

Let's compute the complex in a different way:

R

Geverators: , A, 6B, 6C Generators: a_{l_o} , b_{l_a} "Differential" "Differential" $a \nightharpoondown$ ANNIN P mm mum P mill b \mathcal{P}_3 **My**

There are two more rectangles : I i92 "As-module" ^M ¹ "Type-D structure" N

^M and ^N are over ^a strands algebra ^A. Note that A isn't exactly the torus algebra we have abready seen, because here we use the matching G instead of G . A_{oo}-module M
M and N are over a strange
Note that A isn't exactly the
have already seen, because here
(interad of G.
How to re-build the full complex: M_an
Goverators: a p A, a p L
b _{c, 2}, A, b p a l

 H_{low} to re-build the full complex: $M_{\text{A}} \boxtimes 10^{-4}$ tilbu to re-
Generators x_{N}
B, $a_{l_o} \otimes_{l_o} C$ $b_{1,8}$, A, $b_{2,8}$ to B ®, A, by ob 6 , by ob C bA , \bullet aB , aC

e [↓] ^I other arrow in Differential : i n ^a No other pictures match exactly , so aB we don't get any bA the complex. 2 Curved DGAs gp central element &: ^A CURVED DIFFERENTIAL (G,6) - GRADED W-ALGEBRA is C,naturemultiplication ⁹differential W-algebra subject to the following structure relations : Ro) Mou= ⁰ (No is ^a cycle Myu, (a) ⁼ ⁰ Ri) Mr(u, a) + ua) ⁺ ur(a, 820, (i . ^e ., but Ga ⁼ Ta,no]) uz(au, (b) ⁼ ⁰ R2) u, b) + b)) + uz(u, (a) , (u,(a, KLeibniz's rule) c) ⁼ 0 (associativity)R3) Mz(M(a, b) , c) ⁺Mz(a, uz(b,

$$
\underline{\mathbf{Df}} \colon \mathcal{A} \xrightarrow{\text{MATCHING}} \mathbf{is} \text{ a bijection } M: A \longrightarrow B, where
$$
\n
$$
A \cup B = \{1, ..., 2n\}, \quad |A| = |B| = n.
$$

Def: The curved DGA
$$
B_*(n, M)
$$
 is defined as:

\n\n- the algebra $B(2n, n)$
\n- the algebra $B(2n, n)$
\n- the algebra $B(2n, n)$
\n- the set $S = \text{Im}(M)$.
\n- the grading are induced by the set $S = \text{Im}(M)$.
\n
\nRk: μ_0 central, so $\partial^2 = O$ and $\partial^2 = [\mu_0, -]$ are equivalent.

\nRk: $\lambda = -1$ for *Makov* grading, O otherwise.

3 Cuned A₀₀ model B, hypa-D structures
\n
$$
2e^{x}
$$
: A CNNED A₀₀-ModUE M over a curved DGA A
\nis a (right) R-module M with R-module maps
\n $lim_{x:}$: H Q_R A Q_R ... Q_R A ... A
\n $lim_{x:}$ H Q_R A Q_R ... Q_R A ... A
\n $lim_{x:}$
\n $$

4) Box tensor product

Some notation:

$$
\Delta(a_1 \otimes \cdots \otimes a_n) = \sum_{i=1}^{m-1} (a_1 \otimes \cdots \otimes a_i) \otimes (a_{i+1} \otimes \cdots \otimes a_n)
$$

$$
\mathcal{D}\left(a_{1},\ldots\otimes a_{n}\right)=\sum_{i=1}^{n}\sum_{\ell=1}^{n-i+1}a_{1}\otimes\cdots\otimes a_{\ell-1}\otimes\mu_{i}\left(a_{\ell}\otimes\cdots\otimes a_{\ell+i-1}\right)\otimes a_{\ell+i}\otimes\cdots\otimes a_{n}
$$

$$
\hat{\mathcal{H}}_{\omega}(a_{1} \otimes \cdots \otimes a_{n}) = \sum_{i=0}^{n} a_{i} \otimes \cdots \otimes a_{i} \otimes \omega \otimes a_{i+1} \otimes \cdots \otimes a_{n}
$$

 $S := 1 + \delta^4 + \delta^2 + ...$ $m := m_1 + m_2 + m_3 + \cdots$

Curve
$$
A_{\infty}
$$
 - module structure relation:

\n
$$
m \times 2 + m
$$

5 DA bimodules $Def: A$ curved BA BIMODULE OVER $A-B$ $A \times_B$ is au "Ra⁻¹²B bimodule", with maps for $iz \rightarrow 1$ $\mathcal{\hat{S}}_{\bm{\hat{\imath}}}^{\bm{4}}$: Wer

S DA BIMODULE OVER $A-B$ X_k

- R_B bimodule, with maps for $i > 1$
 $X \otimes_R B \otimes_R B \otimes ... \otimes B \longrightarrow A \otimes X$
 $X = 1 + \frac{21}{\sqrt{36}}$ 'M i-1 times subject to a structure relation. $\text{Notation}: \quad \text{S}^4 = \text{S}_1^4 + \text{S}_2^4 + \dots$ ↓ $\begin{matrix}6\end{matrix}$ $\begin{matrix}6\end{matrix}$ Curved DA relations Y subject to a structure relation

on: $S^1 = S_1^1 + S_2^1 + \cdots$

1 DA relations
 $\frac{e}{S^1}$
 $\frac{e}{S^1}$
 $\frac{e}{S^1}$ $\sqrt{5^1}$ A corrected to $R_A - R_B$ bimodule, with maps for $i > A$

is an $R_A - R_B$ bimodule, with maps for $i > A$
 $S_i^1 : X \underset{k=0}{\otimes} \underset{k=1}{\otimes} \underset{k=1}{\otimes} \underset{k=1}{\otimes} \underset{k=1}{\otimes} \underset{k=1}{\otimes} \underset{k=1}{\otimes} \underset{k=1}{\otimes} \underset{k=1}{\otimes} \underset{k=1}{\otimes} \underset$ s' $\leq \Delta$ More explicitly, the O input relation is D DA bimoduler
 $\frac{e^{\frac{1}{2}}}{\frac{1}{2}}$: A curve DA BIHODULE OVER $A-28$

is an R_A-R_B bimodule, with maps for $a > 4$
 S_a^1 : $X \underset{R_B}{R_B} \underset{R_B}{R_B}$ $X \underset{R_{c-1}}{R_B}$
 $S \underset{A}{\longrightarrow} A \underset{R_{A}}{R_{A}}$
 $S \underset{A}{\longrightarrow} A \underset{R_{A}}{R_{B$

How to show that we get the correct structure? It is convenient to use the several-output curved DA relations. Define iteratively F int to use the several-oripet curved
ively
 $\frac{1}{n} \int_{\frac{r}{n}}^{s} s^{n}$: =
 $\frac{s^{n-1}}{\sqrt{1-s^2}} \int_{s}^{s} \frac{1}{s^2}$ Also define $S := id_{x} + S^{1} + S^{2} + ...$ Al
Rik : ^A DA-bimodule saffies the relation t is convenient to use the several -

Soine iteratively

Woo define $S := id_X + S^1 + S^2$

K: A DA-bimodule satisfies the
 $S \downarrow^{i}$ $i^{m}_{n} + S \downarrow^{i}$
 \downarrow^{i} \downarrow^{j}
 \downarrow^{j} \downarrow^{k} \downarrow^{k} \downarrow^{j} \downarrow^{j}

dead proof: relation
Selentiales $\frac{1}{x^{2}}$ $\frac{1}{x^{2}}$ $\begin{bmatrix} \delta \\ \psi' \end{bmatrix}$ $sin \theta + \frac{8}{e^{\theta}}$ $\theta = C$ Idea of proof: Idea of proof:
1) Fix the number of outputs, call it n. 2) Express each summand of the above relation as a sum of n elements, where the i-th element is associated to the i-th output. $3)$ Apply the curved DA relation to the i-th output.

