
 $c_{2}(entriconomical)$
 $c_{2}(entriconomical)$
 $c_{2}(entriconomical)$
 $c_{2}(entriconomical)$
 $c_{1}(entriconomical)$
 $c_{2}(entriconomical)$
 $c_{2}(entricono$

Remork 1: formula vs inequalities In the cx setting we have a closed formula for $g(\Sigma)$ in terms of $[\Sigma]$. In the smooth setting this is impossible: if \sum_{g} represents $\alpha \in H_2(X)$, the so does Zg+1.

Remark 2: smooth is locally flat Locally flat: continuous embedding locally modelled over $\mathbb{R}^2 \hookrightarrow \mathbb{R}^6$ (x,y) \mapsto (x,y, 0, 0) *) Smooth ⇒ loc. flat *) Loc. Flat \$ Smooth e.g. the (primitive, char.) class $(5,3) \in H_2(\mathbb{CP}^2 \# \widehat{\mathbb{CP}^2})$ is •) represented by a <u>locally flat</u> sphere (dee-Wilczyński '90) •) not represented by a smooth sphere $\left[\text{Ruberman} \, ^{1}\text{96} : \text{Gr}_{\mathbb{CP}^{2} \# \overline{\mathbb{CP}^{2}}} \left(5, 3 \right) = 3 \right]$ <u>Thom Conjecture</u>: $G_{\mathbb{CP}^2}(d) = \frac{(d-1) \cdot (d-2)}{2}$ (i.e. sm. cx curves in \mathbb{QP}^2 are genus - minim. in their homology class) Proved by Kronheimer-Hrowka '94. Today we sketch a proof by Ozsváth-Szabó '03 see also MSzT (intermediate result) Symplectic Thom Conjecture (proved by Ozsváth-Szabó '00) Smoothly embedded symplectic surfaces in a closed symplectic 4-mfd are genus-minimising in their homology class.

(3) J-INVARIANTS of CIRCLE BUNDLES

$$Y_{g,e} = \text{circle bundle over } \Sigma_{g} \text{ with Ever number } e$$

$$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = e$$

$$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = e$$

$$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = e$$

$$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = e$$

$$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = e$$

$$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} = e$$

$$\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$

(4) <u>PROOF of the THOM CONJECTURE</u> Assume $d \neq 0$ and by contradiction suppose $\exists \Sigma \subseteq \mathbb{CP}^2$ $g(\Sigma) \leq \frac{d^2 - 3d}{2} \xrightarrow[(stab.)]{} g(\Sigma) = \frac{d^2 - 3d}{2}$.

Let $S \in Spin^{c}(\mathbb{CP}^{2})$ w/ $c_{z}(s) = -3:H$. Identify $S|_{X_{g,d^{2}}}$ $\langle c_{1}(s), [\mathcal{Z}] \rangle = -3d$ $\langle c_{1}(s_{k}), [\mathcal{Z}] \rangle = d^{2} + 2k$ $\begin{cases} S = S_{k} & \text{if } k = \frac{-d^{2}-3d}{2} \\ 2 \end{cases}$ ~ 0 Restricts also to S_{k} on $\partial X_{g,d^{2}} = Y_{g,d^{2}}$.

However, $\partial W = -Y_{g,d^2} = Y_{g,-d^2} \sim need to change orient.$ $\Rightarrow d_{b}(Y_{g,-d^{2}}, S_{g}) = \frac{1}{4} - \frac{g^{2}}{d^{2}} - \frac{d^{2}}{4}$ = -2 - gHowever, $\partial W = Y_{g,-d^2}$ and $b_2(W) = 0$: $c_{1}(s)^{2} + b_{2}(w) \leq 4 \cdot d_{b}(Y_{g,-d^{2}}, s) + 2 \cdot b_{1}(Y)$ -8 - 4g 4g 4g

 $\frac{\mathbf{R}\mathbf{k}}{\mathbf{R}\mathbf{k}}: \text{ This proof works also for X smooth } \mathbb{Z}H\mathbb{CP}^2.$ $\frac{\mathbf{R}\mathbf{k}}{\mathbf{R}\mathbf{k}}: \text{ The proof fails for } \#^{\mathsf{n}}\mathbb{CP}^2. \text{ In fact,}$ $G_{\#^2\mathbb{CP}^2}(a,b) \neq G_{\mathbb{CP}^2}(a) + G_{\mathbb{CP}^2}(b)$

5 THE MIXED INVARIANT $\frac{\operatorname{Prop}}{\operatorname{prop}}(\operatorname{vanishing} \operatorname{theorem}): \text{Let } W: Y_0 \longrightarrow Y_1 \quad w/ \quad b_2^+(W) \ge 1.$ Then $\mathcal{F}_{W,s} \colon HF^{\infty}(Y_{o}, t_{o}) \longrightarrow HF^{\infty}(Y_{1}, t_{1})$ is zero. Application: the image of the map in HF is contained in HFred. this is also the $\mathcal{F}[U]$ -torsion submodule $\exists \text{ factorisation } ______________________Ker(\iota)$ $HF(Y_{0}, t_{0}) \xrightarrow{\mathcal{F}_{w,s}} HF(Y_{1}, t_{1})$ induced by inverting U at the complex level L . (i.e., quotient by the IF[U]-torsion) $HF^{\infty}(Y_{o}, t_{o}) \longrightarrow HF^{\infty}(Y_{i}, t_{1})$ Analogously, 3 similar factorisation for HFT. Quick recap of the structure of HF+: towers (well-def. (submodule) (* (*

A TQFT perspective $\begin{array}{c} & X^{4} \\ & X_{2} \end{array} \\ & \partial X_{2} = -Y \end{array}$ ∂X^{*} HF(-Y) ∋ ξ₂ ~~ X₂ $X_{1} \sim \xi_{1} \in HF^{-}(Y)$ defined by $\xi_1 = F_{W_1}(1)$ defined by $\xi_2 := F_{W_2}(1)$ Here $W_1 := X_1 - B^4$, seen as a cobordism $S^3 \longrightarrow Y$, and $[W_2 := X_2 - B^4]$, seen as a cobordism $-S^3 \longrightarrow -Y$. In the typical TQFT framework there should be a pairing $(\bullet,\bullet)_{\mathsf{F}} : \mathsf{HF}(\mathsf{Y}) \otimes \mathsf{HF}(-\mathsf{Y}) \longrightarrow \mathbb{F}$ and we would then define $HF^{-}(X) := (\xi_1, \xi_2)_Y$. What we actually have is that $\xi_i \in HF_{red}(\pm Y_i)$, and the above pairing $(\bullet, \bullet)_{\gamma}$ can be define on the reduced homologies. To define it, start from a certain "tautological" pairing $\langle \cdot, \cdot \rangle$: $\operatorname{HF}^+_{\operatorname{(red)}}(\Upsilon) \otimes \operatorname{HF}^-_{\operatorname{(red)}}(-\Upsilon) \longrightarrow \mathbb{F}_{\operatorname{red}}$ which satisfies the following duality property.

Let W^4 with $\partial W = Y_1 \# (-Y_0)$, We can see W as a cobordism in two different ways: •) $W: Y_{0} \longrightarrow Y_{1} \longrightarrow \mathcal{F}_{W}^{+}: HF_{(red)}^{+}(Y_{0}) \longrightarrow HF_{(red)}^{+}(Y_{1})$ •) $W: -Y_{1} \longrightarrow -Y_{0} \longrightarrow \mathcal{F}_{W}^{-}: HF_{(red)}^{-}(-Y_{1}) \longrightarrow HF_{(red)}^{+}(-Y_{0})$ Then: $\langle \cdot, \mathcal{F}_{W}(\cdot) \rangle_{Y_{O}} = \langle \mathcal{F}_{W}^{+}(\cdot), \cdot \rangle_{Y_{1}}$ \bigotimes Using $S: HF_{red}^+(Y) \xrightarrow{\sim} HF_{red}^-(Y)$, we define $(\bullet,\bullet)_{\mathsf{Y}}:\mathsf{HF}^{-}(\mathsf{Y})\otimes\mathsf{HF}^{-}(-\mathsf{Y})\longrightarrow\mathbb{F}^{\prime}$ by $(\xi, \gamma)_{\gamma} := \langle \delta^{-4}(\xi), \gamma \rangle_{\gamma}$. Thus, our TQFT would give $HF(X) = (\xi_{1}, \xi_{2})_{Y} = (\mathcal{F}_{W_{1}}(1), \mathcal{F}_{W_{2}}(1))_{Y}$ $= \left\langle S^{-1} \circ \mathcal{F}_{W_1}^{-}(1), \mathcal{F}_{W_2}^{-}(1) \right\rangle_{\mathcal{F}}$ $= \left\langle \mathcal{F}_{W_2}^+ \circ S^{-1} \circ \mathcal{F}_{W_1}^-(1) / 1 \right\rangle_{S^3}$ Thus, HF(X) is controlled by the map $F_{W_2}^+ \circ S^{-1} \circ F_{W_1}^-$, which is exactly the definition of the mixed invariant Φ_X .

6 EXOTIC MANIFOLDS
Then (O-Sz.)
$$X^4$$
 closed, $\pi_1 = 1$, C^{∞} ex surface with $b_2^+ \ge 2$.
Then $\Phi_{X,k} = \pm 1$, where k is the canonical spin^c structure.
 $C_1(k)$ is the canonical class
Recell: K3 is any $\pi_1 = 1$, C^{∞} ex surface with $c_1(k_X) = 0$.
(All such ex surfaces are diffeomorphic to each other).
e.g. $\{x^4 + y^4 + z^4 + w^4 = 0\} \subseteq \mathbb{CP}^3$ is a K3 surface.
 $Q_{K3} = 2E_3 \oplus 3H$
Then: $K3 \# \overline{\mathbb{CP}^2}$ and $3\mathbb{CP}^2 \# 20\overline{\mathbb{CP}^2}$ are an
exotic pair (i.e., they are homeon. but not diffeom. to each oth,
 \underline{P} : Homeomorphic
Both are closed, $\pi_1 = 1$. Their int forms are indefinite, so they.

are the same iff they have same rk, o, parity: $\begin{array}{c|c}
(2E_8 \oplus 3H) \oplus (-1) & 3 \cdot (+1) \oplus 20 (-1) \\
\hline rk & 2 \cdot 8 + 3 \cdot 2 + 1 = 23 & 3 + 20 = 23 \\
\hline od & -16 - 1 = -17 & 3 - 20 = -17 \\
\hline parity & add (b/c of \overline{\mathbb{CP}^2}) & add
\end{array}$

