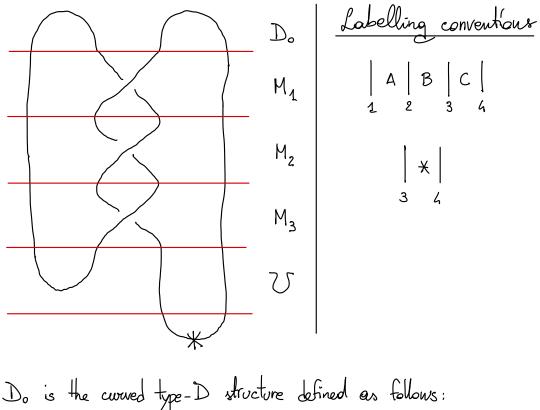
Lecture 5: computing HFK of the right tretail

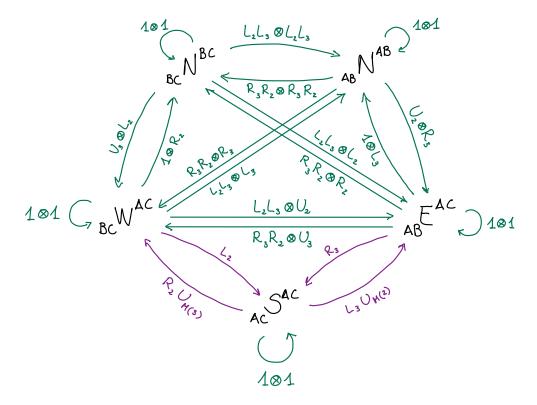


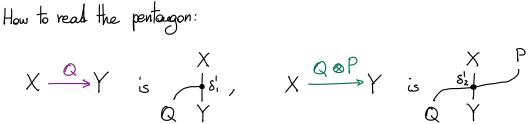
*)
$$D_o = \mathbb{F}_2 \langle_{A_c} \mathbb{I} \rangle$$

*) $\mathbb{I}(2)$ acts as $AC \cdot \mathbb{I} = \mathbb{I}_{A_c} \mathbb{I}$, others $\mathbb{I} = 0$.
*) $S^4 = 0$.

Converture : $\mu_0^{D_0} = U_1 U_2 + U_3 U_4$

M1 is a DA bimodule. We only need the submodule w/local "Che actions S_1^1 and S_2^1 are shown in the pentagon below. S_3^1 can be checked from the notes of Lecture 4. $S_n^1 = 0$ if n > 3

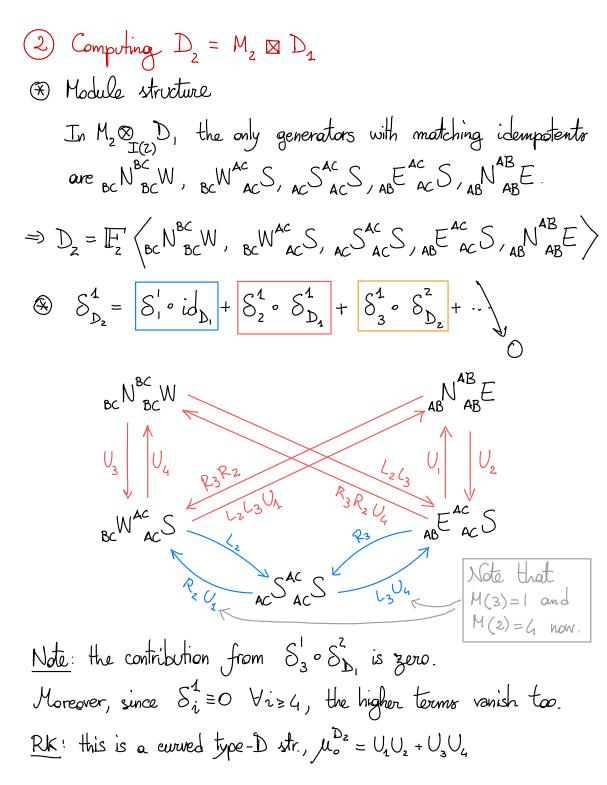




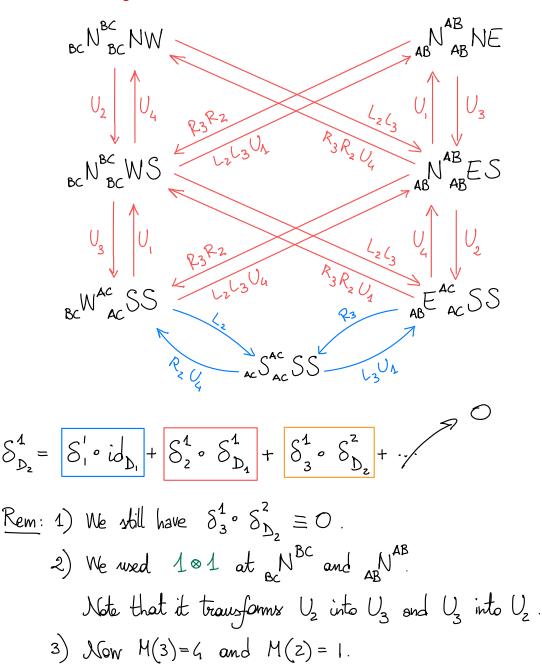
1 Computing
$$D_1 = M_1 \boxtimes D_0$$

(*) Module structure : $M_1 \bigotimes D_0$
The only pairs of generators ω / matching idempotents
are $(B_{L}W^{Ac}, A_{C}I)$, $(A_{L}S^{Ac}, A_{C}I)$, $(A_{B}E^{Ac}, A_{C}I)$.
 $\sim H_1 = F < B_{C}W$, $A_{C}S$, $A_{B}E >$
(*) $S_{D_1}^4 = S_1^4 \circ id_{D_e} + S_2^4 \circ S_{D_e}^4 + S_3^1 \circ S_{D_e}^2 + \cdots$
Thus, $S_{D_1}^4$ is given simply by the S_1^4 action on H_1 :
 $B_{C}W$
 R_{K} : Note that $M(3) = 4$ and $H(2) = 1$ here.
RK: D, satisfies the curved DA relations $\omega/$

 $\underline{K} : \underline{D}_1$ satisfies the curved DA relations ω_1 $\mu_0^{D_1} = U_1 U_3 + U_2 U_4$ (new curvature)

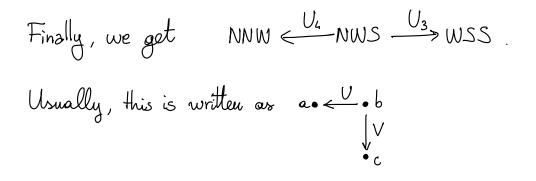


(3) Computing $D_3 = M_3 \boxtimes D_2$



4) This is a curved type D structure with $\mu_0^{D_3} = U_1 U_3 + U_2 U_4$.

(4) Computing $D_v = 75 \boxtimes D_3$ idempotents As a module, $U = \mathbb{F}_2 \langle \mathbb{F}_2^{BC} \rangle$. The S maps are complicated (see Lecture 4) $\Rightarrow D_{77} = F_2 < NNW, NWS, WSS >$ $S_{D_{\mathcal{U}}}^{\mathcal{L}} = S_{\mathcal{L}}^{\mathcal{L}} \circ S_{D_{\mathcal{J}}}^{\mathcal{L}} + S_{\mathcal{L}}^{\mathcal{L}} \circ S_{D_{\mathcal{J}}}^{\mathcal{J}} + \cdots$ NNW Notes: $U_3 \left(\bigcup_{3} \right) \left(\bigcup_{4} \right)$ \bigstar S_2^1 eats U_2 and returns $U_{M(1)} = U_3$. \bigstar $S_2^1(U_1) = 0$, which is why it disappears. NWS U_3 U_3U_4 ★ The two Uz arrows from NNW caucel WSS out w/ each other $\bigotimes U_3 U_3 = 0$ on idempotent \star . \circledast The two preferred sequences in $S_4^1 \circ S_{D_3}^1$ are: NNW $\xrightarrow{L_2L_3}$ NES $\xrightarrow{U_1}$ NNE $\xrightarrow{R_3R_2}$ NWS WSS $\xrightarrow{L_2L_3U_4}$ NES $\xrightarrow{U_1}$ NNE $\xrightarrow{R_3R_2}$ NWS



RK: OSz's method recover the UV=0 version of CFK (so you need to quotient it by that). Chis is not relevant here because we do not have any UV.