5. Type D structures

1 TENSOR PRODUCT

Setting : ^A au As-algebra over ^k X ^a right As-module over ^A Y ^a leftSo-module over ^A

The usual definition of the tensor product
$$
X \otimes_X Y
$$
 is not good: \n1) due to the non-associativity of the action, the relation $(x \cdot a, y) \sim (x, a \cdot y)$ is not transitive; \n2) even for df is algebra and df is modules, if $X \circ_{\mathfrak{q}_k} X'$ it does not follow necessarily that $X \otimes_{\mathfrak{q}} Y$ $\circ_{\mathfrak{q}_k} X$ $\circ_{\mathfrak{q}_k} X'$ it does not follow necessarily that $X \otimes_{\mathfrak{q}} Y$ $\circ_{\mathfrak{q}_k} X \otimes_{\mathfrak{q}_k} X'$ (this problem is usually circumvented by taking derived \otimes). \nLet: The A_{∞} TENSER PRODUCT is the chain complex $X \otimes_{\mathfrak{q}} Y := X \otimes_{\mathfrak{k}} TA \otimes_{\mathfrak{k}} Y$ with $\partial = M_X \otimes id_Y + id_X \otimes M_A \otimes id_Y + id_X \otimes M_Y$ \vdots $M_X \otimes id_Y + id_X \otimes M_A \otimes id_Y + id_X \otimes M_Y$

$$
\frac{RK}{\mu_i} = 0 \quad \text{Using the desired tensor product} \quad \text{if} \quad \mu_i = 0 \quad \forall i > 2 \quad \text{and} \quad m_j = 0 \quad \forall j > 4
$$

Using the tree representation we have
\n
$$
\partial = \sum \frac{1}{m^{x}} || || || + \sum || || \psi_{\mu} || + \sum || || || \psi_{\mu} ||
$$
\n
$$
\frac{E_{x}}{m^{x}} = 0.
$$
\n
$$
\frac{E
$$

Q. TYPE D STRUCTURES

\nThere's a smaller model for
$$
A_{\infty}
$$
 tensor product if the

\nLeft A_{∞} -module come from a "type D" structure.

\nDef: det C be a counital coalgebra. A counital conv C is a left k-module N and a map

\n $\delta : N \longrightarrow C \otimes N$

such that
\n1)
$$
(\Delta \otimes id_N) \circ S = (id_C \otimes S) \circ S
$$

\n2) $(\varepsilon \otimes id_N) \circ S = id_N$

Prop (universal property of comodules over TA)

 $\frac{\text{N}{\text{d}{\text{d}}}$: Denote by $S^* : N \longrightarrow A$ ⁸ is N the composition of S with the projection onto the $A^{\otimes i} \otimes N$ summand. $\sqrt{2\pi}$ i outputs The (counital) comodule structure can be phrased in terms of the maps St as Follows : Take structure relation \circledast the maps S^r as follows:

•) $S^{i+j} = (d_{A^{\otimes i}} \otimes S^i) \circ S^i$ and consider the projection

anto $A^{\otimes i} \otimes A^{\otimes j} \otimes N$ aud consider the projection
anto A^{®i} & A®j & N $\bullet)$ $\delta^o = id_N$ (countabity) Troot of proposition: <u>Uniqueness</u> ·) counitality and commutativity of the diagram determine the projections 5 and St uniquely . $\bullet)$ the comodule condition says that each higher $8^\texttt{c}$ is determined by S^4 : $\sqrt{6^{2} + 8^{2}} = \sqrt{6^{2} + 8^{2}}$

Existence:	Check that the given formula satisfies \circled{B} .	1
Def:	A conclude N over Com(TA) is BOUNDED \n if $S^i \equiv 0$ for all i sufficiently large.	
RK:	N is bounded if it is a comodule over TA.	
RK:	Since S is determined by S^4 , often people say that \n "S ⁴ is bounded".	
Def:	Let A be an A_{∞} -algebra and (N, S) a counital comodule \n over Com(TA).	
(N, S) is a <u>TYPE D STRUCTURE</u> on A if \n e) A is <u>generalions</u> bounded or (N, S) is bounded; and \n e) (M _A \otimes id _N) e S = O.	Recal this condition so \n is well-defined	

Opacking the definition
1. Using the universal property, S is determined by a collection of maps
$S^i: N \longrightarrow A^{\otimes i} \otimes N$

2. Both $(M_A \boxtimes id_N) \circ \delta$ and O satisfy the univ. property. for morphisms (see Section 6 below) . Thus , they agree iff their projections onto $A \otimes N$ agree, i.e.

3. The last relation can be written as $\left| \sum_{n=1}^{\infty} \left(\mu_n \otimes id_n \right) \circ \delta^n = 0. \right|$

Revisited definition

A type-D structure over au A_∞-algebra A is a left
\n
$$
k
$$
-module N with a k-linear map δ^4 : N \rightarrow A \otimes N s.t.:
\n•) A is certainly bounded or δ^4 is banded, and
\n•) $\sum_{n=1}^{\infty} (\mu_n \otimes id_n) \cdot \delta^n = 0$
\nwhere δ^n denotes the n-th iteration of δ^4 defined recursively by
\n $\delta^{i+4} = (id_{A^{\otimes i}} \otimes \delta^4) \cdot \delta^i$.

Noto that
$$
(\mu_{e} \circ d) \circ S^{2} = 0
$$
, so the structure relation is satisfied.

\nRK: This is the type D structure associated to the complement of the right hand side.

\nAdvanced: Type D structures are algebraically simpler than

\nAns-modules; you need only S^{1} .

\n(4) Box TENSEOR PRODUCT

\nRep: Let N be a type D structure over A. The u is a left. A a module over A, with $\frac{1 \text{ inches}}{1 \text{ inches}}$

\nAns. $\frac{1 \text{ inches}}{1 \text{ inches}}$

\nAns. $\frac{1 \text{ inches}}{1 \text{ inches}}$

\nAns. $\frac{1 \text{ inches}}{1 \text{ inches}}$

\nMathel N input

\nOutput in A oN

Prof : Exercise.

If a left \mathcal{A}_{∞} module comes from a type D structure, then the Do tensor product can be computed more easily.

26. Let
$$
(X, m)
$$
 be a right A_{∞} mode over A,

\nand (N, δ) be a type D structure over A.

\nSuppose that at least one of the unit is bounded.

\nThe BOX TENSE PRODUCT $X \boxtimes N$ is the

\n k -module $X \otimes_k N$ with differential

\n
$$
\partial^{\boxtimes} = (m \otimes id_{\mathcal{N}}) \circ (id_{\mathcal{N}} \otimes \delta)
$$
\nLemma:

\n
$$
\partial^{\boxtimes} \circ \partial^{\boxtimes} = O.
$$
\nWe use graphical notation, with sheat at a second Σ symbol.

\n
$$
m \cdot \mathcal{C} := \sum_{i=0}^{\infty} \mathcal{C} \cdot \mathcal{
$$

 $\overline{\text{Thm}}$ Let A be an operationally bounded, strictly unital A_{∞} -alg. \times a strictly unital right \mathcal{A}_{∞} -module aer A, and N be a type-D structure over A. Assume $\frac{either}{other}$ N bounded α X bounded 2 N lity equiv. to a bounded type 1 structure. Then \sim λ _o tensor product $X \boxtimes N \simeq$ $X\,\stackrel{\infty}{\otimes}\, (\underbrace{A\otimes N}_{\infty})$ eft A_∞ -module homotopy equivalent

5 EXAMPLES $\sqrt{\frac{1}{R}}$ operationally bounded 1) A = tonus algebra, k = idempotent ving $X = \mathbb{F}_{2}\langle x \rangle$ in idempotent ι_{\circ} , with maps $m_{1}(x, \iota_{0}) = x$ and $m_{n+2}(x,$ but ving
with maps
 β_3 : $\frac{\beta_2}{\sum_{s=1}^{3}}$ in times $2\left(\rho \right) = x$ n times $N = \mathbb{F}_2 \langle y \rangle$ in idempotent ι_o , $\delta^4(y) =$ = $\mathbb{F}_{2} \langle y \rangle$ in idempotent L_{o} , $S^{4}(y) = \rho_{2} \otimes y$
both unbounded, but in this special case the box tensor
 $\approx N \approx N$ and the special case the box tensor both unbounded , but in this special case the box tensor product still makes sense. $X \boxtimes N$ is $X \otimes_k N$ as a vector $\begin{array}{l} \mathcal{S}_2 \ (\mathcal{S}_1 \ \mathcal{S}_2 \ \mathcal{S}_3 \ \mathcal{S}_4 \ \mathcal{S}_5 \ \mathcal{S}_5 \ \mathcal{S}_6 \ \mathcal{S}_7 \ \mathcal{S}_7 \ \mathcal{S}_8 \ \mathcal{S}_8 \ \mathcal{S}_9 \ \mathcal{S}_9 \ \mathcal{S$

$$
\times
$$
 \otimes \wedge \otimes \otimes

$$
\partial^{\boxtimes}(\times \otimes y) = \sum (m_i \otimes id) \circ (id \otimes S^i) (\times \otimes y)
$$

= (m_1 \otimes id) \circ (id \otimes S^1) (\times \otimes y)
= m_1 (\times \otimes p_1) \otimes y = 0

We just computed that $HF(S^3) = F$.

2) Same A, k, X as before, but for N we use the Same A, k, X as before, but for N we us
type D structure of the complement of T_{2,3}, Type D structure
which is bounded

N =
$$
\mathbb{F}_{2}
$$
 (a, b, c, w, x, y, z)
\n \mathbb{F}_{2} (a, b, c, w, x, y, z)
\n \mathbb{F}_{4} (a, b, c, w, x, y, z)
\n \mathbb{F}_{4} (b, b, c, w, y, z)
\n \mathbb{F}_{4} (c, b, c, w, x, y, z)
\n \mathbb{F}_{4} (d, b, c, w, x, z)
\n \mathbb{F}_{4} (e, b, c, w, x, z)
\n \mathbb{F}_{4} (f) \mathbb{F}_{4} (g) \mathbb{F}_{2}
\n \mathbb{F}_{4} (h) \mathbb{F}_{4} (i) \mathbb{F}_{2}
\n \mathbb{F}_{5} (h) \mathbb{F}_{6} (i) \mathbb{F}_{2}
\n \mathbb{F}_{6} (j) \mathbb{F}_{2} (k) \mathbb{F}_{2}
\n \mathbb{F}_{6} (l) \mathbb{F}_{6}
\n \mathbb{F}_{6} (m) \mathbb{F}_{6} (n) \mathbb{F}_{2}
\n \mathbb{F}_{6} (o) \mathbb{F}_{4}
\n \mathbb{F}_{5} (d) \mathbb{F}_{6} (e) \mathbb{F}_{4}
\n \mathbb{F}_{6} (f) \mathbb{F}_{6}
\n \mathbb{F}_{6} (h) \mathbb{F}_{6} (i) \mathbb{F}_{2}
\n(iii) \mathbb{F}_{6} (ii) \mathbb{F}_{2}
\n(iii) \mathbb{F}_{6} (ii) \mathbb{F}_{6}
\n \mathbb{F}_{6}
\n \mathbb{F}_{6}
\n \mathbb{F}_{6}
\n \mathbb{F}_{6} (h) \mathbb{F}_{6} (i) \mathbb{F}_{6}

$$
X \otimes_R N = \mathbb{F}_{2} \left\langle \xi \otimes w, \xi \otimes z, \xi \otimes y, \xi \otimes z \right\rangle
$$
\n
$$
\frac{1}{2} \int_{R_{2}}^{\infty} \left\langle \xi \otimes w \right\rangle = \frac{1}{2} \int_{R_{2}}^{\infty} \
$$

Post:	Uniqueness
•) Countality and commubhidy determine $f^e \equiv 0$ and f^4	
•) Take the projection onto $A^{\otimes n} \otimes A^{\otimes 1} \otimes N'$:	
$(\Delta \otimes id_N) \circ f = (id \otimes f) \circ S + (id \otimes S) \circ f$	
f^{n+1}	f^{n+1}
$\Rightarrow f^{n+1}$ is inductively determined.	
$\Rightarrow f^{n+1}$ is inductively determined.	
Δ is the following property:	
Δ is the equation $(id \otimes f) \circ S + (id \otimes S) \circ f$	
Δ is the assumption that f is <u>Bound</u> (i.e., $f'' = 0$ for $n \gg 1$)	
Δ is the assumption that f is <u>Bound</u> (ii is a function that 2) makes sense).	
Δ is the probability bounded (ii is a function that 2) is less sense).	

Unpacking the definition

\n1. By the univesal property,
$$
f
$$
 is defined by a map f^1 .

\n2. $(M_A \otimes id_N \cdot) \circ f$ and O both satisfy condition 1).

\nThus, they agree if and only if their projections agree.

\n3. The relation is that $\sum_{n=0}^{\infty} \mu_n \leq \int_{n=0}^{\infty} (\mu_n \otimes id_N \cdot) \circ f^n = O$.

$$
\underline{\underline{\underline{\mathcal{M}}}}\cdot f, g: M \longrightarrow (\underline{\mathcal{C}}_{om}TA) \otimes N' \text{ are HOMOTOPIC } \vdots
$$
\n
$$
\exists h: N \longrightarrow (\underline{\mathcal{C}}_{om}TA) \otimes N' \text{ satisfying}
$$
\n
$$
A) (\underline{\mathcal{A}} \otimes id_{N'}) \circ h = (id \otimes h) \circ \delta + (id \otimes \delta) \circ h
$$
\n
$$
2) \quad f - g = (M_A \otimes id) \circ h
$$
\n
$$
\text{assuming } h \text{ bounded or } A \text{ graphonally bounded.}
$$

Ex: A homology between type D structure homomorphisms induces an

\n
$$
A_{\infty}
$$
 - homology between the corresponding left A_{∞} -module maps.\nThe A : bar reduction

\n
$$
\frac{Step 4: bar reduction}{\frac{1}{X} \cdot log x - model}
$$
\n
$$
\frac{Step 4: bar reduction}{\frac{1}{X} \cdot log x - model} \times over A, consider its bar
$$
\n
$$
= \frac{6}{100} \times 7A = \frac{6}{100} \times 7A
$$
\nwith

\n
$$
m_{\circ} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix} +
$$

 $\overline{\text{fact}}$: \overline{X} is \mathcal{A}_{∞} -chain homotopy equivalent to X. Alternative interpretation: A is a left/right A_∞ -bimodule over Alternative interprelation: A is a lett/right A_{∞} -bimodu
A-A, and \overline{X} is the A_{∞} tensor product of X_{A} w/ $_{A}A_{A}$

Step 2: the quasi-isomorphism Step 2: the quari-isomorphism
We have a chain htpy equivalence $X \boxtimes_A N \cong \overline{X} \boxtimes_A N$ As R-vector spaces , we have isomorphisms $\overline{X} \boxtimes_{A} N \cong (X \otimes_{k} TA \otimes_{k} A) \otimes_{k} N$ I $\stackrel{\scriptscriptstyle \leftarrow}{=} \times\otimes_{\mathsf{k}}\mathsf{T} \mathsf{A}\otimes_{\mathsf{k}} (\mathsf{A}\otimes_{\mathsf{k}}\mathsf{N}$) l
全 $X\overset{\sim}{\otimes}_{\mathsf{A}}\left(A\otimes_{\mathsf{k}}\mathsf{N}\right)$ left As module associated to ^N $\overline{\text{tot}}/\text{Exercise}}$: the differentials on $\overline{\times}$ \mathbb{Z}_A N and on \times $\widetilde{\mathbb{Z}}_A$ (A \mathbb{Z}_R N) are the same on the nose under these isomorphisms. are the same on the nose under these isomorphisms.
Thus, $X \boxtimes_{\mathbb{A}} N$ is chain homotopy equivalent to $\times \widetilde{\otimes}_{\mathbb{A}} (A \otimes_{\mathbb{R}} N)$ RK: the various boundedness hypotheses are required so that the tensor product operations are defined and chain maps/homotopies induce well-defined chain maps/hometopies on the tensor product. uct
[