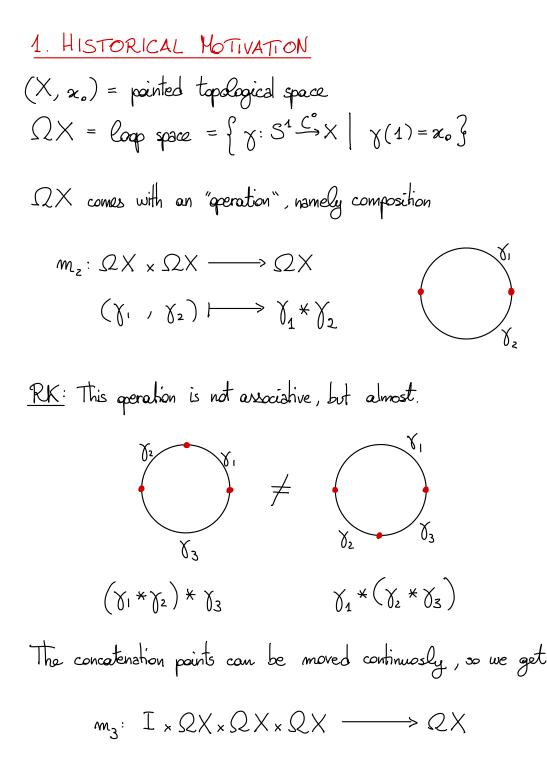
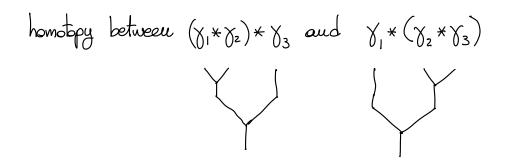
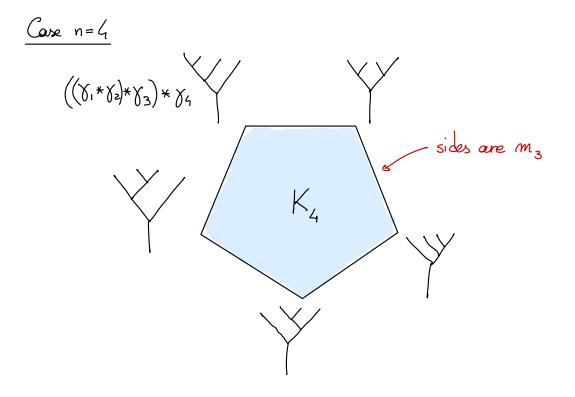
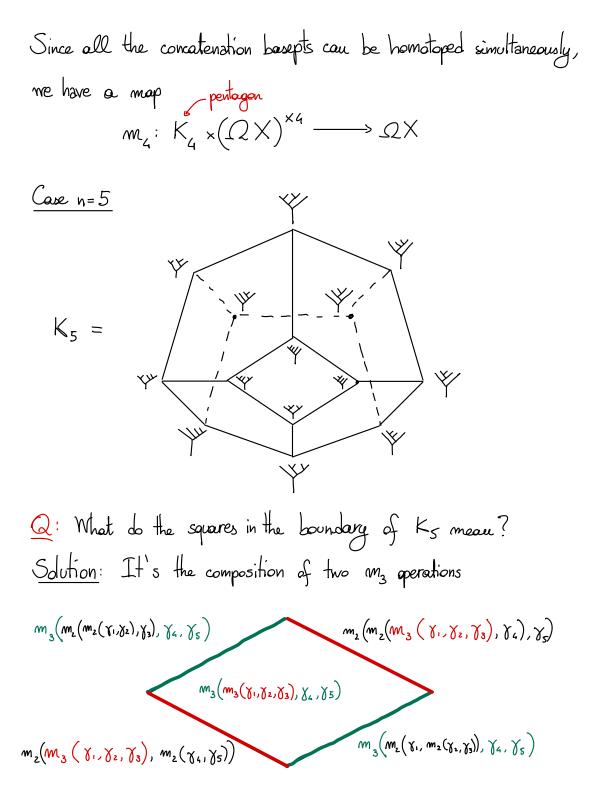
1. An algebras





<u>Binary tree representation</u>: when we take a sequence of non-associative multiplications, the order we do them is encoded by a binary tree with n leaves and 1 root.





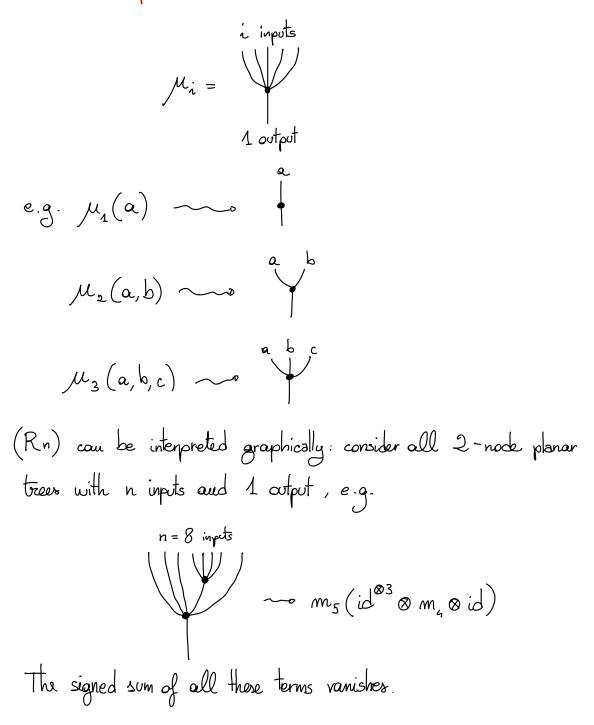
Itm (Stasheff '63)
$$\exists$$
 sequence of polytopes K_n of dimension
 $n-2$, colled ASSOCIAHEDRA, and maps
 $m_n: K_n \times (QX)^n \longrightarrow QX$.
Moreover, a topological space Y is hty equivalent to QX
(i.e. it can be "deloged") if and only if
 $\tau_o(Y)$ is a graup ($\equiv \tau_i(X)$), and
 $\cdot \exists$ maps $m_n: K_n \times (Y^{\times n}) \longrightarrow Y$ satisfying certain
compatibility & unit conditions. (Y is an A_{∞} -space)
Thm (Stasheff '63) Y an A_{∞} -space. Then $C_{*}(Y)$
is an A_{∞} -algebra, where $\mu_1 =$ differential and $\mu_{i>2}$
are induced by m_i .
Ex: K_n can be interpreted as a polytope whose vertices are
triangulations of (n+1)-gon.
Higher operations are interpreted as changer of triangulations
e.g. m_3 : \square \longrightarrow \square

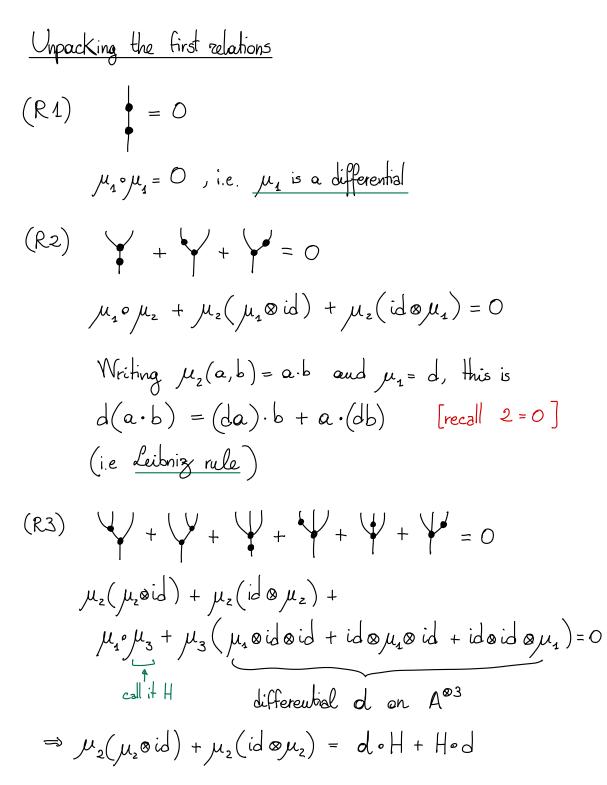
2. DEFINITION
more generally, commutative ring
grading by non-comm.grp.
Def Let K be a field. A Z-graded Los - ALGEBRA
over K is a Z-graded vector space

$$A = \bigoplus_{p \in \mathbb{Z}} A_p$$

together with homogeneous K-linear maps
 $\mu_i : (A \otimes_{k} \dots \otimes_{k} A) \longrightarrow A$
 $i \text{ binese}$ $k \text{ need not be central in } A$
subject to the which we relations $(Rn) \forall n \ge 1$
 $(Rn) \sum_{r=0}^{n-1} \sum_{s=1}^{n-r} (-1)^{r+s \cdot t} \mu_u (id^{\otimes r} \otimes \mu_s \otimes id^{\otimes t}) = 0$
where $t = n - r - s \in [0, n - 1]$
 $\mu = r + t + 1 = n - s + 1$
from this paint
over and signs

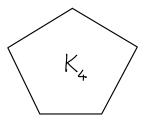
Pictorial interpretation





i.e. the product is associative up to homotopy.
A less poplar pictorial representation is sides are inputs

$$\mu_i$$
 can be represented with an $(i+1)$ -gan a_i
 μ_i can be represented with an $(i+1)$ -gan a_i
 μ_i (Rn) Summing over all possible diagonals (including sides)
gives O.
e.g. μ_i \longrightarrow μ_i
Examples
1) (Stashelf '63) $C_*(\Omega X)$ is an A_∞ -algebra with
 μ_a = differential, μ_a induced by loop composition.
The associatedra encode the A_∞ -relations
 $\sqrt[4]{4}$
 $\mu_2(\mu_2 \otimes id) - \mu_2(id \otimes \mu_2) = (\mu_4 \circ \mu_3 + \mu_3 \circ (\mu_i \otimes id^{\circ 2} + id \otimes \mu_i \otimes id + id^{\circ 2} \otimes \mu_i))$



 $\mu_2(\mu_3 \otimes id) + \mu_2(id \otimes \mu_2) +$ 6 5 sides $\mu_{3}(\mu_{2}\otimes id\otimes id) + \mu_{3}(id\otimes \mu_{2}\otimes id) + \mu_{3}(id\otimes id\otimes \mu_{2})$

$$(\mu_1 \circ \mu_4 + \mu_4 \circ \mu_1) =: d\mu_4$$

2)
$$B = \operatorname{ordinary} algebra \text{ over } K$$

Hochschild cochain complex
Hom $(K, B) \longrightarrow \operatorname{Hom}(B, B) \longrightarrow \operatorname{Hom}(B^{\otimes 2}, B) \longrightarrow \dots$
 $(df)(b_{0}, \dots, b_{N}) := b_{0} \cdot f(b_{1}, \dots, b_{N}) + \sum_{i=1}^{N} f(b_{0}, \dots, b_{i-1}b_{i}, \dots, b_{N}) + f(b_{0}, \dots, b_{N-1}) \cdot b_{N}$
 $\sim \operatorname{Hochschild cohomology} of B.$

Let
$$\varepsilon = \text{formal variable of degree 2-N, for some N \neq 2.}$$

 $A := B[\varepsilon]/(\varepsilon^2)$, $c: B^{\otimes N} \longrightarrow B$ linear
Define maps $\mu_i: A^{\otimes i} \longrightarrow A$ by setting.
•) μ_z induced by multiplication on B
•) $\mu_N := \varepsilon \cdot c$
•) All other $\mu_i \equiv 0$.
 $E \times : (A, (\mu_i))$ is an A_∞ -algebra iff c is a
Hochschild cocycle.
Hint: the only non-trivial velation is $(R(N+1));$
if there is at least an ε in the inputs, all summands
vanish;
inputs $w/$ no ε give exactly the cocycle ∞ ndition
 $\Psi + \sum \Psi + \Psi = 0$

3) Def: A DIFFERENTIAL GRADED ALGEBRA (DGA)
is an
$$A_{\infty}$$
-algebra with $\mu_i \equiv 0 \quad \forall i \ge 3$.
Spoiler: strands algebras (an important family of examples)
are das.

Homology
Prof. Given a (Z-graded)
$$A_{\infty}$$
-algebra A ,
there is a canonical algebra structure on $H_*(A)$.
 T - ordinary, not A_{∞}
 $Pf: \mu_2: A \otimes A \longrightarrow A$ satisfies
 $(R_2) \quad \mu_2 \circ \mu_1 + \mu_1 \circ \mu_2 = O \quad (\mu_2 \text{ is a chain map})$
 $\Rightarrow \mu_2 \text{ descends to } H_*(A \otimes A) \longrightarrow H_*(A), \text{ hence by}$
composition $H_*(A) \otimes H_*(A) \longrightarrow H_*(A \otimes A) \longrightarrow H_*(A)$ we get

$$\overline{\mu_{z}}: H_{*}(A) \otimes H_{*}(A) \longrightarrow H_{*}(A)$$

Then, we consider (R3) $\mu_2(\mu_2(a,b),c) - \mu_2(a,\mu_2(b,c)) = d \cdot H + H \cdot d$

Recall that • $d_{A} = \mu_{1}$, • $d_{A^{\otimes 3}} = \mu_{1} \otimes id \otimes id + id \otimes \mu_{1} \otimes id + id \otimes id \otimes \mu_{1}$, • $H = \mu_{3}$. Parsing to homology, we get $\overline{\mu_{2}}(\overline{\mu_{2}} \otimes id) + \overline{\mu_{2}}(id \otimes \overline{\mu_{2}}) = 0$, i.e. $\overline{\mu_{2}}$ is associative.

RK: Next time we will see that
$$H_*(A)$$
 can be given an
 A_{∞} -structure extending $\mu_1^{H} = 0$ and $\mu_2^{H} = \overline{\mu_2}$.
Note $\mu_1^{H} = 0 \Longrightarrow \mu_2^{H}$ is associative, no matter what μ_3^{H} is.
(So there can be non-trivial A_{∞} -algebras that are
associative.)

Units Def: A <u>STRICT UNIT</u> of A is an element $1 \in A$ s.t. •) $\mu_2(a, 1) = a = \mu_2(1, a)$ $\forall a \in A$ of degree O •) $\forall i \neq 2$, $\mu_i(a_1, ..., a_i) = O$ if $\exists j : aj = 1$

Def:
$$\mathcal{A}$$
 HOMOLOGICAL UNIT is $1 \in H_*(A)$ s.t.
 $\overline{\mathcal{M}_z}(\alpha, 1) = \alpha = \overline{\mathcal{M}_z}(1, \alpha) \quad \forall \alpha \in H_*(A).$
Thus: If A is homologically unital, then \exists an \mathcal{A}_{∞} -quasi-ison.
 \mathcal{A}_{∞} -algebra \mathcal{B} (with $\mu_1^{\mathcal{B}} = 0$) that is strictly unital.