5. Type D structures

1 TENSOR PRODUCT

Setting: A au
$$A_{\infty}$$
-algebra over k
X a right A_{∞} -module over A
Y a left A_{∞} -module over A

The usual definition of the tensor product
$$X \otimes_A Y$$
 is not good:
1) due to the non-associativity of the action, the relation
 $(x \cdot a, y) \sim (x, a \cdot y)$ is not transitive;
2) even for diff. algebra and diff. modules, if $X \cong X'$ it does
not follow necessarily that $X \otimes_A Y \cong X' \otimes_A Y$
(this problem is usually circumvented by taking derived \otimes).
Def: The A_∞ TENSOR PRODUCT is the chain complex
 $X \otimes_A Y := X \otimes_k TA \otimes_k Y$
with $\partial = M_X \otimes id_Y + id_X \otimes M_A \otimes id_Y + id_X \otimes M_Y$
 $\stackrel{!}{=} \widetilde{M}_X \otimes id_Y + id_X \otimes M_A \otimes id_Y + id_X \otimes \widetilde{M}_Y$

RK: This definition recovers the derived tensor product if
$$\mathcal{M}_i \equiv 0 \quad \forall i > 2$$
 and $m_j \equiv 0 \quad \forall j > 1$

(2) TYPE D STRUCTURES
There's a smaller model for
$$A_{\infty}$$
 tensor product if the
left A_{∞} -module comes from a "type D" structure.
Def: Let C be a counital coalgebra. A counital COMODULE
over C is a left k-module N and a map
 $S: N \longrightarrow C \otimes N$

such that
1)
$$(\Delta \otimes id_N) \circ S = (id_C \otimes S) \circ S$$

2) $(\varepsilon \otimes id_N) \circ S = id_N$

Prop (universal property of comodules over TA)

<u>Mototion</u>: Denote by $S^i: N \longrightarrow A^{\otimes i} \otimes N$ the composition of 8 with the projection onto the A^{®i} ®N summand. St. r outputs The (counital) comodule structure can be phrased in terms of the maps St as follows: Take structure relation @ •) $S^{i+j} = (i_{A^{\otimes i}} \otimes S^{\sharp}) \circ S^{i}$ and consider the projection anto A^{®i} & A[®] & N •) δ° = id_N (counitality) Proof of proposition: Uniqueness •) counitality and commutativity of the diagram determine the projections S and St uniquely. •) the comodule condition says that each higher Si is determined by S1: $\delta^{i} = \left(\begin{array}{c} \delta^{i} \\ \delta^{j} \end{array} \right)$

Existence: Check that the given formula satisfies
$$\bigotimes$$
.
Def: A comodule N over Com (TA) is BOUNDED
if $S^i \equiv O$ for all *i* sufficiently large.
RK: N is bounded if it is a comodule over TA.
RK: Since S is determined by S^1 , often people say that
"S¹ is bounded".
Def: Let A be an A₀₀-algebra and (N, S) a counital comodule
over Can (TA).
(N, S) is a TYPE D STRUCTURE on A if
•) A is genationally bounded or (N, S) is bounded; and
•) (M_A \otimes id_N) \circ S = O.
Restricted is vell-defined

Unpacking the definition
1. Using the universal property, S is determined by a collection of maps

$$S^i: N \longrightarrow A^{\otimes i} \otimes N$$

2. Both $(M_A \boxtimes id_N) \circ S$ and O satisfy the univ. property. for morphisms (see Section 6 below). Thus, they agree iff their projections onto $A \otimes N$ agree, i.e.

3. The last relation can be written as $\sum_{n=1}^{\infty} (\mu_n \otimes id_N) \circ S^n = 0.$

Revisited definition

A type-D structure over an
$$A_{\infty}$$
-algebra A is a left
k-module N with a k-linear map $S^1: N \longrightarrow A \otimes N$ s.t.:
•) A is operationally bounded or S^1 is bounded, and
•) $\sum_{n=1}^{\infty} (\mu_n \otimes id_N) \circ S^n = O$
where S^n denotes the n-th iteration of S^1 defined recursively be
 $S^{i+1} = (id_{A^{\otimes i}} \otimes S^1) \circ S^i$.

3 EXAMPLES (1) $A = \text{torus algebra} A_{T^2}$, over k = idempotent ring. $N = \mathbb{F}_2 \langle y \rangle$, with $L_0 \cdot y = y$, $L_1 \cdot y = 0$. $S^{1}(y) := \rho_{12} \otimes y = \frac{\neq 0}{\text{idempotents } c_{0} \text{ in the middle match.}}$ (Recall that k = ideup.ring) Check that it is a type D structure. For A_{T^2} there is only μ_2 , so the structure relation is simply $(\mu_2 \boxtimes id) \circ S^2 = 0$, which holds true because $\mu_2(\rho_{12},\rho_{12}) = 0$. <u>RK</u>: This type - D structure is associated to It is algebraically much simpler than the A_{oo}-module. 2 $N = F_2(a, b, c, w, x, y, rz)$, with same A and k. a,b,ce 6.N w, x, y, z e L. N S^1 is given by the arrows.

Proof: Exercise.

If a left A_{∞} module comes from a type D structure, then the A_{∞} tensor product can be computed more easily.

Def: Let
$$(X, m)$$
 be a right A_{∞} module over A ,
and (N, S) be a type D structure over A .
Suppose that at least one of them is bounded.
The BOX TENSOR PRODUCT $X \boxtimes N$ is the
 k -module $X \otimes_k N$ with differential
 $\partial^{\bigotimes} = (m \otimes id_N) \circ (id_X \otimes S)$
Lemma: $\partial^{\bigotimes} \circ \partial^{\bigotimes} = O$.
We use graphical notation, with shotaut to avoid Σ symbol.
 $m \models := \sum_{i=0}^{\infty} f_{m_i}$ $f_i := \sum_{i=0}^{\infty} f_i^{S_i}$
 $\downarrow_{A_{\infty}} := \sum f_{i \otimes S} f_{m_i}$ $h_{n_i} := \sum f_{i=0}^{S_i} f_{i}$
 $\downarrow_{A_{\infty}} := \sum f_{i \otimes S} f_{i}$ $h_{n_i} := \sum f_{i \otimes S} f_{i}$
Ex: Rewrite the structure relations for A_{∞} -algebra,
right A_{∞} -module, and type D structure in terms of
this notation.

The Let A be an operationally bounded, strictly unital A_{∞} -alg., X a strictly unital right A_{∞} -module over A, and N be a type-D structure over A. Assume <u>either</u> N bounded <u>or</u> X bounded & N hty equiv. to a bounded type D structure. Then 10 tensor product $X \boxtimes N \simeq X \overset{\sim}{\otimes} (A \otimes N)$ homotopy equivalent left A_{∞} -module

5 <u>EXAMPLES</u> operationally bounded 1) A = trus algebra, k = idempotent ving $X = F_2 \langle x \rangle$ in idempotent L_0 , with maps $m_1(x, \iota_o) = x$ and $m_{n+2}(x, \rho_3, \rho_{23}, \dots, \rho_{23}, \rho_2) = x$. n times $N = F_2 \langle y \rangle$ in idempotent L_0 , $S^1(y) = \rho_2 \otimes y$. both unbounded, but in this special case the box tensor product still makes sense. $X \boxtimes N$ is $X \otimes_k N$ as a vector space. Since the idempotents match, $X \otimes_k N = \mathbb{F}_2 \langle x \otimes y \rangle$. $\partial^{\bowtie}(x \otimes y) = \sum_{i} (m_{i} \otimes id) \circ (id \otimes S^{i}) (x \otimes y)$

$$= (m_1 \otimes id) \circ (id \otimes S^1) (\times \otimes y)$$
$$= m_1 (\times \otimes \beta_{12}) \otimes y = 0$$

We just computed that $HF(S^3) = F$.

2) Same A, k, X as before, but for N we use the type D structure of the complement of $T_{2,3}$, which is bounded.

$$N = F_{2} \langle a, b, c, w, x, y, z \rangle$$
In $X \otimes_{k} N$ only $x \otimes a$, $x \otimes b$, $x \otimes c$ survive, because
the idempetator match.
The only non-trivial differential that we get is
 $\partial^{\otimes}(x \otimes a) = x \otimes b$

$$\prod_{x \geq 1} \frac{g}{2} \int_{x \geq 1}^{x \geq 2} \int_{x \geq 1}^{x \geq 1} \frac{g}{2} \int_{x \geq 1}^{x \geq 2} \int_{x \geq 1}^{x \geq 1} \frac{g}{2} \int_{x \geq 1}^{x \geq 1} \frac{g}{2}$$

$$X \otimes_{k} N = \mathbb{F}_{2}^{r} \langle \xi \otimes w, \xi \otimes z, \xi \otimes y, \xi \otimes z \rangle.$$
The only non-trivial differential is
$$\partial^{\otimes}(\xi \otimes w) = \xi \otimes z,$$

$$\lim_{z \to \infty} \frac{1}{R_{2}} = \int_{z}^{\infty} \int_{z}^{R_{2}} \frac{1}{R_{2}} \int_{z}^{R_{2}} \frac{1}$$

Prof: Uniqueness
•) Counitality and commutativity determine
$$f^{\circ} = 0$$
 and f°
•) Take the projection onto $A^{\otimes n} \otimes A^{\otimes 1} \otimes N'$:
 $(\Delta \otimes id_{N'}) \circ f = (id \otimes f) \circ S + (id \otimes S) \circ f$
 $(\int_{n}^{n+1} g^{n+1}) = (\int_{n+1}^{n} f^{\circ} + (\int_{n+1}^{n} g^{\circ}) g^{\circ} + (\int_{n+1}^{n} g$

Unpacking the definition
1. By the universal property,
$$f$$
 is defined by a map f^{1} .
2. $(M_{A} \otimes id_{N'}) \circ f$ and O both satisfy condition 1).
Thus, they agree if and only if their projections agree.

$$\sum_{n=0}^{\infty} \mu_{n} = 0$$

3. The relation is that $\sum_{n=0}^{\infty} (\mu_n \otimes id_N) \circ f^n = O$.

Ex: A homotopy between type D structure homomorphisms induces an

$$A_{\infty}$$
 - homotopy between the corresponding left A_{∞} -module maps.
F) SKETCH of the PROOF of BOX TENSOR THEOREM
Step 1: bar resolution
Given a right A_{∞} -module X are A, consider its bar
readulation
 $\overline{X} := X \otimes_k \overline{TA} = X \otimes_k \overline{TA} \otimes_k A$
with
 $\overline{X} := X \otimes_k \overline{TA} = X \otimes_k \overline{TA} \otimes_k A$
 \overline{His} is $X \otimes_A A$
 \overline{His} is $X \otimes_A A$
 $\overline{M}_i := \begin{bmatrix} A & A \\ A & A \end{bmatrix} + \begin{bmatrix} A & A \\ A & A \end{bmatrix}$
 $\overline{M}_i := \begin{bmatrix} A & A \\ A & A \end{bmatrix}$
 $\overline{M}_i := \begin{bmatrix} A & A \\ A & A \end{bmatrix}$
 $\overline{M}_i := \begin{bmatrix} A & A \\ A & A \end{bmatrix}$
 $\overline{M}_i := \begin{bmatrix} A & A \\ A & A \end{bmatrix}$
 $\overline{M}_i := \begin{bmatrix} A & A \\ A & A \end{bmatrix}$
 $\overline{M}_i := \begin{bmatrix} A & A \\ A & A \end{bmatrix}$
 $\overline{M}_i := \begin{bmatrix} A & A \\ A & A \end{bmatrix}$
 $\overline{M}_i := \begin{bmatrix} A & A \\ A & A \end{bmatrix}$
 $\overline{M}_i := \begin{bmatrix} A & A \\ A & A \end{bmatrix}$
 $\overline{M}_i := \begin{bmatrix} A & A \\ A & A \end{bmatrix}$
 $\overline{M}_i := \begin{bmatrix} A & A \\ A & A \end{bmatrix}$
 $\overline{M}_i := \begin{bmatrix} A & A \\ A & A \end{bmatrix}$
 $\overline{M}_i := \begin{bmatrix} A & A \\ A & A \end{bmatrix}$
 $\overline{M}_i := \begin{bmatrix} A & A \\ A & A \end{bmatrix}$
 $\overline{M}_i := \begin{bmatrix} A & A \\ A & A \end{bmatrix}$
 $\overline{M}_i := \begin{bmatrix} A & A \\ A & A \end{bmatrix}$
 $\overline{M}_i := \begin{bmatrix} A & A \\ A & A \end{bmatrix}$
 $\overline{M}_i := \begin{bmatrix} A & A \\ A & A \end{bmatrix}$
 $\overline{M}_i := \begin{bmatrix} A & A \\ A & A \end{bmatrix}$
 $\overline{M}_i := \begin{bmatrix} A & A \\ A & A \end{bmatrix}$
 $\overline{M}_i := \begin{bmatrix} A & A \\ A & A \end{bmatrix}$

 $\overline{\text{fact}}$: \overline{X} is A_{∞} -chain homotopy equivalent to X. <u>Alternative interpretation</u>: A is a left/right A_{∞} -bimodule over A-A, and \overline{X} is the A_{∞} tensor product of X_{A} w/ $_{A}A_{A}$. <u>Step 2</u>: the quari-isomorphism We have a chain httpy equivalence $X \boxtimes_A N \simeq \overline{X} \boxtimes_A N$. As k-vector spaces, we have isomorphisms $\overline{X} \otimes_{A} \mathbb{N} \cong (X \otimes_{k} TA \otimes_{k} A) \otimes_{k} \mathbb{N}$ $\stackrel{1}{=} \times \otimes_{k} TA \otimes_{k} (A \otimes_{k} N)$ $\stackrel{!}{\cong} \times \overset{\sim}{\otimes} (A \otimes_{k} N)$ ~~ left Los module essociated to N $\overline{\operatorname{tact}/\operatorname{Exercise}}$: the differentials on $\overline{X} \otimes_A N$ and on $X \otimes_A (A \otimes_k N)$ are the same on the nose under these isomorphisms. Thus, $X \boxtimes_A N$ is chain homotopy equivalent to $X \otimes_A (A \otimes_k N)$. <u>RK</u>: the various boundedness hypotheses are required so that the tensor product operations are defined and chain maps/homotopies induce well-defined chain maps/homotopies on the tensor product.