

2) DGAS

$$K = a \text{ commutative ring}$$
 (usually F_2^-)
Recall: a K-algebra A is a ring w/ring hom. $K \longrightarrow A$
 $(G, \lambda) = a \text{ group } G \text{ with a central element } A \in G$.
 $Def: A \text{ DIFFERENTIAL } (G, \lambda) - GRADED \text{ K-ALGEBRA } (DGA) \text{ is:}$
 $(\textcircled{K}) a \text{ K-algebra } A$
 $(\textcircled{K}) a \text{ map} \ \partial: A \longrightarrow A \text{ such that}$
 $() \partial^2 = O$
 $() \partial(ab) = (\partial a)b + a(\partial b)$
 $(\textcircled{K}) a \text{ splitting } A = \bigoplus Ag$ as K-modules, such that

The DGA is usually denoted
$$(A, \partial, \cdot)$$
, or simply A .
RK: Alternative notation: $\mu_1(a) = \partial(a)$
 $\mu_2(a,b) = a \cdot b$

$$\mathbb{R}K$$
: (A, ∂, \cdot) $\mathbb{D}GA \implies \mathbb{H}(A)$ is a G-graded K-alg.

Examples

(3) THE TORUS ALGEBRA in BORDERED HF Motivation In BHF you want to cut a <u>3-mfd</u> into <u>2 pieces w/boundary</u> (Heegaard diag.) (2 Heeg. diag. w/curves) & arcs In the example above we cut along (The red points are matched in pairs, because 2 of them lie on x, and 2 on x, Call this diagram Z.T. For convenience, the circle is cut in corresp. of z: RK: The name "torus algebra" is justified by the fact that this is a surgery diagram for the torus. + 2-handle

Creal: define a DCA essociated to Zer
Def: An l-STRAND on Z_T is a collection
$$s = \{s_{1}, ..., s_{e}\}$$

of continuous, pw smooth functions $s_{i}: [0, 1] \rightarrow Z_{TF} st.:$
•) $s(0)$ (resp. $s(1)$) is a subset of the marked
basepoints which does not contain matched besepoints
•) $\partial/_{t}(s_{i}(t)) \ge 0$
•) $s_{i} th s_{j}$,
up to pw smooth isotopy.
e.g. 0-strands: only the empty straud
e.g. 1-strands:
 $2r \int \frac{R_{2}}{R_{2}} \frac{R_{2}}{R_{2}}$
 f_{2}
 r_{2}
 r_{3}
 r_{2}
 r_{2}
 r_{2}
 r_{3}
 r_{2}
 r_{2}
 r_{3}
 r_{1}
 r_{2}
 r_{2}
 r_{2}
 r_{2}
 r_{2}
 r_{2}
 r_{3}
 r_{2}
 r_{2}
 r_{3}
 r_{2}
 r_{2}
 r_{3}
 r_{2}
 r_{3}
 r_{2}
 r_{2}
 r_{3}
 r_{2}
 r_{3}
 r_{2}
 r_{3}
 r_{2}
 r_{3}
 r_{3}
 r_{2}
 r_{3}
 r_{3

e.g. $\int_{1}^{1} \int_{2}^{2} = \int_{12}^{12} \int$

•

E(s)

 $H\left(\mathcal{A}_{\mathbb{T}}(2)\right)\cong\mathbb{F}_{2}$