4. Ano-modules

(1) A_{∞} -MODULES Let A be an A_{∞} -algebra over k, with (counital, coassociative) coaugneuted coderivation M_A satisfying $M_A \circ M_A \equiv O$. Let $\mu = \pi \circ M_A$ and μ_i denote the à-input maps. Prop (universal property for modules) module input π $\forall k$ -linear f& F = ∑ $Y \boxtimes TA \leftarrow \cdots \land X \boxtimes TA$ 3! k-linear F s.t. F "commutes" with the comultiplication $(id \boxtimes \Delta) \circ F = (F \boxtimes id) \circ (id \boxtimes \Delta)$ <u>PF: Uniqueness</u> •) Commutativity forces the projection onto $Y \boxtimes R \cong Y$. •) Let $F^{i \to j}$ denote the restriction of F to $X \boxtimes A^{\otimes i}$ composed with the projection onto $Y \boxtimes A^{\otimes j}$. We will show that the collection of maps $F^{i \rightarrow 0}$ determines all the $F^{i \rightarrow j}$.

Consider the relation
$$(id_X \boxtimes \Delta) \circ F = (F \boxtimes id_{TA}) \circ (id_X \boxtimes \Delta)$$

and restrict it to $X \boxtimes A^{\otimes i}$. The right hand side is
 $(F \boxtimes id_{TA}) \sum_{s=1}^{i} x \boxtimes (a_1 \circ \dots \circ a_s) \boxtimes (a_{s+1} \otimes \dots \circ a_i) =$
 $= \sum_{s=1}^{i} F (x \boxtimes (a_1 \circ \dots \circ a_s)) \boxtimes (a_{s+1} \otimes \dots \otimes a_s)$
Consider the projection of this onto $Y \boxtimes K \boxtimes A^{\otimes j}$,
which is
 $F^{i \cdot j \to 0} (x \boxtimes (a_1 \circ \dots \circ a_{i-j})) \boxtimes (a_{i \cdot j+1} \otimes \dots \otimes a_i)$
Now let's turn to the left hand side, and let's do the
same restriction to $X \boxtimes A^{\otimes i}$ and corestriction to $Y \boxtimes K \boxtimes A^{\otimes j}$:
 $P^r_{0,j} \circ (id \otimes A) \circ F^{i \to j} (x \boxtimes (a_1 \otimes \dots \otimes a_i))$
this map is injective on $Y \boxtimes A^{\otimes j}$; in fact if is the canonical isom.
 $Y \boxtimes A^{\otimes j} \longrightarrow Y \boxtimes K \boxtimes A^{\otimes j}$
Thus, $F^{i \to j}$ is completely determined.
Existence: try the given formula and show that it works. \Box

Def: A right
$$A_{\infty}$$
-MODULE are A is a k-module X with
a k-linear map $X \boxtimes TA \xrightarrow{M_X} X \boxtimes TA$ satisfying
1) $(id_X \boxtimes A) \circ M_X = (M_X \boxtimes id_{TA}) \circ (id_X \boxtimes A)$
2) $\widehat{M}_X := M_X + id_X \boxtimes M_A$ is a differential on $X \boxtimes TA$,
i.e. $\widetilde{M}_X \circ \widetilde{M}_X = 0$.

Unpacking the definition 1. By the univ. property, M_X is determined by maps $m_i: X \otimes A^{\otimes i} \longrightarrow X$ for $i \ge 0$. [Notation is not universally agreed; many authors would call this map m_{i+1} , because there are i+1 inputs.] 2. Both $M_{\times} \circ M_{\times}$ and O satisfy condition (1). Thus, they agree iff their projections on $X \boxtimes k \cong X$ agree. In the usual tree notation, this is \sum_{m}^{m} + \sum_{m}^{m}

3. The resulting
$$(1+n)$$
 - input relation (Rn) is

$$\sum_{i=0}^{n} m_{n-i} \left(m_i \left(x \otimes a_1 \otimes \cdots \otimes a_i \right) \otimes a_{i+1} \otimes \cdots \otimes a_n \right) + \sum_{i=0}^{n} \sum_{s=0}^{n-i} m_{n-i+1} \left(x \otimes a_1 \otimes \cdots \otimes a_s \otimes \mu_i \left(a_{s+1} \otimes \cdots \otimes a_{s+i} \right) \otimes a_{s+i+1} \otimes \cdots \otimes a_n \right) = O$$

Let's check that this is an App-module. The only μ_i we care about is μ_2 , so we need to check sequences of inputs that give an allowable string after we do a μ_z or a Δ : •) (Lo, Lo) $m_1 + m_2 = O$ •) $(\rho_3, \rho_{23}, \dots, \rho_{23}, L_1, \rho_{23}, \dots, \rho_2)$ + = 0 •) $(l_0, \rho_3, \dots, \rho_2)$ and $(\rho_3, \dots, \rho_2, l_0)$ Same as before, but use $m_1(\times, L_o) = \times$. •) $\left(\begin{array}{c} \rho \\ \beta \\ 3 \end{array} \right) \left(\begin{array}{c} \rho \\ 23 \end{array} \right) \left[\begin{array}{c} \rho \\ 23 \end{array} \right] \left[\begin{array}{c} \rho \end{array} \right] \left[\begin{array}{c} \rho \\ 23 \end{array} \right] \left[\begin{array}{c} \rho \end{array} \\ \left[\begin{array}{c} \rho \end{array} \right] \left[\begin{array}{c} \rho \end{array} \right] \left[\begin{array}{c} \rho \end{array} \\ \left[\begin{array}{c} \rho \end{array} \right] \left[\begin{array}{c} \rho \end{array} \\ \left[\begin{array}{c} \rho \end{array} \right] \left[\begin{array}{c} \rho \end{array} \end{array} \right] \left[\begin{array}{c} \rho \end{array} \\ \left[\begin{array}{c} \rho \end{array} \\ \left[\begin{array}{c} \rho \end{array} \end{array} \right] \left[\begin{array}{c} \rho \end{array} \\ \\[\end{array} \left[\begin{array}{c} \rho \end{array} \end{array} \\ \left[\begin{array}{c} \rho \end{array} \end{array} \\ \\[\end{array} \left[\begin{array}{c} \rho \end{array} \\ \\[\end{array} \left[\begin{array}{c} \rho \end{array} \end{array} \\ \\[\end{array} \\ \\[\end{array} \left[\end{array} \\ \\[\end{array} \left[\begin{array}{c} \rho \end{array} \end{array} \\ \\[\end{array} \\ \\[\end{array} \left[\end{array} \\ \\[\end{array} \left[\begin{array}{c} \rho \end{array} \\ \\ \\[\end{array} \\ \\[\end{array} \\ \\[\end{array} \\ \\[\end{array} \left[\end{array} \\ \\[\end{array} \\ \\[\end{array} \\ \\$

2) Same A and k as before, but now
$$X = F_2 \langle a, b, c, w, x, y, z \rangle$$

~ We get an idempotent decomposition
$$X = X \iota_0 \oplus X \iota_1$$
.
The other non-vanishing maps are given by the graph:
•) for each directed path $\xi_{std} \rightarrow \xi_{end}$ you get a sequence of number;
•) regroup them in maximal subsequences s_i of 123;
•) get a map $m_j(\xi_{start}, s_1, s_2, ..., s_j) = \xi_{end}$.

$$\frac{Counterclockwise}{m_1(a, \rho_1) = w} \qquad m_1(a, \rho_3) = x$$

$$m_1(a, \rho_{12}) = b$$

$$m_1(a, \rho_{123}) = 2$$

$$\begin{split} m_{4}(w,\rho_{2}) &= b \\ m_{4}(w,\rho_{2s}) &= z \\ m_{4}(b,\rho_{3}) &= z \\ m_{3}(c,\rho_{3},\rho_{2},\rho) &= x \\ m_{3}(c,\rho_{3},\rho_{2},\rho) &= x \\ m_{3}(c,\rho_{3},\rho_{2},\rho) &= x \\ m_{3}(c,\rho_{3},\rho_{2},\rho) &= x \\ m_{3}(c,\rho_{12},\rho) &= z \\ \end{split}$$

$$\begin{split} E_{x:} \text{ This is an } \mathcal{A}_{\infty} - madule \text{ over } \mathcal{A}_{T^{2}}. \\ \hline \underline{\mathsf{Tdea}} &: \text{ if no idempotents are invalued, then non-trivial terms } \\ come from boken paths on the lap-type graph. Each such term always caucels with a term for , because there is always a non-trivial μ_{2} at the breaking point, e.g. $v_{0}^{-2} \to v_{0}^{-3} \to v_{2}^{-3}. \\ \hline \underline{\mathsf{Def}} &: An \ \mathcal{A}_{\infty} - module \text{ is } \underline{\mathsf{STRICTLY UNITAL}} \text{ if } \\ m_{4}(x, A_{b}) &= x \quad \forall x \in X \end{split}$$$

 $m_n(x, \cdot, \dots, \cdot, 1_k, \cdot, \dots, \cdot) = 0 \quad \forall x \in X, n > 1$

Both examples are strictly unital
$$A_{\infty}$$
-modules.
Def: An A_{∞} -algebra is OPERATIONALLY BOUNDED if $\mu_{i} \equiv 0$
for *i* sufficiently large.
All strands algebras are gerationally bounded (they are DGAs).
Def: An A_{∞} -module is BOUNDED if $m_{i} \equiv 0 \quad \forall i \gg 1$.
Example 2 is bounded, bet example 1 is NOT.
(3) MORPHISMS and HOMOTOPIES
Def: A HOMOMORPHISM of A_{∞} -MODULES over A is
a map $F: X \boxtimes TA \longrightarrow Y \boxtimes TA$ st.
1) ($id_{Y}\boxtimes A$) $\circ F = (F \boxtimes id_{TA}) \circ (id_{X}\boxtimes A)$;
2) $\widetilde{M}_{Y} \circ F = F \circ \widetilde{M}_{X}$ (chain map)
Uppacking the definition
1. By univ. property, F is determined by a collection of maps
 $f_{i}: X \boxtimes A^{\otimes i} \longrightarrow Y$ for $i \ge 0$

2.
$$\widetilde{M}_{Y} \circ F - F \circ \widetilde{M}_{X}$$
 and O satisfy condition (D), so by the universal property they are equal iff the projections on Y agree (i.e., 1 module output + O algebra outputs):
 $\pi \circ \widetilde{M}_{Y} \circ F = \sum_{m_{1}} f (m \circ \mu_{A} \text{ because it produces algebra outputs})$

$$\pi \circ \widetilde{M}_{Y} \circ F = \sum_{m_{1}} f (m \circ \mu_{A} \text{ because it produces algebra outputs})$$

$$\pi \circ \widetilde{M}_{X} = \sum_{m_{1}} f (m \circ \mu_{A} \text{ because it produces algebra outputs})$$
3. Thus, the \mathcal{A}_{∞} relation (Rn) with n algebra inputs is
$$\sum_{i=1}^{n} M_{n-i}^{i} (f_{i}(x \circ a_{i} \otimes \cdots \otimes a_{i}) \otimes a_{i+1} \otimes \cdots \otimes a_{n}) + \sum_{i=1}^{n} f_{n-i} (m_{i}^{i}(x \circ a_{i} \otimes \cdots \otimes a_{i}) \otimes a_{i+1} \otimes \cdots \otimes a_{n}) + \sum_{i=1}^{n} f_{n-i+1}(x \otimes a_{i} \otimes \cdots \otimes a_{i} \otimes \mu_{i}(a_{s+1} \otimes \cdots \otimes a_{s+i}) \otimes a_{s+i} \otimes \cdots \otimes a_{n}) = O$$

First relations (RO) $m_{0}^{X} = f_{0}$, i.e. f_{0} is a chain map $X \longrightarrow Y$ $(\mathbb{R}4) \quad \begin{array}{c} f_{\circ} \\ m_{1}^{\vee} \\ m_{1}^{\vee} \end{array} + \begin{array}{c} m_{1}^{\vee} \\ f_{\circ} \\ \end{array} = \begin{array}{c} f_{1} \\ m_{\circ} \\ \end{array} + \begin{array}{c} m_{\circ} \\ f_{1} \\ \end{array} + \begin{array}{c} f_{\circ} \\ f_{1} \\ \end{array} + \begin{array}{c} f_{0} \\ f_{0} \\ \end{array} + \begin{array}{c} f_{0} \\ \end{array} + \begin{array}{c} f_{0} \\ f_{0} \end{array} + \begin{array}{c} f_{0} \\ f_{0} \\ \end{array} + \begin{array}{c} f_{0} \\ f_{0} \\ \end{array} + \begin{array}{c} f_{0} \\ f_{0} \end{array} + \begin{array}{c} f_{0} \\ \end{array} + \begin{array}{c} f_{0} \\ \end{array} + \begin{array}{c} f_{0} \\ f_{0} \end{array} + \begin{array}{c} f_{0} \\ f_{0} \end{array} + \begin{array}{c} f_{0} \\ f_{0} \end{array} + \begin{array}{c} f_{0} \\ \end{array} + \begin{array}{c} f_{0} \end{array} + \begin{array}{c} f_{0} \\ \end{array} + \begin{array}{c} f_{0} \end{array} + \begin{array}{c} f_{0} \end{array} + \begin{array}{c} f_{0} \\ \end{array} + \begin{array}{c} f_{0} \end{array} + \begin{array}{c}$ i.e., fo commutes with the action m_1 up to a homotopy f_1 . <u>Def</u>: The <u>IDENTITY MORPHISM</u> is Id: X & TA 5. Equivalently, this is given by maps Idi as follows: •) $\square_{o}: X \longrightarrow X , x \mapsto x$ •) Idi: X ⊠ A^{⊗i} → X is the zero map ∀i>O RK: The composition GOF of two homom. of An-modules has associated maps $\left(\begin{array}{c} \mathbf{a} \circ \mathbf{f} \end{array} \right)_n \left(\times \mathbb{Z} \left(\mathbf{a}_1 \otimes \cdots \otimes \mathbf{a}_n \right) \right) =$

 $\sum_{i=0}^{n} \mathcal{O}_{n-i} \left(f_i \left(\times \boxtimes \left(a_1 \otimes \cdots \otimes a_i \right) \right) \otimes a_{i+1} \otimes \cdots \otimes a_n \right) \right)$

Def: Suppose A is a strictly unital
$$\mathcal{A}_{\infty}$$
-algebra.
F: X \vee TA \longrightarrow Y \vee TA is strictly unital if
 $f_i(x \otimes (\cdot \otimes \cdots \otimes \cdot \otimes \cdot \wedge \otimes \cdot \cdot \otimes \cdot) = 0.$
The identity morphism is strictly unital.
Def: F, G: X \vee TA \longrightarrow Y \vee TA homom. of \mathcal{A}_{∞} -modules
are $\underline{\mathcal{A}_{\infty}}$ -homotopic if $\exists H: X \otimes TA \longrightarrow$ Y \vee TA s.t.
1) (id $\otimes \Delta$) $\circ H = (H \otimes id) \circ (id \otimes \Delta)$
 $arphi$, F-G = $\widetilde{M}_Y \circ H - H \circ \widetilde{M}_X$

Unpacking the definition
1. By unive property, H is determined by a collection of maps

$$h_i: X \boxtimes A^{\otimes i} \longrightarrow Y$$
 for $i \ge 0$
2. F-G and $\widetilde{M}_Y \circ H + H \circ \widetilde{M}_X$ both satisfy condition (1).
Thus, they agree if and only if the projections onto Y agree.
 $f = \sum_{m_i} h H + \sum_{h=1}^{m_i} h H + \sum_{h=1}^{m_i} H + \sum_{h=1$

3. We obtain
$$A_{\infty}$$
 relations by fixing the number of inputs.
(Rn) $\int_{n} (\times \otimes (a_{1} \otimes \cdots \otimes a_{n})) - g_{n} (\times \otimes (a_{1} \otimes \cdots \otimes a_{n})) =$
 $\sum_{i=0}^{n} M_{n-i}^{Y} (h_{i} (\times \otimes (a_{1} \otimes \cdots \otimes a_{i})) \otimes a_{i+1} \otimes \cdots \otimes a_{n}) +$
 $\sum_{i=0}^{n} h_{n-i} (m_{i}^{X} (\times \otimes (a_{1} \otimes \cdots \otimes a_{i})) \otimes a_{i+1} \otimes \cdots \otimes a_{n}) +$
 $\sum_{i=1}^{n} \sum_{s=0}^{n-i} h_{n-i+1} (\times \otimes a_{1} \otimes \cdots \otimes a_{s} \otimes \mu_{i} (a_{s+1} \otimes \cdots \otimes a_{s+i}) \otimes a_{s+i+4} \otimes \cdots \otimes a_{n}) = 0$

