6. Manifolds with T^2 boundary

1 TQFT MOTIVATION Typical TQFT framework · $\begin{matrix} \searrow \\ \searrow \end{matrix}$ MOTIVATION

T framework

U $\frac{1}{2^{n-1}}$ $Z(V)$
 $Z(V)$ vector space/module field/algebra vector space/module
elemit of v.s. vector space elemit of v.s. object in 2 category C object in 2 $Z(Y) = \langle Z(U), Z(V) \rangle_{Z(\Sigma)}$ pairing on $Z(\Sigma)$ Heegaard Flor theory as ^a (2⁺ 1) -dimil TQFT Y^3 = closed oriented 3-mfd $\begin{align} \mathcal{L}(z) \longrightarrow \mathrm{dim}\ \mathcal{L}^{-1}(z) \longrightarrow \mathcal{L}^{-1} \longrightarrow \mathcal{L}^{-2} \longrightarrow \mathrm{d}z \longrightarrow \mathrm{d}$ $\mathsf{HF}(\Sigma)$ = Lagraugiaus in Sym $^3\Sigma$ + local systems $HF(U)$ and $HF(V)$ are Lagrangians with local systems. Cef. Aureux , Lekili-Perutz)

Special cases 1) ^U and V are the simplest 3-mfds possible, i. e. handlebodies. & has high genus, so HF(2) is complicated. Then HF(U) and HF(V) are Lagrangians in SyngZ, usually denoted # and Ts (products of attaching curves). HF(F) ⁼ HF(U) , HF(V) pairingis Lagrangeenology simplest 4) one The Lagrangians for ^U and ^V are both Ept] , but there are interesting local systemsalocal system over ^a point isjust ^a rector C space/module - Symisa HF(U) HF(V) Pairing is tenser producto recover Kinneth formula for HF.

Q : Is there something in between ? &= It next simplest surfaceefter ^S? Lagrangians can already be interesting. Hanselman-J. Rasmussen-Watson : construct a Lagrangian from ^a type D structure on At

2. IMHERSED TRAIN TRACKS
\n
$$
\Delta f = \frac{3-\text{min}100 \text{ with parametersed to us boundary is a cpt\noriented M3 together with $\partial M \cong T^2$, $z \in \partial M$ basepoint,
\nand $\alpha, \beta \in \partial M$ the simple closed curves with $\alpha \cdot \beta = 1$.
\n
\n**Standard picture**
\n
$$
z^2 = (1-\epsilon, 1-\epsilon)
$$
\n
$$
\beta = \text{horiz. curve } \alpha = \text{vertical curve}
$$
\n
$$
\beta
$$
\nWe $\Omega \propto k$ at ∂M from the outside, so for $\omega \beta \cdot \alpha = 1$.
$$

Example :

hs	A_{∞} - module
Given a directed graph for a type D structure, one can construct also an A_{∞} - module over A_{T^2} :	
$*$) Swap $1 \leftrightarrow 3$	
$*$) Get an idempotent decomposition $X = X_{L_{\infty}} \oplus X_{L_{\infty}}$.	
The other non-vanishing maps are given by the graph:	
•) for each directed path $\xi_{\text{std}} \rightarrow \xi_{\text{end}}$ you get a sequence of numbers;	
•) report them in maximal subsequences $s_i \oplus 123$;	
•) get a map $m_j(\xi_{\text{slot}}, s_1, s_2, ..., s_j) = \xi_{\text{end}}$.	

\n- **Def**: A train back is called BOUNDED if its underlying seconded graph does not contain directed cycle.
\n- (i.e. the associated type D structure is bounded)
\n- **Thm** Let
$$
\theta_0
$$
 and θ_1 be train tracks associated to dec. graphs, and suppose that θ_1 is bounded. Let
\n- N₀ the A_{∞} -module associated to θ_0
\n- N₁ the type - D structure associated to θ_1
\n- The three is an isomorphism of chain complexes
\n- $C(\theta_0, \theta_1) \cong N_0$ Eq. N_1
\n

 $\overline{\textsf{RK}}$: There is a more general version where arrows of the form $\overrightarrow{\phi}$. a more admirally

3 <u>IMMERSED</u> CURVES

A change of basis in the type ^D structure results in ^a change in the train track associated to it. Luckily , there is a canonical form for many type ^D structures. \exists DG algebra \widetilde{A} that extends A (with β as well). <u>Def</u>: A type D structure N over A is called <u>EXTENDABLE</u> if 3 N type D structure over A s.t.
if 3 N type D structure over A s.t. N = ENDABL
A og Ñ Thm : Bordered Flor type ^D structures are extendable. Thm: Every extendable type D structure can be represented by a collection of immersed curves in $T^2 - \{z\}$, decorated with collection of immersed curves in $T^2 - \{z\}$, decorated with
local systems. \overline{x} these come from two parallel curves Thm : The immersed curve construction gives a bjection ∫extendable typ
} structures over ed curve const
e D }
A J / hty 1 $\frac{1-1}{2}$ of immersed multi-curves ? equivalence

RK: There are no Known examples of non-trivial local systems.

<u>Vaivrality</u> (M, x $\frac{1}{\sqrt{3}}$ \rightarrow $\frac{1}{\sqrt{3}}$ \rightarrow multi-curve in T^2 \rightarrow multi-curve in T^2
 \rightarrow structure \rightarrow multi-curve in T^2 with ∂M $\begin{CD} \rightarrow \text{type D} \\ \downarrow \text{there} \rightarrow \text{multiple } D \rightarrow \text{multiple } D \rightarrow \text{while } D \rightarrow \text{while$ $\int_{-\infty}^{\infty}$ $\sqrt{f_{\alpha^i, \beta^i}}(GFD(M, \alpha^i, \beta^i))$ \downarrow vert. $\rightarrow \alpha^i$ (M, α, β') - $f_{\alpha, \beta}$ (CFD (M, α, β')) vert - o
 (M, α', β') - \rightarrow type D - multi-curve in T^2 $\underline{\text{Thm}}$: $\int_{\alpha,\beta}$ (CFD $(M, \alpha,$ (3) = $f_{\alpha',\beta'}(CFD(M,\alpha',\beta'))$ \int regular homotopy in 2M-Ez] Cor: Given M manifold with torus boundary and ze ,
ам.
ӘМ, the multi-curve $HF(M) \subseteq \bigcirc M - \{z\}$ is an invariant. Pairing thm revisited mfds with torus boundary $M_i \rightarrow \rightarrow \gamma_i \in \partial M_i - \begin{bmatrix} 2 & 2 \\ 3 & 1 \end{bmatrix}$ for $i \in \{0, 1\}$ h : $(\partial M_{\bf 1}$, ${\bf \mathfrak{z}_1})\longrightarrow (\partial M_{\bf o}$, ${\bf \mathfrak{z}_2})$ orient. rev. homeom. Theu $H_F (M_0 u_h M_1) \cong HF (\gamma_0, h(\gamma_1))$

Surgeries: pair w/ line of corresponding slope. e.g. 1-surpery on RHT (Bircaré sphere w/ apposite orientation) / slope +1 line $\begin{pmatrix} * \\ * \end{pmatrix} \begin{pmatrix} * \\ * \end{pmatrix}$ $H F(-\Sigma(2,3,5)) = \mathbb{F}_{2}$ <u>Splice</u> Δf : The SPLICE of two Knots K_o and K_a in S^3 is the 3 - manifold obtained by gluing, their Knot exteriors using the identification $\mu_0 \longleftrightarrow \lambda_1$ and $\lambda_0 \longleftrightarrow \mu_1$ $\left(\frac{1}{2}\right)$ Splice of two RHT $\widehat{HF}(Y) \cong \mathbb{F}_2$ $\begin{pmatrix} * & * & * \\ * & * & * \end{pmatrix}$ $|7$ geverators, $|$ $\begin{bmatrix} no & b_{iqons} \end{bmatrix}$ $\begin{pmatrix} * & * \end{pmatrix}$ ⊭

Splice of RHT and LHT $\widehat{HF}(Y) \cong \mathbb{F}_g$ [9 generators,]
[no bigons]