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ATTILA MARÓTI AND M. CHIARA TAMBURINI

Abstract. We give explicit, asymptotically sharp bounds for the probability
that a pair of random permutations of degree n generates either Sn or An and
also for the probability that a pair of random even permutations of degree n
generates An. As an application we answer a question of Wiegold in the case
of alternating groups.

1. Introduction

In [5] Dixon considered the probability p(Sn) that a random pair of elements
from the symmetric group Sn (with respect to the uniform distribution) generates
either Sn or the alternating group An. He proved that this probability tends to 1
as n tends to infinity. More precisely, he proved that for sufficiently large n we have
1− 2/(ln ln n)2 < p(Sn). This estimate was improved by Bovey and Williamson [2]
to 1− e−

√
ln n < p(Sn) for sufficiently large n. In 1980 a better lower bound of the

form 1 − n−1+o(1) was given by Bovey [3]. Then, proving a conjecture of Dixon,
Babai [1] showed that p(Sn) = 1− (1/n) + O(1/n2). Finally, Dixon [6] established
an even better asymptotic formula for p(Sn) namely

1− 1
n
− 1

n2
− 4

n3
− 23

n4
− 171

n5
− 1542

n6
+ O(1/n7).

For an alternative proof of this asymptotic formula see [4]. The latter two results
depend on the Classification of Finite Simple Groups. Everything said above about
p(Sn) is also true for the probability p(An) of a random pair of elements of An

(with respect to the uniform distribution) that generates An.

One of the purposes of this short paper is to give explicit, asymptotically sharp
lower and upper bounds for p(An) and p(Sn).

Theorem 1.1. Let n be an integer at least 4 and let X be Sn or An. Then

1− 1
n
− 13

n2
< p(X) ≤ 1− 1

n
+

2
3n2

.

Theorem 1.1 depends on the Classification of Finite Simple Groups.
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For a non-abelian finite simple group G let h(G) be the largest non-negative
integer k such that the k-th direct power of G can be generated by 2 elements.
Erfanian and Wiegold [11] showed that h(G) tends to infinity as |G| tends to infinity
whenever G is a non-abelian finite simple group of spread one. A year later Liebeck
and Shalev [16] proved that there exists universal constants a and b such that
1 − (a/m(G)) < p(G) < 1 − (b/m(G)) holds for any non-abelian finite simple
group G where p(G) denotes the probability of a random pair of elements of G
(with respect to the uniform distribution) that generates G and m(G) denotes the
minimal index of a proper subgroup of G. This together with the observation of Hall
[13] that h(G) = (p(G)|G|2)/|Aut(G)| provides an asymptotic formula for h(G). In
fact we see that h(G) tends to infinity as |G| tends to infinity.

Problem 17.116 of [14] of Wiegold asks for an explicit lower bound for h(G),
namely

√
|G|. This lower bound has been established by Erfanian [9] for projective

special linear groups and by Erfanian and Rezaee [10] for symplectic groups. A
paper on an asymptotic result concerning the alternating groups has also been
published [8] (but a stronger result follows from the previous paragraph). Here we
prove the conjecture of Wiegold in the case of alternating groups. In fact, Theorem
1.1 gives more.

Corollary 1.2. Let n be an integer at least 7. Then
(
1− 1

n
− 13

n2

)(n!
4

)
< h(An) ≤

(
1− 1

n
+

2
3n2

)(n!
4

)
.

2. Transitive groups

In [5, Lemma 1] it was proved that the probability p1(Sn) that a random pair of
permutations of degree n generates a transitive group is 1− (1/n)+O(1/n2). Here
we follow an alternative proof of this fact [1, Section 3] from which explicit upper
and lower bounds can be derived. Let us denote the probability that a random pair
of even permutations of degree n generates a transitive group by p1(An).

Lemma 2.1. Let n be an integer at least 4 and let X denote Sn or An. Then
p1(X) ≤ 1− (1/n) + (2/3n2).

Proof. Clearly, p1(X) is less or equal than the probability that a random ordered
pair of elements of X generates a permutation group with no fixed point, which
in turn, by Bonferroni inequalities (truncated Inclusion-Exclusion Principle), is at
most

1
(n!)2

(
(n!)2 −

(
n

1

)
((n− 1)!)2 +

(
n

2

)
((n− 2)!)2

)
.

But this former expression is less or equal than 1− (1/n) + (2/3n2). ¤

Lemma 2.2. Let n be an integer at least 5 and let X denote Sn or An. Then
1− (1/n)− (8.2/n2) < p1(X).

Proof. First let X = Sn. Then

1− p1(Sn) ≤ 1
(n!)2

(
n((n− 1)!)2 +

(
n

2

)
3((n− 2)!)2 +

[n/2]∑

k=3

(
n

k

)
((n− k)!k!)2

)
<
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<
1
n

+
1.5

n(n− 1)
+

3
(n− 1)(n− 2)

<
1
n

+
8.2
n2

where the first 3 in these inequalities comes from the fact that p1(S2) = 3/4. The
same argument applies in case X = An. ¤

We remark that by Lemmas 2.1 and 2.2 and by [6, Remark 3] we may obtain
explicit upper and lower bounds for the number of subgroups of index n of a free
group of rank 2 and also for the number of indecomposable permutations in Sn (in
this context x ∈ Sn is called indecomposable if there is no positive integer m < n
such that x maps {1, 2, . . . , m} into itself).

3. Imprimitive groups

Let X be Sn or An and let p2(X) be the probability that a random ordered pair
of elements of X generates an imprimitive transitive group. A maximal imprimitive
subgroup of X has the form (Sa o Sb) ∩ X where a and b are positive integers at
least 2 with ab = n. For the proof of Theorem 1.1 we will use the following upper
bounds for p2(X) in the various cases for n.

Lemma 3.1. Let n be a composite integer at least 10. Then we have the following.

(i) If 43 ≤ n then p2(X) ≤ n/2[(n+3)/2].
(ii) If 23 ≤ n ≤ 42 then p2(X) ≤ ((n/`)!``!)/(2(n− 1)!) where ` is the smallest

prime divisor of n.
(iii) If 10 ≤ n ≤ 22 then p2(X) ≤ ∑

a,b>1

ab=n

(a!bb!)/n!.

Proof. Clearly, for all composite n, we have

p2(X) ≤
∑

a,b>1

ab=n

( n!
a!bb!

) (a!bb!)2

(n!)2
=

∑

a,b>1

ab=n

a!bb!
n!

.

This gives (iii). By the proof of [18, Lemma 2.1] we also have

∑

a,b>1

ab=n

a!bb!
n!

≤ (n/`)!``!
2(n− 1)!

where ` is the smallest prime divisor of n. This gives (ii). Finally, again by the
proof of [18, Lemma 2.1], we have ((n/`)!``!)/(2(n − 1)!) ≤ n/2[(n+3)/2] for n ≥ 8.
This gives (i). ¤

4. Primitive groups

Let X be Sn or An and let p3(X) be the probability that a random ordered pair
of elements of X generates a primitive group different from An or Sn. Before we
bound this probability we need some preliminary results.

For an integer n at least 5 let r(Sn) be the number of conjugacy classes of maxi-
mal primitive subgroups of Sn apart from An plus the number of conjugacy classes
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of maximal almost simple primitive subgroups of An (for a partial explanation of
this definition see the second paragraph of the proof of Lemma 4.1), and let r(An)
be the number of conjugacy classes of maximal primitive subgroups of An. We
say that two finite primitive permutation groups different from the full alternat-
ing group and the full symmetric group (of their degrees) lie in the same cohort if
and only if they have the same degree and their respective socles are permutation
isomorphic.

Lemma 4.1. Let n be an integer at least 10 and let X be Sn or An. Then we have
the following.

(i) r(X) ≤ n3(log2 n)2 for n ≥ 1000.
(ii) r(Sn) is at most 2 times the number of cohorts of primitive groups of degree

n.
(iii) r(An) is at most 3 times the number of cohorts of primitive groups of degree

n.
(iv) r(X) ≤ 36 for 23 ≤ n < 1000.
(v) r(X) ≤ 12 for 12 ≤ n ≤ 22.
(vi) r(X) ≤ 9 for n = 10 or n = 11.

Proof. (i) By [19, Table 7.1] we see that there are at most n2 + 12n3n2(log2 n)2 +
2n4(1+5 log2 n) conjugacy classes of maximal almost simple primitive subgroups in
Sn. Similarly, as it is proved in [19, Section 9.4], the same upper bound holds for
the number of conjugacy classes of maximal almost simple primitive subgroups in
An which are different from M23 (in case n = 23) and different from M24 (in case
n = 24). But we only consider the case n ≥ 1000.

Let X be An or Sn. By [15], a maximal subgroup G of X which is different
from an almost simple primitive group is either wreath product primitive, affine
primitive, or diagonal primitive, and has the form G = H ∩ X where H is a
maximal subgroup of Sn of the same type as G.

By [19, Table 7.1.], the number of conjugacy classes of maximal primitive sub-
groups of Sn of wreath product type or affine type is at most 1 + log2 n. By the
remark above on maximal subgroups of An, we see that the number of conjugacy
classes of maximal primitive subgroups of An of wreath product type or affine type
is at most 1 + log2 n.

By [17, Page 350], there are at most 2 conjugacy classes of maximal primitive
subgroups of Sn of diagonal type. Hence there are at most 2 conjugacy classes of
maximal primitive subgroups of An of diagonal type.

Putting the above together, we only need to see the validity of the following
inequality for n ≥ 1000.

2n2 + 24n3n2(log2 n)2 + 4n4(1+5 log2 n) + 1 + log2 n + 2 ≤ n3(log2 n)2 .

(ii) This follows from [19, Lemma 8.2.6] and [19, Lemma 9.5.5].

(iii) This follows from [19, Lemma 8.2.6], [19, Lemma 2.1.4] and [19, Lemma
9.5.5] together with the observation that if Sn acts transitively on a given set, then
An has at most two orbits on the same set.
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Statements (iv), (v), and (vi) follow from (iii) and [7, Table 4]. ¤

For a positive integer n at least 10 let h(n) be the maximum order of a proper
primitive subgroup of Sn apart from An.

Lemma 4.2. Let n be a positive integer at least 10. Then we have the following.

(i) If n ≥ 12 then h(n) ≤ 50n
√

n.
(ii) h(10) = 1440 and h(11) = 7920.

Proof. Part (i) (for all n) is [18, Corollary 1.1]. Part (ii) is established by [12]. ¤

Finally, we obtain bounds for p3(X).

Lemma 4.3. Let n be an integer at least 10 and let X denote Sn or An. Then we
have the following.

(i) If n ≥ 1000 then p3(X) ≤ (100n
√

nn3(log2 n)2)/n!.
(ii) If 23 ≤ n < 1000 then p3(X) ≤ (3600n

√
n)/n!.

(iii) If 12 ≤ n ≤ 22 then p3(X) ≤ (1200n
√

n)/n!.
(iv) If n = 10 or 11 then p3(X) ≤ (18h(n))/n!.

Proof. The statements follow from Lemma 4.1, Lemma 4.2, and from the inequality
p3(X) ≤ (h(n)r(X))/|X|. ¤

5. Proof of Theorem 1.1

The upper bound of Theorem 1.1 follows from Lemma 2.1.

By [12] (see function EulerianFunction) it is easy to check that the lower bound
of Theorem 1.1 holds for n ≤ 9. Indeed, p(A4) = 96/144, p(S4) = 312/576,
p(A5) = p(S5) = 19/30, p(A6) = p(S6) = 53/90, p(A7) = 229/315, p(S7) =
2003/2520, p(A8) = 133/180, p(S8) = 16057/20160, p(A9) = 15403/18144, and
p(S9) = 155947/181440.

To see the lower bound of Theorem 1.1 for n ≥ 10 one can use Lemma 2.2 and
the above statements of Lemma 3.1 and Lemma 4.3 to verify the inequality

1− p(X) ≤ (1− p1(X)) + p2(X) + p3(X) < (1/n) + (13/n2).
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