
Lecture 4 : partial Kauffman states and elementary bimodules
① Upper and lower Kauffman states
Motivation Def: KAUFFMAN STATE is

D : Scrossings]- Connected eptsa
·) injective& · Vc ,

N() is a region adjac to a
· imW does not contain the

* regions adjacent to basepoint
Basepoint (global min.)

Ex : All regions not adjacent to basepoint must be in im K.
Picture above has 3 Kauffman states (,) . Each of them
can be recovered by gluing an upper and a lower Kauffman state.

In order for the gluing to be meaniful,*I we need to specify which regions on the

top still need to receive a dot

&& no idempetents .



Def: AnPER (resp.ER) WNOT DIAGRAM is the

intersection of a knot diagram sitting in the xy plane
with the half-plane (y = yo] Creep . Ey > yoz).

Here we assume that 2y = yo3 is a generic section , consisting of
2n points (n oriented upwards andi eviented downwards).

We label : the 2n points 1
,
2, ..., Im = lines

the intervals b/w points 0
,

1
,
2
, ...,
In positions

0. 1 . 2 ... 2n-1 · 2n
123 2m

Def : An UPPER KAUFFMAN STATE for an upper Knot diagram
is a pair (K , I] ,

where :

· W : [crossings-> I bounded regions 3
·) I is an n-idempotent in B (2n , n)
such that :

· 20, 2n3nI= ;

b K injective ;
· Xc

, #(c) is a region adjacent to c ;



· f occupied region R (i . e. ReimK) ,
no interval of 2R is in I;

· V unoccupied region R (i . e . RimK) ,

exactly 1 interval of &R is in I
.

#W : For unoccupied regions, the distinguished interval keeps track

of where in the lower diagram the marking of the Kauffman
state will

appear.

e
.g.:
①

- VS-
↑
&1 ,

(these are different U. K .

S
.

's because they have diferent I]

⑦ pairs with the picture on the
left to give a whole Kauffman state.
However

, B does not pair with theL picture on the left (they have
non-matching idempotents).



th : The upcoming definition of lower Kauffman state is not
exactly the mirrorof upper Kauffman state , because we
suppose that the basepaint * is the global minimum.

Def: A LOWER KAUFFMAN STATE for a lower knot diagram
is a pair (K , I] ,

where :

· W : [ crossings-> & bounded regions not adj to *)
·) I is an n-idempotent in B (2n , n)
such that :

· 20, 2n3nI= ;

b K injective ;
· Xc

, #(c) is a region adjacent to c ;
· f occupied region R (i . e. ReimK) ,
all intervals of 2Rare in I;
· V unoccupied region R (i . e . Reim K , not adj . to *) ,
all intervals of JR except one are in I
· For the region R adjacent to *
all intervals &M are in I.



Significanceof these definitions
Kauffman states are the generators of CFK.

Upper Cresp . lower) Kauffman state generate a type-D
structure X Cresp .

As-module M) associated to the

upper Cresp , lower] Knot diagram.
The box tensor product Mp#BX recovers CFK.

"Upper generators"of Knot Flor complex
Recall that we defined a bleegaard diagram associated to

a knot projection. Let's focus on the upper portion thereof .

-



Upper KauffmanLocal WhatFloer
stategenerator

Intersection pts> Function K
near crossings

Unoccupied => nidempotent I
red ares

Ex : Check that "lower generatorsof the What Floer complex are in
1-1 correspondence with lower Kaufman states.

Ex: An upper generator and a lever generator glue to give a
whole generator of CFK if the idempotents match.

Goal : Define type-D structure spanned by upper K .

S
.
's,

and An-module spanned by lower K .

S
.

's
.

Then recover CFW as a box tensor product.



2 The strategy
We can try to define the type-D structure/As-module in two ways :

Way #1 (closer to the original definitionofCFK) :

generators : Upper/lower Kauffman states

"differential": count holomaphic discs with punctures

Way #2 :

·) break the upper/lower diagram further

no type-D structure Xo

↳at bil
DGA B

,
on

· define a type-D structure/As-module/DA bimodule for

each elementary configuration , so that :
* generators= partial Kauffman states

* "differential" is defined combinatorially
Bz

· recover X by
*
/X

,

#B(X) ·

We follow way #2.

&

W : Oasvath-Szabo proved that the two ways are equivalent !



3 Type-D structure for maxima

Up to isotopy , we can assume that all maxima of the Knot projection
happen at the top of the diagram.

·.... ·
1234 2n-1 2n

There is a unique upper Kauffman state (P , Fodd) , where
·) $ : Ecrossings] -> &bounded regions] is the empty function

· Fodd : = 21
,

3
...., 2n-1} (illustrated above) matching

We define a curved type-D structure whn ever the algebra BCm, M) .
This consists of : : a module over I (n) , the subring of B (n , M)

generated by n-idempotent; and

· a map St:n B(n ,M)Em

The modula thn is generated over It by a single element Z

(Z = (b , Fodd)) · For an n-idempotent I , define

I .2 =

2 if I = Fodd

& O otherwise



Define St = 0
.

Let's check that the curved type-D relation is saffied :

/ +M + 1 = 0

O O

(because 8 =0
,

so S =0)

The curvatureMo is given by the matching M
.

This in turn is

induced by the upper diagram ,
so

us= Vis : Vi

ConsiderMoDZ , where the tensor product is over the ring of
idempotents [(n) ·

Then Uzi-1 : Uzi · Fodd = O , because,

using the relations of the algebra B(n . M), we can factor

Uzi-1 ·Vi · Fodd = Leit. RaiiRai LeiFodd
~
= O

Thus
, noDZ = 0 => curved type-D relations satified.



↳ Partial Kaufman state
Def A PARTIAL NNOT DIAGRAM is the intersection of a knot diagram

with the slice [Y, YY1].
We assume that the sections Gy = y1} and Ey = y , ] are generic,

consisting of 2n, and 2n2 points respectively.
We denote Br = B(Ms , Mr) and B2 = B (Mc

, M2)
We denote n

,-idempotents by I, and n-idempotents by Ic.
A bounded region R has boundary 2R = &R &

,
R

11 11

2y =yz4 2y =y3

Def: A PARTIAL WAUFFMAN STATE for a partial Knot diagram
is a triple (K , Is , Is) , where

· W : [crossings-> I bounded regions]
· Is is aniidempotent ;

· Iz is an n, -idempotent;
such that :

· 20,2n3nF= & and 20, 2n3nIz = $;
·) K injective;



· Xc
, #(c) is a region adjacent to c ;

· f occupied region R (i . e. ReimK) ,
all intervalsof&R are in If and no intervalo &R is in I2;

· V unoccupied region R (i . e . R& im K) , either
* all intervals of 2,R except one are in Is and
no interval of GR is in Is ; or
* all intervals of &R are in Is and

exactly one interval of 8,R is in E
.

Facts :

· "partial generators" of CFK E partial Kauffman states

occupied a arcs at top
=> incoming idempt. In

unoccupied a arcs at bottom- outgoing idempt. Is

· Given (W , Is , F2) for a partial diagram hyzy = ys}
and (5;I· Ij) for a partial diagram [yz = y < Yz3,
they glue to a partial Kauffman state (Wul , Is , F3]
iff Iz= Ed :

· Variations : U
.

K
.

S
.

+ P
.
K

.S
.

-o U
.

W
. S.

PW
.

S
.

+ L
.

K
.

S
.
-D L

.

K
.

S.



5 Elementary configurations
GOAL : define DA bimodules for elementary configurations .

What are the elementary configurations ?

Step 1 : break into pieces each one

containing 1 local max , min , or crossing& st2 : more all maxie to the

(you may create more crossings while doing so) :

-n ...

Step 3 : make sure that the basepoint is in correspondence of
the global minimum.

Step 4 : more local minima to the for left (you may introduce

new crossings while doing so.

After doing all these moves, we can build any knot type
by assembling the following elementary pieces :



· Maxima

type-D structure
-1 ... - m

Calready discussed

· Positive and negative crossings
DA bimodules

I'l 11% w
P and N

·) Local minimum

V ... / us Dabimodule zo

·) Global minimums ~D As-module

⑪



6 Crossing bimodules
Positive crossing

·...
i

We denote the intervals adjacent to the crossing by A ,
B
,
C

.

* i-1
,
Bi

,
C it1

The positive crossing bimadule P is generated over by partial
Lauffman states. There are 4 macramilies :

⑧

⑨ ⑧

G

N S W E

Manion's notation : break them further into families depending
on their incoming idempotent (top right) and outgoing one
(bottom left) .

The number of intervals among A , B, and C in Fin is the same

as in Fort
.



12A , B, c3nl) = 0 9
%1 %I

19A , B , c]n Il = 1 NB
BWA

·
/

'I

ICA , B,cEn[l = 2 ABNAB /
-

!! BaNBa I

"Localweight"ois BWAC

ABEAC FI

ASA

12A
,
B
, cyn 13 = 3 ABNABC Y

We now define the various maps Sh

For simplicity ,
we assume i = 1 and it 1 =2 when we

write Us ,
Uz

,
be
, ..



S'

· In = 0 nothing here
·) ev = 1

BWA BES ASA S

% %ReVWA LUm E

·) In = 2 : stabilised versions of the above

BeWAC ABEAC AcSAC gAC
Al

% %RU ↳UM(i)BEA

·) In = 3 : nothing here

Si

· First
,
for
every generator .

X:
·
X
:

1

no metter what its local weightis, .
we have a Si contribution as on the right. 1

.
X

Moreover :



·) I = 1

BNB Le BNBRc BWERe gE" La

--- -
UgWA UES 1 gNB 1NBB

·) lu = 2

First
,
we get stabilised versionsof the above

CNBC Li ANAB Rc icW
*

Re aBEAC La

- -- -
UzWA U apEtc 1NBC LANAB

Ther
,
we have additional terms :

ABNAB RcR , ANABRa
&cNBL , icWAs Un

- - - -
RzR i NBC RcRiicUAc LLEAL LLEBC

icNBC LiLz icWAL La ABEAC Re ApE*C Ve

⑳- - - -
↳ LzNAB L N

AB

RzR ,
NBC RcRzzcWAAB BC



· Finally , S2 is "equivariant" as follows :

Qubyay

n
.

P·Quey· E · pu
Qu

X
.

P
·

X- p(U)a

%Q(UUa



The information of Si and Scan be summarised in diagrams :

X XP

*EY is ,
Yi

Q Y

st
j
101

101

A
NB

e182GWA El 3101
B

↓Mere List in
sols %

201



101 101

Gr
L

,↳Lilz

N
&-> AB

B)ERORIR ,

AB

· so101 GBcWA LLzQUn

&InBregAC
ja

10
h
NABC

ABC

55 S is (VeUz)-equivariant , meaning that

5 (X ,
V

. Va , b) = S's(X , a, Urb) = U,
U . Sj)X, a

,
b)



If YUz does not divide either a or b
,
we have the following

S's contributions :

· SA R
, RUt

- andhe for tins, o

R
.Ut ES ↳UVWE

I think I forgot two Sa :

· uni
a

LUtUAB

if (a,a) ->

9)Ut , CRUU) , (LURUt] if Our st

&r,
*

)
, (R , Ut , L , (4) , (LURU)} if Estem



· Gas a

I
R

,UICWA

if (a,a) ->

&r , (2) , (LaURU") , (R . Ut, L , Um)] if Oxtsn

E(U , U** ) , (LaV", RuUE) , (RuU"" , LaUtt) 3 if Inet

· Gas a

Jus
LUt AN

if (a,a) ->

9)U,
LaU)

,
(R ,
W
, LLcUt), ChUt , Ut) 3 if Ounst

2U , rt), (UE , LU) , (RU ,
LU") 3 if Exten

E(ha
,U

+ )] if O= tyn



· Gas a

I
RUtyhNB

if (a,a) ->

&(URU) , (LU , RReV) , (ReUtH , rh)] if Out
ERU ,

UH) , JU , ReUt), (LURcReUtY if In

& (Ry , Ut+)] if O= nat

Motivation

Partial Kauffman state BE

#these

# partamstatSi



There is a holomorphic disc
BES

#Rc
,

S

IW : the same hol
.

disc
,
with different choice of intersection point on

the leftmostB curve
,
also gives the "stabilised" S'

,
contribution :

ABEAC

S
Let's check some DA relations

O-input relation for BWA :

B
WA

&
W
*

UUmcs + UzUm
BWA
· -
S +

YUms BWE U
. Umat W BWA

U
.Um BWA



2 input relation on (acS*?, Un , Uz) :

%

=,UVzSAC
UUz

I· = o becauseonlyeS
the only non-trivial S'enSA is

% = o I1 1 , which is (U.U) - equir , but 1not Ue-equir - or U2-equir

Thus
,

the sumo all terms is 0 .



Negative crossing
The negative crossing N is spanned by the same generators
as Pover #

,
and with same idempotents.

For the structure map :

X a
.
a ... Y dan) a ...

i p mo
- in N

,
· (b) X

where :Ri Li
Li Ri
Un Wi



7 Local minimum bimodule

We consider the case when the local minimum is on the far left :

2n+22n+2

I·
an

For all partial Kauffman states, I 140, 1
, 27 = 423 vFortn 201 =

(this is because theouter region must be unmarked

By = Bx(n + 1 ,M)Bc = Bx(n ,m)
If M(s) = 1 and M(2) = t

,
define

t -2 if i = s -2
(i) : = EM(2 + 2) - 2 if its-2

U is a module generated overI by partial Kauffman
states

,
which are pairs of idempotents ( , 4(1)) such that

· Endo, 1
, 23 = 923 , EX2n +2 , and 11 = n+ 1 ;

· ) if X = (2 , x2 , %s, . ., xm+) , ↑() = ( +- 2 , xz - 2, --/ Xn+ -2).



To define the structure map, we need an extra definition.

Def : An ADMISSIBLE SEQUENCE is a sequence a ,, ...., ack-1

of algebra elements in Bx(n + 1, M) of the form :

As= Mr

ac = Usuz
az = UcMs
as = Vola

"

&
2-2

= Us Mak-2
92k1 = RaMek-1

where each
M2i is a monomial in U , Us , U , ..., Vent

and each Main is a monomial in U , Us , Up , ..., Vante

Def : Given an admissible sequence as
, ..., acc ,

define

b := Mi -Bx(n ,M)
U
,
m> Ut-2
UzUs-2

Uzh Us
UpUz

!

Uan+ Van



For each partial Kauff state If(E , P()) and for each
admissible sequence a

...., 82k-1 , there is a contribution to Si

S(x , as , ..., ack-1) = bix

Moreover
,
for
every Ix , m =

O
,
anda manomial in Us

, ..., Vant

there is a contribution to S

· (Ix
, umu) =(u)(

Let's check some curved DA relations

O algebra inputs

*s...UseUet Ex
=Wat => curved DA relation

satified



2 algebre input relation on (Ix , (2 , Rz]

quin =
UR

CanlyluEx

·
V

Us-2 Ex

go
Again , the curved DA relation is satified.



8 Terminal As module for the global minimum

Depending on the version of the terminal As-module we choose,

we get different versionsof CFK.
The simplest case is CFK , where we disallow diss from crossing
any of the two basepoints w & z.

E
Z

W

There is a single lower Kauffman state Z ,
with incoming
-

idempotent Iz = 21340, 1
, 23 , generating& over

The only non-trivial relation is
More explicitly : *7=

= 0 for i = 1 and is 3

* m
> (2 , j) = O for every non-constant

path in Path(Q(2, 1)]
*) M2 (z , 1) = 2 .


