A phase transition for the corank of random band matrices over \mathbb{F}_p

András Mészáros

HUN-REN Alfréd Rényi Institute of Mathematics, Budapest

TU Dortmund, 29th of April, 2025

Universality phenomenon in classical random matrix theory

GOE random matrix: $H_n = \frac{1}{\sqrt{2n}} (G_n + G_n^T)$, where G_n is an $n \times n$ matrix with i.i.d. standard normal entries. The eigenvalues of H_n have joint density

$$\frac{1}{Z}\exp\left(-\frac{1}{4}\sum_{k=1}^{n}\lambda_{k}^{2}\right)\prod_{i< j}|\lambda_{i}-\lambda_{j}|.$$

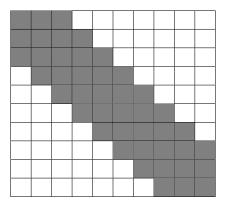
Universality results:

Let W_n be a symmetric matrix, with independent entries (up to symmetry) such that the entries have sufficiently well-behaved moments. Then, asymptotically, the spectrum of W_n behaves the same way as that of H_n .

Universality beyond independent entries: Adjacency matrices of random regular graphs.

The breakdown of universality for band matrices

Given a bandwidth w, let B_n be obtained from H_n by setting $H_n(i,j)$ to be 0, whenever |i-j| > w.



• • = • • = •

э

The breakdown of universality for band matrices

A conjectured metal/insulator phase transition

	Eigenvalues	Eigenvectors
$w \gg \sqrt{n}$	GOE	delocalized
$w \ll \sqrt{n}$	Poisson	localized

State of art results

- GOE eigenvalue statistics and delocalization for $w \gg n^{3/4}$.
- Localization for $w \ll n^{1/4}$.
- Poisson eigenvalue statistics for constant w.

(Erdős, Yau, Bourgade, Schenker, Knowles, Yin ...)

Universality of the mod p corank of random matrices

Theorem (Wood)

Let M_n be an $n \times n$ random matrix over \mathbb{F}_p , where the entries are i.i.d. copies of a given non-constant random variable. Then

$$\lim_{n \to \infty} \mathbb{P}(\dim \ker M_n = k) = p^{-k^2} \prod_{i=1}^k (1 - p^{-i})^{-2} \prod_{i=1}^\infty (1 - p^{-i}).$$

Beyond independent entries: Reduced Laplacian of random *d*-regular directed graphs (M.).

More general context

Cokernels of matrices over \mathbb{Z} or \mathbb{Z}_p .

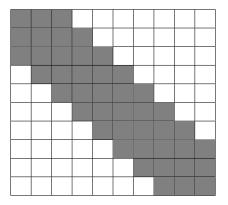
Connections to Cohen-Lenstra heuristics for the class groups of quadratic number fields, arithmetic statistics, homology of random simplicial complexes.

Spectrum \approx Cokernel

A phase transition for the corank of band matrices over \mathbb{F}_p

Let B_n be a uniform random element of the set

$$\left\{M \in \mathbb{F}_p^{n \times n} : M(i,j) = 0 \text{ for all } i,j \text{ such that } |i-j| > w_n\right\}.$$



Gray entries are i.i.d. uniform elements of \mathbb{F}_p . The white enrties are set to be 0.

.

Theorem (M. '24)

As $n \to \infty$, dim ker B_n has Cohen-Lenstra limiting distribution if and only if

$$\lim_{n\to\infty}w_n-\log_p(n)=\infty.$$

Reminder

The Cohen-Lenstra distribution ν_p is defined by

$$\nu_{p}(k) = p^{-k^{2}} \prod_{i=1}^{k} (1 - p^{-i})^{-2} \prod_{i=1}^{\infty} (1 - p^{-i}).$$

Small band widths – The non-Cohen-Lenstra phase

Let $v \in \mathbb{F}_p^n$ such that $a = \min \operatorname{supp}(v)$, $b = \max \operatorname{supp}(v)$, a < b.

$$\operatorname{supp}(B_n v) \subset [a - w_n, b + w_n]$$

Thus, $B_n v$ is a uniform random element of some subspace of

$$\{r \in \mathbb{F}_p^n : \operatorname{supp}(r) \subset [a - w_n, b + w_n]\}.$$

So

$$\mathbb{P}(B_n v=0) \geq rac{1}{p^{(b-a+1+2w_n)}}.$$

 $\mathbb{E}|\{v \in \ker B_n : a = \min \operatorname{supp}(v), b = \max \operatorname{supp}(v)\}|$

$$\geq \frac{(p-1)^2 p^{b-a-1}}{p^{(b-a+1+2w_n)}} = \Omega\left(p^{-2w_n}\right).$$

For $[c, c + m - 1] \subset [1, n]$, we have

 $\mathbb{E}|\{v\in \ker B_n\,:\,\emptyset
eq \operatorname{supp}(v)\subset [c,c+m-1]\}|=\Omega(m^2\rho^{-2w_n}).$

For $[c, c + m - 1] \subset [1, n]$, we have $\mathbb{E}|\{v \in \ker B_n : \emptyset \neq \operatorname{supp}(v) \subset [c, c + m - 1]\}| = \Omega(m^2 p^{-2w_n}).$ Assuming that $m \leq p^{w_n}$ by a second moment argument, we get $\mathbb{P}(\text{There is a } 0 \neq v \in \ker B_n : \operatorname{supp}(v) \subset [c, c+m-1]) = \Omega(m^4 p^{-4w_n})$

Small band widths – The non-Cohen-Lenstra phase

For
$$m \leq p^{w_n}$$
 and $[c, c + m - 1] \subset [1, n]$,

 $\mathbb{P}(\text{There is a } 0 \neq v \in \ker B_n : \operatorname{supp}(v) \subset [c, c + m - 1]) = \Omega(m^4 p^{-4w_n})$

Assuming that $\lim_{n\to\infty} w_n - \log_p(n) \neq \infty$, for infinitely many n,

 $n \ge \alpha p^{w_n}$ some fixed $0 < \alpha < 1$.

Given *L*, let $m = \lfloor \frac{\alpha}{L} p^{w_n} \rfloor$. Subdivide [1, Lm] into *L* intervals

$$I_i = [(i-1)m+1, im], \quad i = 1, 2, ..., L$$

Consider the event that for all i = 1, ..., L, there is a $0 \neq v \in \ker B_n$ such that $\operatorname{supp}(v) \subset I_i$. This event has probability at least

$$\left(\Omega(m^4p^{-4w_n})\right)^L \ge \left(\frac{C_{\alpha}}{L}\right)^{4L}$$

Small band widths – The non-Cohen-Lenstra phase

$$\mathbb{P}(\dim \ker B_n \geq L) \geq \left(rac{C_lpha}{L}
ight)^{4L} = \exp(-O(L\log L)).$$

For the Cohen-Lenstra distribution ν_p , we have

$$\nu_{p}(k) = p^{-k^{2}} \prod_{i=1}^{k} (1 - p^{-i})^{-2} \prod_{i=1}^{\infty} (1 - p^{-i}) = \Omega(p^{-k^{2}}).$$

So

$$\sum_{k=L}^{\infty}\nu_p(k)=O(p^{-L^2}).$$

Localization of the kernel $\stackrel{?}{\leftrightarrow}$ heavier than Cohen-Lenstra tail of the cokernel

The moment method of Wood

Let M_n be a sequence of $n \times n$ random matrices over \mathbb{F}_p . Assume that for all d, we have

$$\lim_{n\to\infty}\sum \mathbb{P}(v_1,v_2,\ldots,v_d\in \ker M_n)=1,$$

where the sum is over all *d*-tuples $(v_1, v_2, ... v_d) \in (\mathbb{F}_p^n)^d$ of linearly independent vectors.

Then dim ker M_n has Cohen-Lenstra limiting distribution.

This is a very special case of a more general result on random abelian p-groups.

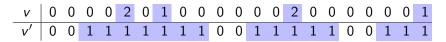
In this talk, we only check that above condition for d = 1, that is,

$$\lim_{n\to\infty}\sum_{0\neq\nu\in\mathbb{F}_p^n}\mathbb{P}(\nu\in\ker B_n)=1.$$

Given a vector $v \in \mathbb{F}_p^n$, what is $\mathbb{P}(v \in \ker B_n)$? Let $v'_i = \begin{cases} 1 & \text{if } [i - w_n, i + w_n] \cap \operatorname{supp}(v) \neq \emptyset, \\ 0 & \text{if } [i - w_n, i + w_n] \cap \operatorname{supp}(v) = \emptyset. \end{cases}$

So

$$\operatorname{supp}(v') = \bigcup_{i \in \operatorname{supp}(v)} [i - w_n, i + w_n].$$



 $B_n v$ is a uniform random element of

$$\{r \in \mathbb{F}_p^n : \operatorname{supp}(r) \subset \operatorname{supp}(v')\}.$$

Thus,

$$\mathbb{P}(v \in \ker B_n) = p^{-|\operatorname{supp}(v')|}.$$

$$\mathbb{P}(v \in \ker B_n) = p^{-|\operatorname{supp}(v')|}.$$

Each island of 1's of v'

- has size at least $2w_n + 1$, if it has 0's on both sides.
- has size at least $w_n + 1$, if it has a 0 on one side.

Given v' as above, what can be v?

$$s(v') = |\{i : v'_i \neq v'_{i+1}\}|.$$

$$\mathbb{P}(v \in \ker B_n) = p^{-|\operatorname{supp}(v')|}.$$

$$|\{u \in \mathbb{F}_p^n : u' = v'\}| \leq p^{|\operatorname{supp}(v')| - s(v')w_n}$$

$$s(v') = |\{i : v'_i \neq v'_{i+1}\}|.$$

$$\sum_{\substack{u \in \mathbb{F}_p^n \\ u' = v'}} \mathbb{P}(u \in \ker B_n) \leq p^{|\operatorname{supp}(v')| - s(v')w_n} p^{-|\operatorname{supp}(v')|} = p^{-s(v')w_n}.$$

$$|\{v' \in \{0, 1\}^n : s(v') = s\}| \leq 2n^s.$$

$$\sum_{\substack{v \in \mathbb{F}_p^n \\ s(v') = s}} \mathbb{P}(v \in \ker B_n) \leq 2p^{-sw_n} n^s.$$

$$\sum_{\substack{v \in \mathbb{F}_p^n \\ s(v') \ge 1}} \mathbb{P}(v \in \ker B_n) \le \sum_{s=1}^\infty 2p^{-sw_n} n^s \to 0 \text{ provided that } p^{-w_n} n \to 0.$$

Delocalization

With probability tending to 1, for all $0 \neq v \in \ker B_n$, we have $v' \equiv 1$.

$$\lim_{n\to\infty}\sum_{0\neq v\in\mathbb{F}_p^n}\mathbb{P}(v\in \ker B_n)=\lim_{n\to\infty}\sum_{\substack{v\in\mathbb{F}_p^n\\v'\equiv 1}}\mathbb{P}(v\in \ker B_n)\leq p^np^{-n}\leq 1.$$

Trivially,

$$\sum_{0
eq v\in \mathbb{F}_p^n}\mathbb{P}(v\in {\sf ker}\ B_n)\geq (p^n-1)p^{-n}\geq 1-o(1).$$

Thus,

$$\lim_{n\to\infty}\sum_{0\neq\nu\in\mathbb{F}_p^n}\mathbb{P}(\nu\in\ker B_n)=1.$$

• • = • • = •

э

Conjecture

There is a one parameter family of distributions $(\nu_{\alpha})_{\alpha \in \mathbb{R}}$ on $\mathbb{Z}_{0 \leq \infty}$ with the following property. Let $n_1 < n_2 < \ldots$ be a sequence of positive integers. Let B_i be an $n_i \times n_i$ uniform random band matrix over \mathbb{F}_p with band width w_i . Let us assume that

$$\lim_{i\to\infty}w_i-\log_p(n_i)=\alpha.$$

Then the distribution of dim $ker(B_i)$ converges to ν_{α} .

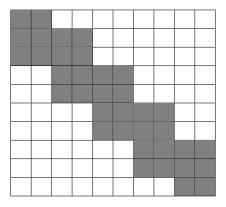
Conjecture

lf

$$\lim_{i\to\infty}w_i-\log_p(n_i)=-\infty,$$

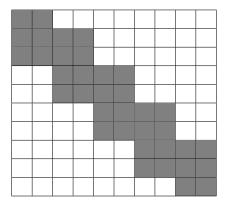
then dim ker (B_i) has Gaussian fluctuations.

A simplified model – Truncated block bidiagonal matrices



All the cells correspond to $m \times m$ blocks. The entries of the white cells are set to be 0. The entries of the gray cells are chosen as i.i.d. uniform elements of \mathbb{F}_{p} .

A simplified model – Truncated block bidiagonal matrices



All the cells correspond to $m \times m$ blocks. The entries of the white cells are set to be 0. The entries of the gray cells are chosen as i.i.d. uniform elements of \mathbb{F}_{p} .

Thank you for your attention.

Slides are available on my webpage.