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Abstract. We prove that any permutation group of degree n ≥ 4 has at most
5(n−1)/3 conjugacy classes.

1. Introduction

One of the most important invariants of a finite group G is the number k(G) of its
conjugacy classes. This is equal to the number of complex irreducible characters of
G. There are many interesting open problems concerning k(G). For example it is
not known whether there exists a universal constant c > 0 so that k(G) > c log(|G|)
holds for any finite group G (see [16], [9], [8]). In this paper we are interested in
giving upper bounds for k(G). Such problems are closely related to the k(GV )
theorem (see [19]) and the non-coprime k(GV ) problem [3].

One of the important special cases in giving upper bounds for k(G) is the case
when G is a permutation group of degree n. Kovács and Robinson [10] proved
that k(G) ≤ 5n−1 and reduced the proposed bound of k(G) ≤ 2n−1 to the case
when G is an almost simple group. This latter bound was later proved by Liebeck
and Pyber in [11] for arbitrary finite groups G. Kovács and Robinson in [10] also
proved that k(G) ≤ 3(n−1)/2 for G a solvable permutation group of degree n ≥ 3.
Later Riese and Schmid [18] proved the same bound for 3′, 5′ and 7′-groups, and in
[13] the second author obtained the bound k(G) ≤ 3(n−1)/2 for an arbitrary finite
permutation group G of degree n ≥ 3.

By imposing restrictions on the set of composition factors of the permutation group
G, one can obtain stronger bounds on k(G). For example, in [13] it was shown that
k(G) ≤ (5/3)

n
whenever G has no composition factor isomorphic to C2, and more

recently Schmid [20] proved that k(G) ≤ 7(n−1)/4 for n ≥ 5 where G has no non-
abelian composition factor isomorphic to an alternating group or a group in [1].
However it seems hard to generalize these bounds for arbitrary groups.

The main result of the current paper is the following.

Theorem 1.1. A permutation group of degree n ≥ 4 has at most 5(n−1)/3 conjugacy
classes.
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The direct product of n/4 copies of S4 or D8 is a permutation group of degree n
with exactly 5n/4 conjugacy classes (whenever n is a multiple of 4). But even more
can be said. Pyber has pointed out (see [10] and also [11]) that for each constant
0 < c < 51/4 there are infinitely many transitive permutation groups G with k(G) >
cn−1. In fact, G can be taken to be the transitive 2-group D8 oCn/4 ≤ Sn whenever
n is a power of 2 at least 4. (This can be seen by (1) of Lemma 2.1.)

However, for special subgroups of primitive permutation groups G, one may give
better than exponential bounds for k(G). A transitive permutation groupG is called
primitive if the stabilizer of any point is a maximal subgroup inG. This is equivalent
to saying that the only blocks of imprimitivity for G are the singleton sets and the
whole set on which G acts. The symmetric group Sn is always primitive and it is
easy to see that k(Sn) = p(n), the number of partitions of n. Hardy and Ramanujan
[6] and independently but later Uspensky [21] gave an asymptotic formula for p(n)
and this is less than exponential. It is a natural question whether k(G) ≤ p(n)
for any primitive permutation group of degree n. This was shown to be true for
sufficiently large n by Liebeck and Pyber [11] and later for all normal subgroups
of all primitive groups by the second author in [13]. In this paper we go even
further by showing that for any subgroup H of any primitive permutation group
G of degree n, apart from the alternating group An and Sn, we have k(H) ≤ p(n)
(see Theorem 3.1). This result is used to give a general upper bound for k(G) for
a transitive permutation group G from knowledge of the partition function (see
Theorem 4.1). Finally, this result is used to derive Theorem 1.1.

2. Preliminaries

The following lemma collects basic information on the number of conjugacy classes
in a subgroup and in a normal subgroup of a finite group.

Lemma 2.1. Let H be a subgroup and N be a normal subgroup of a finite group
G. Then

(1) k(H)/|G : H| ≤ k(G) ≤ k(H) · |G : H|;
(2) k(H) ≤

√
|G|k(G); and

(3) k(G) ≤ k(N) · k(G/N).

Proof. Statements (1) and (3) can be found in [5] (see also [15]). Statement (2)
follows from (1). �

In special cases we will need a straightforward consequence of the Clifford-Gallagher
formula [19, Page 18]. The second statement of the following lemma follows from
[19, Proposition 8.5d].

Lemma 2.2. Let Irr(N) denote the set of complex irreducible characters of a nor-
mal subgroup N of a finite group G. Then S = G/N acts on Irr(N) in a natural
way and let IS(θ) denote the stabilizer of a character θ in Irr(N). Then we have

k(G) ≤
∑

θ∈Irr(N)

k(IS(θ))/|S : IS(θ)|.

Moreover if N is a full direct power of a finite group T and S permutes the factors
of N transitively and faithfully, then k(G) ≤ k(T o S).
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For a non-negative integer n let the number of partitions of n be denoted by p(n).
This is the number of conjugacy classes of the symmetric group Sn. In 1918 Hardy
and Ramanujan [6] and independently but later Uspensky [21] proved the following
asymptotic formula.

p(n) ∼ eπ
√

2n/3

4n
√

3
.

In 1937 Rademacher [17] gave a series expansion of p(n), however here we will only
need the following lower and upper bounds.

Lemma 2.3. Let n ≥ 1 be an integer. Then e2.5
√
n/13n < p(n) < eπ

√
2n/3.

Proof. For the upper bound see [4] and for the lower bound see [13]. �

3. Primitive groups

A transitive permutation group G is called primitive if the stabilizer of any point
is a maximal subgroup in G. This is equivalent to saying that the only blocks of
imprimitivity for G are the singleton sets and the whole set on which G acts. The
symmetric and alternating groups, Sn and An, are examples of primitive permuta-
tion groups. In this section we will extend Corollary 2.15 (i) of [11] and Theorem
1.3 (i) of [14] to show Theorem 3.1. This result heavily depends on Theorem 1.1 of
[12] and also on [2].

Theorem 3.1. Let G be a primitive permutation group of degree n different from
An and Sn. Then we have k(H) ≤ p(n) for every subgroup H of G.

Proof. Let G be a primitive permutation group of degree n. If H ≤ G are subgroups
of Sm o Sr in its product action on n =

(
m
k

)r
points where m ≥ 5 and Sm acts on

k-subsets for some k with 1 ≤ k < n, then k(H) ≤ 2mr−1 by Theorem 2 of [11].
But for (k, r) 6= (1, 1) we have

2mr−1 <
e

2.5
√

(m
k )

r

13
(
m
k

)r < p(

(
m

k

)r
) = p(n),

where the second inequality follows from Lemma 2.3. Thus we may exclude these
cases from the discussion.

By Theorem 1.1 of [12], we then know that |G| < n1+[log2(n)] or G is one of the
Mathieu groups in their 4-transitive action.

Again by Lemma 2.3, we see that |G| < n1+[log2(n)] < p(n) for n ≥ 1500. Further-
more, by using the exact values of p(n) available in [2], |G| < p(n) is true even for
n ≥ 1133.

If 120 ≤ n < 1133 then p(n) < |G| < n1+[log2(n)] holds only if n = 1024 and
G = AGL(10, 2), n = 512 and G = AGL(9, 2), n = 256 and G = AGL(8, 2), or
n = 511, 255, 190, 171, 153, 144, 136, 128, 127, 121, or 120 (this was also obtained
by [2]).

If G is any of these exceptional cases (with n ≥ 120) and is not a subgroup of

Sm o Sr in its product action discussed above, then k(G)|G| < p(n)
2
, which forces

k(H) < p(n) for any subgroup H of G (by (2) of Lemma 2.1). Furthermore if
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n ≤ 119 then we again have k(G)|G| < p(n)
2
, unless n = 64 and G = AGL(6, 2),

or n ≤ 32 and G is almost simple or of affine type. Both these statements were
derived by [2].

For almost simple primitive groups G of degrees n at most 32 (including the 4-
transitive Mathieu groups but excluding An and Sn) we can compute the subgroup
lattice of G by [2] and so the claim can be checked for all subgroups H of G. Thus
we may assume that G is an affine primitive permutation group of degree 64 or at
most 32.

We must show that if H is a subgroup of AGL(m, p) with n = pm ≤ 64, then
k(H) ≤ p(n). If m = 1 then it is easy to see that k(H) ≤ p = n ≤ p(n). If

m = 2 and p = 5 or 7, or if pm = 27, then |AGL(2, p)|k(AGL(2, p)) < p(n)
2

and
we may apply (2) of Lemma 2.1. Thus we may assume that p = 2 or 3. The
full subgroup lattice of AGL(m, p) can be computed by [2] for all remaining cases
except (m, p) = (5, 2) and (m, p) = (6, 2), and thus the validity of the inequality
k(H) ≤ p(n) can be checked directly.

Let m = 5 and p = 2. Any subgroup of GL(5, 2) has less than 260 conjugacy
classes (this can be obtained by [2] by viewing GL(5, 2) as a permutation group on
31 points), and so (3) of Lemma 2.1 gives k(H) < 260 ·32 < p(32) for any subgroup
H of AGL(5, 2).

Let m = 6 and p = 2. Put N = O2(H). The factor group H/N can be viewed as
a completely reducible subgroup on a vector space of size 64 (see [11, Page 554]).
We claim that k(H/N) ≤ 63. For this observe that for irreducible linear subgroups
T of GL(V ) we have k(T ) < |V | whenever V is a vector space of size a power
of 2 at most 64. (This can be checked by [2] by going through stabilizers of all
affine primitive permutation groups of degrees a power of 2 at most 64.) Then, by
using part (3) of Lemma 2.1, induction, and noting that a normal subgroup of a
completely reducible linear group also acts completely reducibly on the same vector
space (Clifford’s theorem), we obtain the claim.

Let S be a Sylow 2-subgroup of AGL(6, 2) containing N . Suppose that |S : N | ≥ 64.
Then (3) of Lemma 2.1 gives k(H) ≤ |N | · k(H/N) ≤ 215 · 63 < 221 < p(64). Now
suppose that |S : N | ≤ 16. Then k(N) ≤ |S : N | ·k(S) ≤ 16 ·1430, by (1) of Lemma
2.1, and so k(H) ≤ k(N)·k(H/N) ≤ 16·1430·63 < p(64). So the only case missing is
when |S : N | = 32. We would like to bound k(N) in this case. Let S1 be a maximal
subgroup of S containing N . By [2] we know that k(S1) ≤ 1723 or k(S1) = 1768.
In the first case we have k(N) ≤ 16 · 1723, and so k(H) ≤ 16 · 1723 · 63 < p(64).
So suppose that the second case holds. Then let S2 be a maximal subgroup in S1

containing N . By [2] again, we know that k(S2) ≤ 2240, and so k(N) ≤ 8 · 2240.
This gives k(H) ≤ 8 · 2240 · 63 < p(64). �

A straightforward consequence of Theorem 3.1 is the following.

Corollary 3.2. If H is a subnormal subgroup of a primitive permutation group of
degree n, then k(H) ≤ p(n).

Proof. If H = Sn then this is clear. If H = An, then this follows from [14, Lemma
2.3]. Otherwise apply Theorem 3.1. �
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4. Transitive groups

In this section we will give an upper bound in terms of the partition function for
k(G) when G is a transitive permutation group. This result depends on Theorem
3.1 and is used in the proof of Theorem 1.1.

Theorem 4.1. Let G be a transitive permutation group of degree n with point
stabilizer H. Consider a chain

H = H0 < H1 < . . . < Ht = G

with Hi maximal in Hi+1 for i = 0, . . . , t − 1 and call ai := |Hi : Hi−1| for i =
1, . . . , t, so that a1 · · · at = |G : H| = n. Then

k(G) ≤ (p(a1)1/a1p(a2)1/a1a2 · · · p(at−1)1/a1···at−1p(at)
1/a1···at)

n
.

Proof. Let G be a minimal counterexample to the statement of the theorem with
a fixed chain of subgroups. By Corollary 3.2, we may assume that t ≥ 2. We
now construct a subnormal filtration as in [20]. Let B0 be the core of H1 in G, so
that G/B0 is a transitive permutation group of degree n/a1. Let N be the core
of H = H0 in H1, so that H1/N is a primitive permutation group of degree a1.
Let {xi}1≤i≤n/a1 be a set of representatives for the right cosets of H1 in G, with
x1 = 1, and define inductively Bi := Bi−1 ∩Nxi for i ≥ 1. Then Bi = Bi−1 ∩ Bxi

1

and since N is normal in H1 and H is core-free,

Bn/a1 ⊆
n/a1⋂
i=1

Nxi =
⋂
g∈G

Ng ⊆
⋂
g∈G

Hg = {1}.

We obtain a subnormal filtration (grading) B = B0 B B1 B · · · B Bn/a1 = {1}.
Observe that Bi E B0 for all 0 ≤ i ≤ n/a1, this is easily seen by induction on i:
since B0 E G we have Bxi

1 E Bxi
0 = B0 and hence Bi = Bi−1 ∩ Bxi

1 E B0. Let
L := B0 ∩N . We have

Bi/Bi+1 = Bi/Bi ∩Bxi+1

1 = Bi/Bi ∩ Lxi+1 ∼= BiL
xi+1/Lxi+1 EB0/L

xi+1 ∼= B0/L.

Since B0/L ∼= B0N/N E H1/N , each Bi/Bi+1 is isomorphic to a subnormal sub-
group of the primitive group H1/N of degree a1. By Corollary 3.2, k(Bi/Bi+1) ≤
p(a1) for all i. Now consider the chain H1/B < H2/B < . . . < Ht−1/B < Ht/B =
G/B. Each subgroup of the chain is maximal in the following one hence by mini-
mality of G the theorem holds for G/B relative to this chain and hence

k(G) ≤ k(B)k(G/B) ≤
( n/a1−1∏

i=0

k(Bi/Bi+1)
)
· k(G/B)

≤ p(a1)n/a1 · (p(a2)(n/a1)/a2 · · · p(at)(n/a1)/(a2···at))

= p(a1)n/a1p(a2)n/a1a2 · · · p(at−1)n/a1···at−1p(at).

The proof is complete. �

5. Proof of Theorem 1.1

In this section we will prove our main result. The first lemma enables us to deal
with cases when n is relatively small.
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Lemma 5.1. If G is a permutation group of degree n all of whose orbits have
lengths at most 23 then k(G) ≤ 5n/4.

Proof. By induction on n, as in Lemma 3.1 of [14], we may assume that G is
transitive. For transitive groups the claim can be checked by [2]. �

By [7] all transitive permutation groups of degree at most 30 are known therefore
the 23 in Lemma 5.1 could perhaps be replaced by 30 (or even 31) but it is not
clear to what extent this possible improvement could be of help.

Now we proceed to the proof of Theorem 1.1. Many of the computations below
have been performed by [2], but we will not point this out in all cases.

Let G be as in the statement of the theorem. It acts faithfully on a set Ω of size n.

We proceed by induction on n. By Lemma 5.1 we can assume that n ≥ 24. Suppose
G is intransitive and let O be a nontrivial orbit of G of size 1 < r < n. Let N be
the kernel of the action of G on O. Then N acts faithfully on n−r points and G/N
acts faithfully on r points hence if r, n− r ≥ 4 then

k(G) ≤ k(N) · k(G/N) ≤ 5(n−r−1)/3 · 5(r−1)/3 < 5(n−1)/3.

If r ≤ 3 then k(G/N) ≤ r, and if n − r ≤ 3 then k(N) ≤ n − r, from which the
result follows likewise. Hence we may assume that G is transitive.

Let H be the stabilizer of α ∈ Ω in G. If H is maximal in G then G is a primitive
permutation group and thus by Theorem 4.1 and Lemma 2.3 we have k(G) ≤
p(n) ≤ eπ

√
2n/3 and this is at most 5(n−1)/3 for n ≥ 25.

So assume that H is not maximal in G and let K be such that H < K < G. Let
a := |K : H| and b := |G : K|. Notice that the K-orbit ∆ containing α is a block
of imprimitivity for the action of G. Let B be the kernel of the action of G on the
block system Σ associated to ∆, in other words, B is the normal core of K in G.
G/B is a transitive permutation group of degree b. By taking subsequent kernels
on the blocks (i.e. arguing as in the proof of Theorem 4.1) we find a subnormal
sequence B0 = B D B1 D . . .D Bb = {1} such that each factor group Bi/Bi+1 can
be considered as a permutation group of degree a.

If a and b are both at least 4 then we may apply induction and find

k(G) ≤ k(B) · k(G/B) ≤ (5(a−1)/3)b · 5(b−1)/3 = 5(n−1)/3.

So we may assume that whenever H < L < G either |G : L| ≤ 3 or |L : H| ≤ 3.

If both a and b are at most 3 then n ≤ 9 and the result follows from Lemma 5.1.
Assume that 4 ≤ a ≤ 23 and b ≤ 3. Then k(G/B) ≤ 3 hence since the orbits of
B have all size at most 23 by Lemma 5.1 we have k(G) ≤ k(B)k(G/B) ≤ 5n/4 · 3
which is at most 5(n−1)/3 since n ≥ 24.

We are in one of the following cases.

(1) H is maximal in K and b = |G : K| ∈ {2, 3}, a ≥ 24 (consider the block
system associated to K).

(2) K is maximal in G and a = |K : H| ∈ {2, 3}.
(3) There exists a subgroup L < G such that H < K < L < G with K maximal

in L, a = |K : H| ∈ {2, 3}, c = |G : L| ∈ {2, 3}, and q = |L : K| ≥ 24/a
(consider the block system associated to L).
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We consider the cases separately. In the following “filtration argument” refers to
the argument used in the proof of Theorem 4.1. If B ≤ A are subgroups of G, by
“filtration associated to A and B” we mean the filtration of the kernel of the action
of A on the system of blocks associated to B obtained as in the proof of Theorem
4.1.

Case 1. By Theorem 4.1, since p(b) ≤ b we have k(G) ≤ p(a)bb. Thus it is
sufficient to show that p(a)bb ≤ 5(ab−1)/3, i.e. p(a) ≤ ((5(ab−1)/3)/b)1/b. For this
it is sufficient to show that p(a) ≤ ((5(2a−1)/3)/3)1/3 for a ≥ 24. If a ≥ 55 this

follows from the bound p(a) ≤ eπ
√

2n/3 (Lemma 2.3), and if 24 ≤ a ≤ 54 it follows
by inspection.

Case 2. In this case G/B is a primitive group of degree b. Applying the filtra-
tion argument used in the proof of Theorem 4.1, since p(a) ≤ a we find k(G) ≤
abk(G/B) and it is enough to prove that abk(G/B) ≤ 5(ab−1)/3, i.e. (*) k(G/B) ≤
((5(ab−1)/3)/ab) = (5(a−1/b)/3/a)b. Recall that ab = n ≥ 24. If a = 3 then b ≥ 8,

now p(b) ≤ (5(3−1/8)/3/3)b follows from the bound p(b) ≤ eπ
√

2b/3 (Lemma 2.3) if
b ≥ 34 and by inspection if 8 ≤ b ≤ 33. Suppose now a = 2, so that b ≥ 12. If b = 12
let S be a block stabilizer, then |G : S| = b and S is a permutation group on 24
points having at least 2 orbits hence by Lemma 5.1 we have k(G) ≤ 12·k(S) ≤ 12·56

and this is less than 523/3. Let b ∈ {13, 14, 15}. Then using the fact that any prim-
itive group of degree b different from Sb has at most k(Ab) conjugacy classes we
see that (*) holds unless G/B ∼= Sb. If B is not elementary abelian of rank b
then the filtration argument implies k(G) ≤ ab−1k(G/B) ≤ 5(ab−1)/3. So assume
that B ∼= Cb2 and G/B ∼= Sb. Then by the Clifford-Gallagher formula (Lemma
2.2) k(G) ≤ k(C2 o Sb) which is at most 5(n−1)/3 by [2]. If 16 ≤ b ≤ 55 then (*)
holds by inspection using k(G/B) ≤ p(b), and if b ≥ 56 it follows from the bound

p(b) ≤ eπ
√

2b/3 (Lemma 2.3).

Case 3. By Theorem 4.1, since p(a) ≤ a and p(c) ≤ c we have k(G) ≤ abp(q)cc
where b = qc. We want to prove that k(G) ≤ 5(n−1)/3 where n = ab = aqc. If a = 3
then it is sufficient to prove that 3bp(q)cc ≤ 5(aqc−1)/3 for q ≥ 8. Raising both sides
to the power 1/c and rearranging, using the fact that c1/c ≤ 1.5 we see that it is

sufficient to prove that p(q) ≤ 1
1.5 (5

1
3 (3−1/16)/3)q for q ≥ 8. If q ≥ 31 this follows

from the bound p(q) ≤ eπ
√

2q/3 (Lemma 2.3), and the case 8 ≤ q ≤ 30 is checked
by inspection.

Now assume that a = 2 and q ≥ 16. We prove that (**) 2cq · p(q)c · c ≤ 5(2cq−1)/3.
Raising both sides of (**) to the power 1/c and rearranging we see that it is enough

to prove that p(q) ≤ 1
1.5 (5

1
3 (2−1/32)/2)q, and for this it is enough to prove that

p(q) ≤ 1
1.5 (1.43)q. If q ≥ 60 this follows from the bound p(q) ≤ eπ

√
2q/3 (Lemma

2.3), and if 16 ≤ q ≤ 59 inequality (**) can be checked by inspection.

Now assume that a = 2 and either 13 ≤ q ≤ 15 or (q, c) = (12, 3). Every nontrivial
subnormal subgroup of any primitive group of degree q is a primitive group of degree
q, a primitive group of degree q which is not the full symmetric group Sq has at
most k(Aq) conjugacy classes, and we have k(A12) = 43, k(A13) = 55, k(A14) = 72,

k(A15) = 94. Moreover, the ratio 5(n−1)/3/(2cq ·p(q)c ·c) is less than 2. Thus we may
assume that the kernel of the action of G on the system of blocks associated to the
primitive group K/HK is a direct product Ccq2 = Cb2, indeed if this is not the case
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then using the filtration argument we see that k(G) ≤ 2cq−1 · p(q)c · c ≤ 5(n−1)/3.
Consider the filtration F1 associated to L and K. The two factors of this filtration
are isomorphic to subnormal subgroups of the primitive group L/KL of degree q.
Consider the filtration F2 associated to L and H. By the Clifford-Gallagher formula
(Lemma 2.2) a fixed factor of F2 has at most k(S2 oA) conjugacy classes, where A
is a permutation group of degree q isomorphic to a factor of F1. If no factor of F1

is isomorphic to Sq then it is enough to show that c · k(Aq)
c · 2cq ≤ 5(n−1)/3 which

is true, and if there is a factor of F1 isomorphic to Sq then since k(S2 oS13) = 1770,
k(S2 oS14) = 2665 and k(S2 oS15) = 3956 by the Clifford-Gallagher formula (Lemma
2.2) it is enough to show that c · k(S2 o Sq) · 2q(c−1) · p(q)c−1 ≤ 5(n−1)/3 which is
true.

Now assume that (a, q, c) = (2, 12, 2). K is the stabilizer of a block of size 2
(there are 24 such blocks). It acts on the 24 points of a block system consisting
of 12 blocks of size 2 intransitively, hence if N denotes the kernel of this action
we deduce k(K/N) ≤ 524/4 = 56. Now look at the (faithful) action of N on the
remaining 24 points. If this action is intransitive then k(N) ≤ 524/4 by Lemma 5.1.
If it is transitive then there is an induced transitive action of N on the second block
system of twelve blocks of size 2. Since any transitive group of degree 12 has at most
p(12) = 77 conjugacy classes (by [2]), by Theorem 4.1 we deduce k(N) ≤ 212 ·77 and
even k(N) ≤ 211 ·77, in which case k(G) ≤ |G : K|·k(K/N)·k(N) ≤ 24·56 ·211 ·77 ≤
547/3, unless the kernel of the action of N on the 12 blocks of size 2 is a full direct
product C12

2 . Suppose this is the case. Let R be the kernel of the transitive action
of N on the twelve blocks of size 2 of the second block system. If k(N/R) 6∈ {65, 77}
then k(N/R) ≤ 55 and k(G) ≤ |G : K| · k(K/N) · k(N) ≤ 24 · 56 · 212 · 55 ≤ 547/3,
so now assume k(N/R) ∈ {65, 77}. It can be checked by [2] that k(S2 o N/R) ∈
{1165, 1265, 1960, 2210}. By the Clifford-Gallagher formula (Lemma 2.2), k(N) ≤
k(S2 oN/R) ≤ 2210 hence k(G) ≤ |G : K| · k(K/N) · k(N) ≤ 24 · 56 · 2210 ≤ 547/3.

References

[1] Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, R. A.; Wilson, R. A. Atlas of finite
groups. Oxford University Press, Eynsham, (1985).

[2] The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4 ; 2005,

(http://www.gap-system.org).
[3] Guralnick, R. M.; Tiep, P. H. The non-coprime k(GV) problem. J. Algebra 293 (2005), no.

1, 185-242.
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