
3. Strand Algebras



1 CHORD DIAGRAMS

· Z Consider the haff-Heegaard
diagram on the left.D The boundary is a circle w/

a basepoint z and pairs of
DGA matched circles.

We define a DGA associated to it with a twofold objective :

1) in constructing a generator ofF (7) , we want to

remember which curves are already occupied,no idempotents

(recall that each generator is a tuple of intersection points s
.

t.

there is exactly one on each a (and on each 3) cre]
2) remember how the partial domains meet the boundary,

and if you can glue them to partial domains on the other

side
.

·
-

strands



Def : A CHORD DIAGRAM Z consists of
· a cpt oriented 1-mfd P

· a finite set BCP
,
and

· a fixed-pt-free involution : B8 (the MATCHING) .

The contractible connected components of P are called LINEAR

BACKBONES
,
the other ones CIRCULAR BACKBONES

·

B1) > · .. . P-interval
"* -watching a

Standard "punctured torns"
chard diagram

: It's obtained fromJ (the boundary of the previous

half Heegaard diagram) by cutting along z.

A2)
·

An important ingredient
* in O-Sz's bordered HFK

RW : Chord diagram wo surface w/ partitioned boundary F(z)
Z (sutured surface)

· #Endles lansoI



2 PRE-STRAND ALGEBRA

Def : A -STRAND S = 251 , ..., Sw] on a chord diagram Z
is a collection of smoeth functions Si : I > P s

.

t.

· ) S(0) = (s , (0), ..., Sw(0)] (resp.
s(1) = 2S(0) , . . . , Sp(0)3)

consists of t distinct points in B
,
and

·) each si has constant , non-negative speed ,
i

.
e.d

↳
used to choose a

canonical representative

1) Examples of K-strands on the punctured torns chard diagram.
I I

N M N
· ⑧

··⑨ - · ·

·
· ·

Z a 2-strand a 3-strand

C) Examples on the chord diagram
-7

1 A

·



1

· · ·
·

S ·
· -D

- -

⑧ · ⑧ ·

a 4-strand NOT a k-strand

Multiplication
Def : Let J(Z ,

W) be the -vector space freely generated
by K-strands on Z. Given two 5-strands and t , we

define sot as follows :

· if s(1) # t(0)
,

s o t = 0 (the strands are not

concatenable);

· if the concatenation (after smoothing) contains a bigou,
then we set s . t = 0 ;

·in all other cases
,

sot is the concatenation
, properly rescaled.



1) * M

· &

·· - O
-

· · ·

M M N M N· ⑳

·

.. ·-·. · ·
· · ·

2)
1·

··
· -

· ·
if
you
add the

greenstranda
To get a nonzers

element
you

need to concatenate the strand that

winds the most with the straud that winds the most



Differential

Def : for s a D-strand
,

we define Is as the of all K-strands

obtained by resolving a crossing of s without producing a bigon,

properly rescaled.
Extend linearly to a map

2 : J(z ,
2) -> 5(z

,
2)

1) · M

· · added an extra bpt
--- - to exemplify bigen
·

·

& Comdbeachedis odd)·

↓a

· M 1 M 1 M
⑨ ⑨ ⑨ ⑨

⑳ · ⑳-- -. -· I ⑨ · ↓ ⑨ ↓ ··-·S--· ⑧ · ⑧

· · · ·

O

(contains bigau)



2)

·

·
+

·

O
·

& O· · ·

- N - N -

· ⑧ ⑧ ·
·

· ·

( resoIring all the other crossings in themiddle creates bigeu

Lemma : 2 = O

Pf : If we ignore the bigous ,
we get

25 = resolution of s at c
,
and a

(C, (2) distinct

crossings
which is obviously O (mod 2).
We just need to check that 2 t = 0 in 5(Z

,
H)

if t contains bigour.



Ift contains exactly 1 bigou ,
then the two resolutions

at the vertices of the bigou cancel out, and the others still

contain a biger.
Ift contains 22 bious ,

e.g.J,
then any

resolution

still contains bigous ,
so it is O in the algebre. 1

Thm : J(Z
,
2) is a DG algebra ,

called the PRE-STRANDS

ALGEBRA
.

Pf : Exercise
. (Find unit and check Leibnitz rule .]

RW : So far we have not used the matching on Z.



3 STRANDS ALGEBRA

Def : Let s = [S1 , ..., Sp} be a K-strand on Z
,
and let

I devote the set of indices for which Si is constant.

For I
,
define S = Ess , ..., sp] as the K-strand s

.

t:

· for if , Si = Si ;

· for it
,

s! is the constant strand at y(s:(0).
Then

,
the EQUALISER of s is

E(s) : =S
if s(0)ny(s(a)) = b = s(1)ny(s()

O otherwise

( =

Treas"
matching

-

·
= d c = 223



E = sum of 4 term

Notation : Replace all constant strands with dashed lines & also

add dashed lines at the matched basepoints.

·
-
S N -

-



1 n

· -----------
2)

"
·-

i ·

·a---...
·

Ref) = o

because s(1)ny(s(1)) + %
From the dashed notation it is clearer.

Def : The STRANDS ALGEBRA A(E, 2) is the -rector

subspace of J(Z , 2) spanned by the equalisers.



Lemma : S(Z
,
2) is closed under multiplication and differential.

Prof : Multiplication

E(s) . E(t) = (s) · (t") Suppose 7c ,
I' such that

S'(1) = t"(0) ,
and

choose

If E(s) . E(t) + 0
,

7 c
,
i' such that s(1) = t"(0)

,
and replace

sand t with sand t respectively (equalisers do not change).
Then

,

E(s) . ECt) =(E)
change the endpts inI
concatenable iff

you

the same way

- contains a bigon if sit dI
-(t) = E(st

Differential : consider ((E(s)) .

* If you resolve crossings away from constant strands you get equalisers.

* If you resove a crossing involving a constant strand and a (necessarily)
non-constant one

, remove the matched constant lines; note the new

lines created cannot be constant.



If bigous appear in one resolution
, they are there forall the

summands of the corresponding equaliser, because bigous cannot involve

constant strands. I

Rh : A(Z , 2) is not a subalgebra of 5(Z, 2) because

15(2,2) & S(Z,
2). However

,
S (E , K) has its

own unit.

The torne algebra z=
A(Z

, 0) = E
~

as a vector space
E

A(z
, 1)= Sto , Un , filei 93 ·Si 923 : fi23]

& ↳-
· .

------------------------ -Lo

33·



·
As ou algebra ,

A(Z ,
1) is isomorphic to the PATH ALGEBRA

over the directed graph
33

·
-

Is

module the relationsD =13% = 0.

T andi are the constant paths at the corresponding vertices.]

A(Z
,
2) =Eidepotente,t

- ,
T

+ , +x)

*-------- 6
+

-
52 [2 12

-·-



Exercise : H*(X(Z, 2)) = I ,
so S(Z

,
2) is quasi-isom.

to S(Z
,

0).

4. IDEMPOTENTS and UNIT

Let Z = (P,

B
, y) be a chord diagram and let x = /(b -y(b)

a subset of cardinality W.

Def : Iv : = E(Cousts) ,
where SCB is any lift of X

.

Ex : 1) [[x(x = B ,
(x) = 23 are erthogonal idempotents

in 1 (E ,
2).

2) All idempotents of A(Z ,
2) form an abelian subring

I(Z ,2) A(z,
2).

3) In fact
, ?Ix} is a basis of the subring of

idempotents [(Z, 2) = A(Z
,
2)

,
seen as an

E-vector space.

Def : An idempotent ce A is called MINIMAL if it cannot be

decomposed as the sum of non-zero orthogonal idempotents.



Ex : Suppose that :

·) the idempotents of A form an abelian subring I ; and
·) [ii] is a basis of orthogonal idempotents.
Then ? Ii3 = Eminimal idempetents of A].

This shows that the set ?Ix} is uniquely determined by the

algebraic structure of A (2,
2).

Def : 1 := Ex is the unit of A(E,
2).

Thm : (A(Z, 2) , 2 ,

·

,
1) is a unita DGA.

RW : As a vector
space,

we have a splitting

A(z
.
2)= [x : A(2

, 2) · Ey
X
,y

Moreover
,
I respects this splitting ,

and

·: (Ex ·A . Iy) x (Ig ·S · Iz) < IxA · Iz

Note that in particular 2([x) = 0.



Example : the torus algebra A (2 ,
1)

There are two idempetents , no and i

↳·A : vo= Lo . %12 4 . A= , 923

↳ A.= [plz . fizz ↳A - 6=
2

DG category representation
We can form a category 2A(2

, 2) by letting :

* objects = minimal idempetents diff. E-module
-

* Mer (Ex , Fy) = Ex : A . Ig /Mode isamonada
*) 1

Mor(Ix Ix)
= Ex : 1s . Ix

* o : Mor(Iy , Iz) & Mor(Ix
, Iy) -> Mor (Ix , Iz)

CA(2
,2)

is a DG category (def : same as above + associativity
& unity acious).

RW : There are alsoSo-categories, but they are not categories
Co not sality associativity & unit acioms).


