6. Manifolds with TT² boundary

1 TQFT MOTIVATION Typical TQFT framework n-1 Z(v)Z(U) vector space/module elemit of v.s. object in C vector space/module elemit of v.s. object in C field/algebra vector space category C $Z(Y) = \langle Z(U), Z(V) \rangle_{Z(\Sigma)}$ pairing on $Z(\Sigma)$. Heegaard Floer theory as a (2+1)-dimil TQFT $Y^3 = closed oriented 3 - mfd, \Sigma^2 = closed oriented surface$ $HF(\Sigma) = Lagrangians in Sym⁸ \Sigma_{+} + local systems$ HF(U) and HF(V) are Lagrangians with local systems. (c.f. Auroux, Lekili-Peritz)

Special cases
1) U and V are the simplest 3-mfds possible, i.e. handlebookies.
Z has high genus, so
$$HF(\Sigma)$$
 is complicated.
Then $HF(U)$ and $HF(V)$ are Lagrangians in $Sym^{3}\Sigma$,
usually denoted T_{α} and T_{β} (products of altaching curves).
 $HF(Y) = \langle HF(U), HF(V) \rangle$ pairing is lagrangian
intersection theoremore
 $Sym^{3}(S^{2}) = pt$
The Lagrangians for U and V are both $\{pt\}$, but there
are interesting local systems.
 $HF(\overline{U})$
 $HF(\overline{U})$
 $Sym^{3}S^{3}$
 $HF(\overline{U})$
Riving is tensor product ~~o recover Könneth formula for HF .

Dist
$$A_{\infty}$$
-module
Given a directed graph for a type D structure, one can construct
also an A_{∞} -module over A_{T^2} :
*) swap $1 \leftrightarrow 3$
*) Get an idempotent decomposition $X = X \iota_{o} \oplus X \iota_{1}$.
The other non-vanishing maps are given by the graph:
•) for each directed path $\xi_{sts} \rightarrow \xi_{end}$ you get a sequence of numbers;
•) regroup them in maximal subsequences s_{i} of 123;
•) get a map $m_{j}(\xi_{start}, s_{i}, s_{2}, ..., s_{j}) = \xi_{end}$.

 $\frac{\mathsf{RK}}{\mathsf{NK}}: \text{ There is a more general version where arrows of the form} \\ \bullet \xrightarrow{\phi} \bullet \text{ are allowed.}$

3 IMMERSED CURVES

A change of basis in the type D structure results in a change in the train track associated to it. Luckily, there is a canonical form for many type D structures. I DG algebra A that extends A (with p as well). <u>Def:</u> A type D structure N over A is called <u>EXTENDABLE</u> if $\exists \tilde{N}$ type \tilde{D} structure over \tilde{A} s.t. $N = A \otimes_{\tilde{A}} \tilde{N}$. thm: Bordered Floer type D structures are extendable. Thm: Every extendable type D structure can be represented by a collection of immersed curves in $\mathbb{T}^2 - \{z\}$, decorated with local systems. I these come from two parallel curves with switches between them Thm: The immersed curve construction gives a bijection f'extendable type D ? (1-1) { immersed multi-curves ? whoch with local systems } equivalence

<u>RK</u>: There are no Known examples of non-trivial local systems.

 $\begin{array}{c} \underbrace{\text{Naturality}}_{(M, \alpha, \beta)} \xrightarrow{\quad \text{type } D \quad \longrightarrow \quad \text{multi-curve in } \mathbb{T}^{2} \\ \xrightarrow{\quad \text{structure}} \xrightarrow{\quad \text{structure$ → multi-curve on ∂M $(M, \alpha', \beta') \longrightarrow type D \longrightarrow multi-curve in T^{2}$ $\frac{\text{Thm:}}{f_{\alpha,\beta}}\left(\widehat{CFD}\left(M,\alpha,\beta\right)\right) \cong \underbrace{f_{\alpha',\beta'}}_{regular}\left(\widehat{CFD}\left(M,\alpha',\beta'\right)\right)$ <u>Cor</u>: Given M manifold with torus boundary and $z \in \partial M$, the multi-curve $HF(M) \subseteq \Im M - \{rz\}$ is an invariant. Pairing this revisited milds with torus boundary $M_i \longrightarrow \gamma_i \in \partial M_i - \{z_i\}$ for $i \in \{0, 1\}$ $h:(\partial M_1, z_1) \longrightarrow (\partial M_0, z_0)$ orient. rev. homeom. Then $HF(H_{0}\cup_{h}M_{1})\cong HF(\gamma_{0},h(\gamma_{1}))$

<u>Surgeries</u>: pair w/ line of corresponding slope. e.g. 1-surgery on RHT (Bincaré sphere w/ apposite orientation) /slope +1 line
 *
 *
 *
 *
 *
 *
 *
 *
 *

 *
 *
 *
 *
 *
 *
 *
 *
 $HF(-\Sigma(2,3,5)) = F_2$ Splice <u>Def</u>: The <u>SPLICE</u> of two knots K_0 and K_1 in S^3 is the 3 - manifold obtained by gluing their Knot exteriors using the identification $\mu_0 \leftrightarrow \lambda_1$ and $\lambda_0 \leftrightarrow \mu_1$ * * Splice of two RHT $\operatorname{HF}(Y)\cong \mathbb{F}_{7}$ * * * * 7 generators, no bigons * * ⊬

Splice of RHT and LHT $\widehat{HF}(\Upsilon)\cong \mathbb{F}_{g}$ [9 geuerators,] no bigons]