$4. A_{oo}$ -modules

 (1) A_{∞} -MODULES Let A be an A_∞ -algebra over k, with (counital, coassociative) coaugmented coderivation M_A satisfying $M_A \circ M_A \equiv O$. Let $\mu = \pi \circ M_A$ and μ_i denote the à-input maps. Frap (universal property for modules) module algebra
input
input $Y \n
\nV \n
\n k linear of$ $R = \frac{1}{2} \sum \frac{1}{2}$ $\exists ! k$ -linear F s.t. F "commuter" with
the comultiplication $(id \boxtimes \triangle) \circ F = (F \boxtimes id) \circ (id \boxtimes \triangle)$ Pf: Uniqueness ·) Commutativity forces the projection onto $Y \boxtimes R \cong Y$. .) Let $F^{i\rightarrow j}$ denote the restriction of F to $X \boxtimes A^{\otimes i}$ composed with the projection onto $Y \boxtimes A^{\otimes g}$. We will show that the collection of maps $F \xrightarrow{i \to \infty}$ determines all the $F^{i\rightarrow j}$.

Consider the relation
$$
(id_x \boxtimes \triangle) \cdot F = (F \otimes id_{TA}) \cdot (id_x \boxtimes \triangle)
$$

\nand required it to $\times \boxtimes A^{\otimes i}$. The right hand side is

\n
$$
(F \boxtimes id_{TA}) \sum_{s=1}^{i} x \otimes (a, e \cdot \cdot \otimes a_s) \otimes (a_{s+1} \otimes \cdot \cdot \otimes a_i) =
$$
\n
$$
= \sum_{s=1}^{i} F (x \boxtimes (a, e \cdot \cdot \otimes a_s)) \boxtimes (a_{s+1} \otimes \cdot \cdot \otimes a_s)
$$
\nConsider the projection of this onto $\times \boxtimes R \boxtimes A^{\otimes j}$,

\nwhich is

\n
$$
F^{i \cdot j \cdot j \cdot j} (x \boxtimes (a, e \cdot \cdot \otimes a_{i \cdot j})) \boxtimes (a_{i \cdot j \cdot 1} \otimes \cdot \cdot \otimes a_i)
$$
\nNow let's turn to the left hand side, and let's do the

\nsame relation to $\times \boxtimes A^{\otimes i}$ and a restriction to $\times \boxtimes R \boxtimes A^{\otimes j}$:

\n
$$
P_{0,j}^{c} \cdot (id \boxtimes \triangle) \cdot F^{i \rightarrow j} (x \boxtimes (a, e \cdot \cdot \cdot \otimes a_i))
$$
\nThis map is injective on $\times \boxtimes A^{\otimes j}$ in fact it is the annual isom.

\n
$$
T \boxtimes A^{\otimes j} \longrightarrow Y \boxtimes R \boxtimes A^{\otimes j}
$$
\nThus, $F^{i \rightarrow j}$ is completely determined.

\nExibence: t_{ij} the given formula and show that it works.

\n \square

$$
\underline{\underline{\text{Def}}}: A \underline{\text{ right } A_{\infty} - \text{MODULE over } A \text{ is a } k-\text{module } X \text{ with } \underline{\text{a } k-\text{linear map } X \boxtimes TA \xrightarrow{M_X} X \boxtimes TA \text{ satisfying} }
$$
\n1) $(id_{x} \boxtimes \Delta) \cdot M_{x} = (M_{x} \boxtimes id_{TA}) \cdot (id_{x} \boxtimes \Delta)$ \n2) $M_{x} := M_{x} + id_{x} \boxtimes M_{A} \text{ is a differential on } X \boxtimes TA$ \n $i.e. \widetilde{M}_{x} \cdot \widetilde{M}_{x} = 0.$

Unpacking the definition hpocKing the definition
1. By the univ property, M_\varkappa is determined by maps $m_i: X \otimes A^{\otimes i} \longrightarrow X$ for $i \ge 0$. [Notation is not universally agreed ; many authors would call this map m_{i+1} , because there are $i+1$ inputs. 2. this map m_{i+1} , because there are $i+1$ inputs
Both $\widetilde{M}_x \circ \widetilde{M}_x$ and \circ satisfy condition $\circled{1}$. Thus , $\widetilde{M}_{x} \circ \widetilde{M}_{x}$ and \circ satisfy condition $\circled{1}$.
they agree iff their projections on \times $\mathbb{R} \cong \times$ agree. In the usual tree notation, this is \sum_{m} and \sum_{m} and \sum_{m}

3. The resulting
$$
(1+n)
$$
-input relation (Rn) is
\n
$$
\sum_{i=0}^{n} m_{n-i} (m_i (x \otimes a_1 \otimes \cdots \otimes a_i) \otimes a_{i+1} \otimes \cdots \otimes a_n) +
$$
\n
$$
\sum_{i=1}^{n} \sum_{s=0}^{n-i} m_{n-i+1} (x \otimes a_1 \otimes \cdots \otimes a_s \otimes \mu_i (a_{s+1} \otimes \cdots \otimes a_{s+i}) \otimes a_{s+i}) = 0
$$

(R2) m,
$$
m_1 + \frac{1}{m_1} + \frac{1}{m_2} + \frac{1}{m_3} + \frac{1}{m_2} + \frac{1}{m_3} + \frac{1}{m_2} + \frac{1}{m_3}
$$

\nThe axion $m_1: X \otimes A \rightarrow X$ is not associative, but it is
\nassociative up to a homotopy \Rightarrow the induced map in homology is
\nassociative.
\n $m_1(m_1(x, a), b) - m_1(x, \mu_2(a, b)) = d(m_2)$
\ndifferential in Hom(X \otimes A⁰², X)
\n $\bigodot \underline{EXAMPLES}$
\n1) A:= torus algebra $A_{T^2} = F_2(u_0, l_1, p_1, p_2, p_3, p_2, p_3, p_3)$
\nwhich can be seen as a quotient of a path algebra.
\n
$$
R := F_2(v_0, l_4) \text{ subring of idempotents}
$$

\n
$$
X := F_2(x_0, l_4) \text{ subring of idempotents}
$$

\n
$$
X := F_2(x_0, l_4) \text{ subring of idempotents}
$$

\n
$$
x \cdot l_4 = 0
$$

\nThe nonzero module maps are:
\n
$$
m_2(x, l_0) = x
$$

\n $m_1 + 2(x, p_3, p_3, \dots, p_{33}, p_2) = x$ $x_1 + 2(x_0, p_3, p_4)$

Let's check that this is an A_{∞} -module. The only μ_i we care about is μ_z , so we need to check sequences of inputs that give an allowable string after we do a μ_z or a Δ : $\bullet)$ $(\iota_{\circ}$, $\iota_{\circ})$ m_1 m_2 m_3 m_4 m_5 m_6 m_7 m_8 m_9 m_9 $\bullet)$ (ρ_3 , ρ_{23} , ..., ρ_{23} , l_1 , ρ_{23} , ..., ρ_2) $1/2$ + $1/2$ = 0 $\bullet)$ $(\iota_{\circ}, \rho_{\circ}, \ldots, \rho_{z})$ and $(\rho_{\circ}, \ldots, \rho_{z}, \iota_{\circ})$ Same as before, but use $m_1(x, t_0) = x$. $\bullet)$ $\left(\rho_3, \rho_2, ..., \rho_{23}/\rho_1, \rho_3, \rho_2, ..., \rho_{23}/\rho_2\right)$ $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ + $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ = 0

2) Sawe A and k as before, but now

$$
X = \mathbb{F}_{2} \langle a,b,c,w,x,y,z \rangle
$$

$$
\begin{array}{ccc}\n & 1 & a \\
 & 2 & 3 \\
 & 2 & 321 \\
 & 3 & 321 \\
 & 4 & 321\n\end{array}
$$
\n
$$
m_1(\xi, L_0) =\n\begin{cases}\n\xi & \text{if } \xi = a, b, c \\
0 & \text{if } \xi = w, x, y, \xi \\
0 & \text{if } \xi = a, b, c\n\end{cases}
$$

\n- we get au dependent decomposition
$$
X = X \iota_{\alpha} \oplus X \iota_{\alpha}
$$
.
\n- The other non-vanishing maps are given by the graph:
\n- for each directed path $\xi_{\text{std}} \to \xi_{\text{end}}$ you get a sequence of number;
\n- regroup the μ in maximal subsequences s_i of 123;
\n- get a map $m_j(\xi_{\text{start}}, s_1, s_2, \ldots, s_j) = \xi_{\text{end}}$.
\n

Counterclockwise	Clockwise
$m_1(a, \rho_1) = w$	$m_1(a, \rho_3) = x$
$m_1(a, \rho_{12}) = b$	$m_1(a, \rho_{13}) = x$

$$
m_{1}(w, \rho_{2}) = b
$$
\n
$$
m_{1}(w, \rho_{2}) = a
$$
\n
$$
m_{1}(b, \rho_{3}) = a
$$
\n
$$
m_{2}(y, \rho_{2}, \rho_{1}) = a
$$
\n
$$
m_{3}(c, \rho_{3}, \rho_{2}, \rho_{1}) = x
$$
\n
$$
m_{2}(y, \rho_{2}, \rho_{1}) = a
$$
\n
$$
m_{3}(c, \rho_{3}, \rho_{2}, \rho_{1}) = x
$$
\n
$$
m_{2}(c, \rho_{1}) = y
$$
\n
$$
m_{2}(c, \rho_{1}) = a
$$
\n
$$
m_{3}(c, \rho_{2}) = a
$$
\n
$$
m_{2}(c, \rho_{1}) = a
$$
\n
$$
m_{3}(c, \rho_{1}) = a
$$
\n
$$
m_{2}(c, \rho_{2}) = a
$$
\n
$$
m_{3}(c, \rho_{1}) = a
$$
\n
$$
m_{2}(c, \rho_{2}) = a
$$
\n
$$
m_{3}(c, \rho_{1}) = a
$$
\n
$$
m_{4}(c, \rho_{1}) = a
$$
\n
$$
m_{5}(c, \rho_{2}) = a
$$
\n
$$
m_{5}(c, \rho_{2}) = a
$$
\n
$$
m_{6}(c, \rho_{1}) = a
$$
\n
$$
m_{7}(c, \rho_{1}) = x
$$
\n
$$
m_{8}(c, \rho_{1}) = x
$$
\n
$$
m_{9}(c, \rho_{1}) = x
$$
\n
$$
m_{1}(c, \rho_{1}) = x
$$
\n
$$
m_{1}(c, \rho_{1}) = x
$$
\n
$$
m_{2}(c, \rho_{1}) = a
$$
\n
$$
m_{1}(c, \rho_{1}) = a
$$
\n
$$
m_{2}(c, \rho_{1}) = a
$$
\n
$$
m_{3}(c, \rho_{2}) = a
$$
\n
$$
m_{4}(c, \rho_{1}) = a
$$
\n
$$
m_{5}(c, \rho_{1}) = a
$$
\n
$$
m_{6}(c, \rho_{1}) = a
$$
\

$$
m_n(x, \cdot, ..., \cdot, 1_k, ..., \cdot) = 0
$$
 $\forall x \in X, n>1$

Both examples are strictly unidal
$$
A_{\infty}
$$
-module.
\nDef: A_{n} A_{∞} -algebra is OPERATIONALI BOUNDED if $\mu_i = O$
\nfor *i* sufficiently large.
\nAll should also be
\n ΔI and A_{∞} -module is BOUNDED if $m_i = O$ $V_i \gg 1$.
\nExample 2 is bounded, at example 1 is NOT.
\n(3) MORPHISMS and HONOTOPIES
\n Δf : A HOMOMORPHISM of A_{∞} -MODULES over A is
\na map $F: X \boxtimes TA \longrightarrow Y \boxtimes TA \text{ s.t.}$
\n1) $(id_{\gamma} \boxtimes \Delta) \circ F = (F \boxtimes id_{TA}) \circ (id_{X} \boxtimes \Delta)$
\n2) $N_{\gamma} \circ F = F \circ N_{X}$ (chain map)
\nUnpacking the definition
\n1. By *univ*, property, F is determined by a selection of maps
\n $J_{x} : X \boxtimes A^{\otimes i} \longrightarrow Y$ for $i \geq 0$

2.
$$
\widetilde{M}_{Y} \circ F - F \circ \widetilde{M}_{X}
$$
 and O saking condition (0), so by the
\nuniversal property they are equal if the projections on Y
\nagree (i.e., 1 module output + O algebra outputs):
\n $\pi \circ \widetilde{M}_{Y} \circ F = \sum_{m_{1}} f \circ \frac{M}{N_{X}} + \sum_{m_{1}} f \circ \frac{M}{N_{X}}$
\n3. Thus, the A_x relation (Rn) with n algebra inputs is
\n
$$
\sum_{i=1}^{n} m_{n-i}^{Y} \circ \left(\int_{i} (x \cdot a_{i} \otimes \cdots \otimes a_{i}) \otimes a_{i+1} \otimes \cdots \otimes a_{n}) + \sum_{i=1}^{n} \int_{n-i} (m_{i}^{X}(x \cdot a_{i} \otimes \cdots \otimes a_{i}) \otimes a_{i+1} \otimes \cdots \otimes a_{n}) + \sum_{i=1}^{n} \int_{n-i} (m_{i}^{X}(x \cdot a_{i} \otimes \cdots \otimes a_{i}) \otimes a_{i+1} \otimes \cdots \otimes a_{n}) + \sum_{i=1}^{n} \int_{S=0}^{n-i} f_{n-i+1}(x \cdot a_{i} \otimes \cdots \otimes a_{i} \otimes \mu_{i} (a_{s+1} \otimes \cdots \otimes a_{s+i}) \otimes a_{s+i} \otimes \cdots \otimes a_{n}) = O
$$

First relations (RO) $\begin{cases} 1 & \text{m\%} \\ 1 & \text{m\%} \end{cases}$, i.e. \int_{0}^{1} is a chain map $X \longrightarrow Y$ $(R4)$ f_{\circ} $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ $+$ $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ $+$ $\begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{pmatrix}$ i.e., fo commutes with the action m_1 up to a homotopy f1. Def: The IDENTITY MORPHISM is Id: X & TA 5. Equivalently, this is given by maps Id, as follows: •) $\mathbb{L}_{\circ} : \underset{x \mapsto x}{\times}$, $\bullet)$ $\Box d_i : X \boxtimes A^{\otimes i} \longrightarrow X$ is the zero map $\forall i > 0$ Rk : The composition $G \circ F$ of two homom. of A_{∞} -modules has associated maps $(g \circ \int_{n}^{f} (x \boxtimes (a_{1} \otimes \cdots \otimes a_{n})) =$

$$
\sum_{i=0}^{n} g_{n-i} \left(\int_i (x \boxtimes (a_1 \otimes \cdots \otimes a_i)) \otimes a_{i+1} \otimes \cdots \otimes a_n \right)
$$

Def:	Suppose A is a strictly unital A _∞ -algebra.
$F: X \boxtimes TA \longrightarrow Y \boxtimes TA$ is <u>strictly unital</u> if	
$J_i(x \boxtimes (\cdot \text{0} \cdot \text{0}) = 0$	
$\text{The identity morphism is strictly unital.$	
$\text{Def}: F, G: X \boxtimes TA \longrightarrow Y \boxtimes TA$ homom. of A _∞ -modules	
$\text{one } A_{\infty}$ -homotopic if $\exists H: X \boxtimes TA \longrightarrow Y \boxtimes TA$ s.t.	
1) $(id \boxtimes \Delta) \circ H = (H \boxtimes id) \circ (id \boxtimes \Delta)$	
2) $F - G = \overline{M}_Y \circ H - H \circ \overline{M}_X$	

Unpacking the definition.

\n1. By only, property, H is determined by a collection of maps

\n
$$
h_i: X \boxtimes A^{\otimes i} \longrightarrow Y \qquad \text{for } i \geq 0
$$
\n2. F - G and $\widetilde{M}_Y \circ H + H \circ \widetilde{M}_X$ both satisfy condition (1).

\nThus, they agree if and only if the projections onto Y agree.

\n
$$
f \circ H = \frac{1}{2} \int_{M_1}^{M_2} f(x) \, dx + \sum_{k=0}^{m} h_k \int_{M_2}^{M_1} f(x) \, dx
$$

3. We obtain
$$
A_{\infty}
$$
 relations by fixing the number of inputs.
\n(Rn) $\int_{n} (x \otimes (a_{1} \otimes \cdots \otimes a_{n})) - g_{n}(x \otimes (a_{1} \otimes \cdots \otimes a_{n})) =$
\n $\sum_{i=0}^{n} m_{n-i}^{Y} (h_{i}(x \otimes (a_{1} \otimes \cdots \otimes a_{i})) \otimes a_{i+1} \otimes \cdots \otimes a_{n}) +$
\n $\sum_{i=0}^{n} h_{n-i}(m_{i}^{X}(x \otimes (a_{1} \otimes \cdots \otimes a_{i})) \otimes a_{i+1} \otimes \cdots \otimes a_{n}) +$
\n $\sum_{i=1}^{n} \sum_{s=0}^{n-i} h_{n-i+1}(x \otimes a_{1} \otimes \cdots \otimes a_{s} \otimes \mu_{i}(a_{s+1} \otimes \cdots \otimes a_{s+i}) \otimes a_{n}) = 0$

