3. Straud Algebras

Consider the half-Heegaard diagram on the left. CHORD DIAGRAMS
Consider the half-Hergerand
diagram on the left.
The boundary is a circle w/
a basepoint z and pairs of
matched circles. a basepoint z and pairs of

We define a DGA associated to it with a two-fold dejective: 1) in constructing a proceded to it with a two-fold object
generator of CF(H), we want to remember which cwaves are abseady accupied; no idempotents [recall that each generator is a type of intersection points st . there is exactly one on each α (and on each $\beta)$ curve] 2) remember how the partial domains meet the boundary, and if you can glue them to partial domains on the other side . DIAGRAHS
Consider the
diagram on the boundary
a basepoint z
motched circle
of a generator of CF (H), we
nich annex are absorbed accepted,
each generator is a type of interesting
now the partial domains meet the
cau glue th -
22 strands

2) PRE-STRAND ACGEBRA
\n
$$
\Delta f \colon A \underline{k\text{-STRAND}} = \{s_1, ..., s_K\} \text{ on a chord diagram } Z
$$
\nis a collection of smooth functions $s_i : \underline{\Gamma} \longrightarrow P$ st.
\n•) $s(0) = \{s_1(0), ..., s_K(0)\}$ (resp. $s(4) = \{s_4(0), ..., s_K(0)\}$)\nconsists of K disinct points in B, and
\n•) each s_i has constant, non-negative speed, i.e. $\frac{ds_i}{dt} = \alpha_i > 0$ \n*used to choose a*
\ncauonical representative
\n1) Examples of K-strands on the punctured torus chord diagram.
\n2) Examples on the chord diagram
\n2) Examples on the chord diagram

<u>Multiplication</u> Δf : Let $\widetilde{A}(Z, \kappa)$ be the \mathbb{F}_2 -vector space freely generated Let M(L,K) be the It2-veclor space treely generated
by K-strands on Z. Given two K-strands s and t, we define sot as follows : • if $s(4) \neq t(0)$, $s \cdot t = 0$ (the straudo are not concatenable); • if the concatenation (after smoothing) contains a bigou, then we set $s \cdot t = 0$; · inall other cases , sot is the concatenation, properly rescaled.

winds the most with the straud that winds the most.

Def: for s a K-strand, we define Os as the of all K-strands obtained by resolving a crossing of ^s without producing ^a bigon, properly rescaled. Extend linearly to a map vcy to a map $\partial\colon \widetilde{\mathcal{A}}(\mathcal{Z},\mathsf{k})\longrightarrow \widetilde{\mathcal{A}}(\mathcal{Z},\mathsf{k})$ $\left(\begin{array}{ccc} 1 \end{array} \right)$ $\frac{d}{dt}$
 $\cdot \widetilde{A}(Z, k) \longrightarrow 0$ added an extra bpt $\overline{A}(Z, k) \rightarrow 0$ $A(z,k) \rightarrow A(z,k)$
 $A(z,k) \rightarrow A(z,k)$
 B
 B
 B
 B · · λ Cainnaine à Compte (Cainne)
diagram b/c (B) is add) |ິ9 - ded eu extra lot
co aremplity bigon
cannot be a chord
diagram b/c (BI is add)
completed by the state) ded ou extra lot
co exemplify bigon
cannot be a chord
diagram b/c 1B1 is add)
A Universition $\frac{Df}{d}$: For s a K-strand, we define ∂s as the of all K-strategies defined by resolving a crossing of s without producing a
properly rescalled.
Extend linearly to a map
 $\partial \cdot \widetilde{A}(Z, k) \longrightarrow \widetilde{A}(Z, k)$
4) S we define ∂s as the of all K-straud

a crossing of s without producing a bigon

b a map
 $\widetilde{A}(Z, k) \longrightarrow \widetilde{A}(Z, k)$
 \vdots
 $\left\{\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{$ ded an actra lot
co aremplity bigon
cannot be a chord
diagram b/c IBI is add)
production of the chord of the said of
production of the said of the sai

·

If t contains exactly 1 bigau, their the two resolutions at the vertices of the bigau caucel act, and the others shill al the vertices
contain a bigae. contain a bigau.
If t contains > 2 bigaus , e.g el ait, and
J
he algebre then any resolution \overline{C} is the algebre. $\overline{\mathcal{T}}_{hm}$: $\widetilde{\mathcal{A}}(Z,k)$ is a DG algebra, called the PRE-STRANDS ALGEBRA . Pf: Exercise. [Find unit and check Leibnitz rule.] RW : So far we have not used the matching on ^Z.

Notation: Replace all constant strands with dashed liner & also add dashed lines at the matched basepoints.

Lemma:
$$
A(2,k)
$$
 is closed under multiplication and differential.

\nProof: Multiplication

\n
$$
E(s) \cdot E(t) = \left(\sum_{c \in \Gamma} s^c\right) \cdot \left(\sum_{c' \in \Gamma} t^c\right)
$$
\n
$$
S_{opose} \exists c, c' such that
$$
\n
$$
S'(4) = t^c(0), and
$$
\n
$$
E(s) \cdot E(t) \neq 0, \exists c, c' such that s'(4) = t^c(0), and replace
$$
\n
$$
s \text{ and } t \text{ with } s' \text{ and } t' \text{ respectively (equiliseve do not change).
$$
\nThen,

\n
$$
E(s) \cdot E(t) = \left(\sum_{c \in \Gamma} s^c\right) \cdot \left(\sum_{c' \in \Gamma} t^c\right)
$$
\n
$$
= \sum_{c' \in \Gamma \cap \Gamma} s^c \cdot t^c
$$
\n
$$
= \sum_{c' \in \Gamma \cap \Gamma} s^c \cdot t^c
$$
\n
$$
= \sum_{c' \in \Gamma \cap \Gamma} (s \cdot t)^c = E(s \cdot t)
$$
\nAfterenhold: consider $\partial(E(s))$.

\nAfterenhold: consider $\partial(E(s))$.

\nFrom consider $\partial(E(s))$.

\nFrom consider the matrix of equations, $\partial(E(s))$.

\nFrom consider the matrix of equations, $\partial(E(s))$.

\nFor example, $\partial(E(s))$.

\nFor example,

Exercise:
$$
H_*(\mathcal{A}(2,2)) \cong F_2
$$
, so $\mathcal{A}(2,2)$ is quasi-sum.
to $\mathcal{A}(2,0)$.

\n- (4) IDENTENTS and UNIT
\n- Let
$$
2 = (P, B, \varphi)
$$
 be a chord diagram and let $x \in B_{(a \sim \varphi(b))}$ a subset of cardinality K .
\n- **Def**: $\mathbb{I}_x := E(\text{Const}_S)$, where $S \in B$ is any *left* of x .
\n- **Ex**: 4) $\{\mathbb{I}_x | x \in B_{/a}$, $|x| = k\}$ are orthogonal idempotents in $\mathcal{A}(Z, K)$.
\n- 2) *AlQ* idempotents of $\mathcal{A}(Z, K)$ form an abelian subring
\n- $\mathbb{I}(Z, k) \subseteq \mathcal{A}(Z, R)$.
\n- 3) In fact, $\{\mathbb{I}_x\}$ is a basis of the subring of idempotents $\mathbb{I}(2, k) \subseteq \mathcal{A}(2, k)$, see a a real \mathbb{F}_2 -vector space.
\n- **Def**: An idempotent $x \in \mathcal{A}$ is called MINIMAL if it cannot be demonstrated as the sum of non-zero orthogonal idempotents.
\n

\n- $$
\Xi
$$
: Suppose that
\n- If Ξ is a basis of orthogonal idempotents.
\n- Then $\{\Xi_i\}$ is a basis of orthogonal idempotents.
\n- Thus $\{\Xi_i\} = \{\text{minimal idempotents of } \mathcal{A}\}.$
\n- This shows that the set $\{\Xi_{\mathbf{x}}\}$ is uniquely determined by the **algebraic structure** of $\mathcal{A}(\mathcal{Z}, k)$.
\n- $\Delta f: \Lambda := \sum_{\mathbf{x}} \mathbb{I}_{\mathbf{x}}$ is the unit of $\mathcal{A}(\mathcal{Z}, k)$.
\n

$$
\underline{\text{Thm}}: (\mathcal{A}(2,k), 0, \cdot, 1) \text{ is a mid } DGA.
$$

 $\frac{RK}{s}$ As a vector space, we have a splitting
 $\mathcal{A}(2, k) = \bigoplus_{x,y} \mathbb{I}_x \cdot \mathcal{A}(2, k)$

$$
\mathcal{A}(\mathcal{Z},k) = \bigoplus_{x,y} \mathbb{I}_x \cdot \mathcal{A}(\mathcal{Z},k) \cdot \mathbb{I}_y
$$

^{x, y}
Moreover, a respector this splitting, and $\cdot : (\mathbb{I}_x \mathcal{A} \cdot \mathbb{I}_y) \times (\mathbb{I}_y \cdot \mathcal{A} \cdot \mathbb{I}_z) \longrightarrow \mathbb{I}_x \cdot \mathcal{A} \cdot \mathbb{I}_z$

Note that in particular $\partial(\mathbb{I}_{x}) = 0$.

Example: the true algebra
$$
A(2, 1)
$$
.

\nThere are two idempdents, L_0 and L_1 .

\n $L_0 \cdot A \cdot L_0 = \mathbb{F}_2 \langle L_0, \rho_{12} \rangle$

\n $L_1 \cdot A \cdot L_1 = \mathbb{F}_2 \langle L_1, \rho_{23} \rangle$

\n $L_2 \cdot A \cdot L_3 = \mathbb{F}_2 \langle \rho_1, \rho_{31}, \rho_{23} \rangle$

\n $L_3 \cdot A \cdot L_4 = \mathbb{F}_2 \langle \rho_1, \rho_{31}, \rho_{23} \rangle$

\n $L_4 \cdot A \cdot L_5 = \mathbb{F} \langle \rho_2 \rangle$

\nOf category representation

\nWe can form a category $C_{A(2,k)}$ by *ledting*:

\n \star) $\text{Mor}(\mathbb{I}_x, \mathbb{I}_y) = \mathbb{I}_x \cdot A \cdot \mathbb{I}_y$

\n \star) $\text{Mor}(\mathbb{I}_x, \mathbb{I}_x) = \mathbb{I}_x \cdot A \cdot \mathbb{I}_y$

\n \star) $L_1 \cdot L_2 = \begin{bmatrix} L_2 & L_3 & L_4 \\ L_4 & L_5 & L_6 \\ L_7 & L_7 & L_8 \end{bmatrix}$

\n \star) or $L_1 \cdot L_2$, $L_2 \cdot L_3$

\n \star) or $L_2 \cdot L_3$, $L_3 \cdot L_4$

\n \star) or $L_3 \cdot L_4$

\n \star) or $L_4 \cdot L_5$

\n \star) or $L_4 \cdot L_5$

\n \star) or <

Co not sality associativity & unit acioms).