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Paul Turan’s influence in Combinatorics

Miklés Simonovits

Abstract. This paper is a survey on the topic in extremal graphs theory influenced directly or
indirectly by Paul Turan. While trying to cover a fairly wide area, | viilf to avoid most of

the technical details. Areas covered by detailed fairly recent gamdl also be treated only
briefly. The last part of the survey deals with randgrh matrices, connected to some early
results of Szekeres and Turan.
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2 M. Simonovits

1. Preface

Paul Turan was one of my professors who had the greatestniafiyie- not only on
me, on my way of thinking of Mathematics, of doing Mathemating,— on my whole
mathematical surrounding.

Once | read that Hilbert was the last polyhistor in Mathe-
matics. This meant that after him not too many people had an
overview over the whole Mathematics. | do not really know if
this is true or not: | know only that “most” of the mathemadics
I know concentrate basically on one or two fields, while soifne o
my professors, like Eiis, Turan, and Rényi were covering sev-
eral parts of Mathematics. | think of Turan as a polyhistor in
Mathematics.

YES: Today only the best can excel in more than one branch.
Turan was one of them. His main work, his most important re-
sults concern primarily number theory, interpolation apprax-
imation theory, the theory of polynomials and algebraiceequ
tions, complex analysis, and Fourier analysis. He inveatadw method in analysis,
called the power sum method [369], giving interesting rssinl themselves and ap-
plicable in several distinct branches of Mathematics. Hssilts in combinatorics and
graph theory were definitelgot his most important resultstill they were very im-
portant in graph theory. He has found theorems becoming tlhéroots of whole
theories. Definitely this is the case with his — today alreddsgsical — graph theorem.
Paul Erds wrote [1211] that

|

|

Turdn had the remarkable ability to write perhaps only orepar to state
one problem in various fields distant from his own; later cgheould pursue
his idea and a new subject would be born.

In this way Turan initiated the field of extremal graph thedtg started
this subject in 1941 (seE[358] and [359]). ..

I should also mention here that — though the big breakthranghe application
of probabilistic methods in combinatorics is due to &d- Turan’s new proof of the
Hardy-Ramanujan theorem [356] (later becoming the rootadifstical number theory)
and the Szekeres-Turan proof of the existence of “almosahiaid matrices'[[347]
were important contributions.

| have just written that Paul Turan greatly influenced our wéyhinking. Both
Erdds and Turan quite often set out from some particular prolaechthen built up a
whole theory around it. However, for Turdn the motivatioersed to be much more
important. When he spoke about Mathematics, he went a lotandis to explain why
that problem he was speaking of was interesting for him. Myraapion was that
he preferred building theories, at the same time was cautiotito build too general
theories that might seem to be already vacuous.
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I shall explain this through some “storid}.‘".

(a) | started working in extremal graph theory, basicallyhatend of my first year
— as a student — at the E6tvOs Lorand University. This happaadollows: Vera S6s
(the wife of Turdn) was our lecturer in “Mathematical Anak/sand in “Combina-
torics and Graph Theory”. (Our group of 26 first-year hondudsnts in Mathematics
had nine 50 minute lectures with her weekly. A year earlier also taught combi-
natorics to the group of Bollobas.) After our first year sheswlafinitely our most
popular lecturer. The second semester Vera decided toastartcalled “special lec-
ture” on Graph Theory, as a continuation of her “introdugtoourse”. Most probably
most of the dedicated students in Mathematics attendeddhise. Here she spoke —
among others, — about Turan’s hypergraph conjecture. Negkwhree of us, (inde-
pendently?) Katona, Nemetz, and myself told her that we paveed some theorems
in connection with Turan’s hypergraph conjecture. Veraggsted to write them up, in
Hungarian, in the Matematikai Lapok, in a joint paper. Firatéha and | wrote up the
paper, but that was not good enough for Vera, so Katona ancetderewrote it, and
finally the paper[[215] appeared and became one of our mest p'mper. Having
finished the paper, | continued working on these types oftores while Katona and
Nemetz went into other directions. So | proved several #@srwhich today would
be called Turan type results. | wrote them up in a “studenegaand submitted it
to the “Students Research Society” (Matematikai Diakkorpseh“professor” leaders
were Andras Hajnal and Vera Sés those days. Most probably Issare prize, and
the question was if to publish my new results in some mathiealgburnal, say in
Acta Math. Acad. Hungarica. However, a little later Vera Stfsimed me that “un-
fortunately” Gabor Dirac had just published a paper on eeladpics[10D]. So my™®
paper was “killed”.

Anyway, slightly later | met Turan, and tried to inform him iy results, starting
in a “very abstract way”. Basically | defined a monotone prop@® and maximized
the number of edges in the family afvertex graphs of propert). Turan suggested
to take the simpler but equivalent formulation that “We havieite or infinite family
of excluded subgraphs...”. Even today | stick to this “meamsparent” formulation.

(b) Actually, the first time | met Turan — as a mathematics ggebr — was slightly
earlier. In the first semester Vera Sés taught us Analysigelier, one day she got a
flu, had fever, had to stay home. So her husband, Turan canoegine the lecture,
on the Lagrange Mean Value Theorem. Despite the fact that thags Vera was our
favourite lecturer, | was shocked by the spellbinding stfl&éuran, while speaking of
this relatively simple theorem.

Actually, 1 heard some opinions, according to which Turarswacellent for the

! Telling stories is a very dangerous thing: the reader may think thantigesl to write of Paul Turan
and instead | am speaking of Vera S6s, or even worse, of myself. No, Nd,adospeaking of our
excellent professors, Turan, Bisl Vera S6s, Andras Hajnal, Rényi, Gallai. ..

2 This was the first paper of mine and of Nemetz, and the second one of Katoadinmghed his
fourth year at the university at that time.
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best students but sometimes difficult to follow for the lei$ted one. The reason for
this was that he not only proved the theorems but (a) expdaine background very
carefully and (b) explained what would fail if we tried to peoit in some other ways.

(c) When | became a third year student, | started learningtftam Theory (Theory
of Complex Analytic functions), from Kat6é Rényi, the wife Affréd Rényi. | enjoyed
her lectures very much and having finished this two-semesiaise, for some reason
| dropped in to the Mathematical Institte There | met Gabor Halasz and asked,
what he was doing there. He answered that in 10 minutes thewnévibe a seminar
of Turan in Number Theory and Complex Analysis, and he woild g lecture there.
| happened to be free, so | decided to attend Gabor’s lectuesjoyed that whole
atmosphere and the Mathematics there so much that | becangilarrparticipant
of the “Turan seminar” for many-many years. And that wasIpaitie to Halasz,
but primarily to Turdn. The seminar was interactive, vergrfdly, anyone could ask
any (relevant mathematical) questions, to help one to wtaled the details, and the
background. ..

(d) Several years later, as an assistant professor, onderkdrTuran’s office. He
was reading a letter, which informed him about some new te¢about the conver-
gence properties of power series on the unit complex disle) stdrted explaining it
to me. | asked him why that result was interesting and the answas very convinc-
ing. Actually, | was “slightly frightened”: | felt that Turacould convince me of any
mathematical result being interesting, if he felt it int&eg.

- )
auh pa 7 , /-f
Katé Renyi, Turan, Vera Sos, Eaa and Knapowski, Erés, Szekeres, and
somebody covered by Vera?) Turan

We are often asked: what is the secret of that the Hungariamevistics is so
good. Of course, we have standard answers to this, despifachthat the question
itself may be slightly dangerous.

It is nice to hear that our Mathematics is outstanding, buhatdame time one
should keep checking, in which areas can one be satisfied hatewve have to do
something to improve the “Hungarian Mathematics”.

3 Unfortunately Turan have not given regular Number Theory courses trezs. Here the “gifted”
would mean the best 10 students in our group.

4 | was a student later an assistant professor, ...at the E6tvés Unjvariite this was a Research
Institute, part of the Academy, headed by Alfréd Rényi. Fortunately tHage the walking distance
between the two places was roughly 5 minutes.
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I myself have at least three answers to this question. Thefiesis that in Hungary
there is a very strong tradition to support talented youndestts in Mathematics and
Physics, (and most probably, in many other fields as well).ha& our K6MaL: the
High School Mathematics Journal. Most of those who are toda mafessors in
Hungary, still remember, how much we owe to it, we have gafrad participating in
the contests organized in this surrouncﬁmglso, there were organized math lectures
and meetings, while we were high school students. This igevhiirst met Bollobas,
Komlés, Halasz, and many others when | was a second year tigiokstudent.

Yet, definitely, one of the most important factors was thathae excellent pro-
fessors at the University. Excellent in Mathematics and xtein conveying their
Mathematics to us. | myself, selecting those who really imfbggl my Mathematics,
(following the time-line) would list first Vera Sés, Paul Bisland Paul Turﬁ.

1.1. Apologizing?

In this survey | will try to cover several areas, but not in tnany details. Often |
will start some topic, give a few theorems, and then referéaeler to other surveys
or papers.

While writing this survey, | looked at several other survegexcellent authors,
and many of them started with apologizing sentences that thras no way to try to
be complete, and the author had to leave out several integestd important results.
The same applies to this survey as well. In several casegetisg) a paper — | had to
restrict myself to including its first, or most charactadsesults, and leave the other,
at least for me very important, results to the reader. Onsore#or this was that I tried
to write a readable survey. And the same is the reason why haiafraid to repeat
some parts: be occasionally “redundant”.

When Turan died, in 1976, his collected papers were puldigha three-volume
book [368], which is an annotated edition of his works in tease that the grateful
mathematical surrounding added mathematical notes todgerp. | myself was re-
sponsible for Graph Theory and Combinatorics. | wrote thnég-surveys for[[36B]:
one on “pure extremal graph theorems”, another one on ajalits of extremal graph
theorems in Analysis, Geometry (and Potential Theory),taadhird one on “random
matrices”. This surveyincludes a large part of those surveys, however, it goes much
further: the new developments in the field showing Turarflsénce in Discrete Math-
ematics greatly surpass what | could write those days. Héarelude many results

5 Actually, Erdbs and Turan learnt of each other also from this journal.

5 If | wanted to extend this list, of course, | would add my mother, perlaiés, definitely Hajnal,
Gallai, and Rényi. We met Rényi relatively late, when we became third year st dentever,
when he started giving special lectures about Random Methods in AnalgsisloRl Methods in
Combinatorics, Introduction to Information Theory, again, all testlstudents were sitting there and
eagerly listening to him. He — similarly to Turan — also gave long axalions on the background
of the theorems he was speaking of.
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showing these new developments (and leave out certainquantsed by other surveys
of this volume, see Katona e.d., [214]. | also cut short desay areas that are covered
by the very recent survey papers of the &dCentennial volume, e.g., Gowers [189],
Rodl and Schacht[303] or Firedi and mysEelf [180].. ..
Of course, the most important subject covered here (where

e s 1 Turg’m’s influence can be seen) _is Extremal _Graph Theory. One
PAUL TLPRA'N baSJC source to provide a lot of information is the book of-Bol

—‘ lobas, Extremal Graph Theory [55]. There are many surveys

i s covering distinct parts of this very large area. Among theen a
- mines, e.g.,[[327][[328]/[330]( [382] and there is a surtgy

Handbook contains several further chapters basic to tHi, fie
just to mention the chapters by Bondy [64] and by Alpoh [9]. |
should also mention many excellent, more detailed further s

veys related to this one, e.g., of Firedi [167], Keevash][218
Kiihn and Osthus [255].

Bollobas in the Handbook of Combinatorics [51]. Of courbe, t

AbadimisiKindi
Budapest

Since the very recent survey of Furedi and myself [180] ce@eehuge and impor-
tant area of extremal graph theory, namely the so called irgée Extremal Graph
Problems, here we shall concentrate on the non-degenesds,avhere the extremal
structures have positive density. In this non-degeneiede twill select five topics:

(a) New results attained with the help of the Szemerédi RetylLemma [349]
(for the older one see, e.g.. [249]). There are very many neveldpments in
this area, which will be touched on only very briefly, in Senti6.2. Here |
mention only its connection to Property Testihg![16]/[14]and to graph limits,
where | refer the reader to some papers of Christian Borgmifée Chayes,
Laszl6 Lovasz, Vera Sés, Kati Vesztergombi, ela.] [68[ 89, td the homepage
of Lovasz, where many of these can easily be found, and toethyenew book of
Lovasz [263];

(b) Ramsey-Turan type results, where for the older resekstse survey of Vera
So6s and mine [335], and for the many new interesting devebopsn see among
others Balogh and Lenz [39].

(c) and also the Andrasfai-Ebd-Sos type theorems [24], ErstSimonovits[[139],
tuczak [268], Thomassenh [355]....

(d) Applications in multicolor Ramsey problems, e.g., tesof Luczak [269], Gyar-
fas, Ruszinko, Sarkdzy, and Szemerédi [194], Kohayakaimagi®vits, Skokan
[231], and many others.

(e) Typical Structures: Efib-Kleitman-Rothschild type theorenis, [131], &sdFrankl
and RodI[[125], and Balogh, Bollobéas, and Simonovits, ¢3,. ..

Again, there is no way to be complete here. Rather | chosedicate the main
lines of some of these theories. ..t is also very useful anfidrinative to read the
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corresponding problem-posing papers of P.&srfl13] [119] [120], [128]. | should
also mention the book of Chung and Graham ond&ndroblems[93].

In Section[ 16 | will discuss the theory of Random Matrices, dnity shortly: a
relatively new and excellent survey of Van Vu [370] descsiltkis area in details.
There is also another reason: Subsediion]16.2 on detertriisaconnected to Turan
the most, while in the next two parts on the probability ofrigesingular and on the
distribution of eigenvalues of random matrices is whereyrmaw interesting results
were proved after Turan’s death. Yet, they are connectedténTin a slightly weaker
wa

Overlapping with my older surveys is inevitable. Yet | wily tto “overemphasize”
those parts that had to be left out from [180] ahd [331]. Souréhér related sur-
veys and pseudo-survey papers are Fufedil[167], Sidor&il&] Simonovits[[330],
Simonovits and S6$[3385], Kohayakawa and R6dI[229], Rodl&chacht[303], and
many others.

2. Introduction

Today one of the most developed and fastest developing afe@saph Theory is
Extremal Graph Theory and the parts of Graph Theory conddctét. There are
several reasons for this. One of them is that this is a rearyhsith many important,
highly non-trivial subfields and many related larger fieldsombinatorics. | have
already mentioned some some of them. Further ones are

(a) Although Extremal Hypergraph theory is still an extréyreard field to achieve
new results in, several very interesting new theorems weseep for hyper-
graphs in the last decade.

(b) New tools were created, above all, Hypergraph Regylaeimmas, and, con-
nected to them, Removal Lemmas and Counting Lemmas, andG&negit The-
ory.

(c) Computers were used to solve several extremal graphygretdraph problems,
mostly using a new theory, the Razborov Flag Algebras|[298].2

(d) Some parts of Theoretical Computer Science are corshézthe above fields. |
mention here four such topics:

(i) Graph Property Testing, very strongly connected to wpgl Szemerédi
Regularity Lemma, (see e.g. papers of Alon and Shapira) [2a)].
(ii) Applications of graph results, e.g., Degenerate BxmeGraph Theorems
in Computer Science.
(iii) Theory of quasi-random graphs (initiated in some sgmg Thomason| [353],
then by Chung, Graham and Wilsén [94]...

7 Yet | decided to include a short part on them, too.
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(iv) Application of random graph methods and expanders + dha strongly
connected to extremal graph theory — in Computer Scince,

(e) As to the tools used in Extremal Graph Theory, it is coteakto the theory of
Random Graphs:

(i) it uses random graphs to get lower bounds,
(ii) investigates extremal subgraphs of random graphs,
(i) and motivates the description of typical structures,

(f) it is connected among others, to Finite Geometry (alsedu®r constructions
providing lower bounds in our problems), to Commutativeelgg, also used to
get lower bounds,. .. (Vera Sés wrote one of the first surveythe connections
to Finite Geometries [339].)

Reading this “list” the reader immediately sees that desuyi the new develop-
ments in this area is much more than what such a survey papecar, even if
in many cases it only refers to other papers or surveys. Schaktsy to provide a
“random tour” in this huge area.

Also, | plan to post on my homepage a slightly longer versibthis survey, pro-
viding more details.

2.1. Structure of the paper

(a) We shall start with the Theory of Extremal Graphs. Welghedcribe the huge
development of the Theory of Extremal Graphs, primarilyaaneeglected i [332] and
[180].

(b) Sectior b describes the theory of supersaturated graphs

(c) In Sectio IB | shall describe thoapplications of extremal graph resulighich
were initiated by Paul Turan, in the last years of his lifes@lve shall describe other
applications of Turan’s theorem.

(d) These applications led also to the Ramsey-Turan Thetascribed in more
details in the survey paper of Vera Sés and mys$elf[335]. dlaee quite a few new
developments in this field. | shall describe some of them tiSe[10.

(e) There are several connections between Ramsey Theothaiigeory of Turan
type problems. SectidnIl2 contains some results on this.

(f) There is one more, very important area not to be forgoterdds and Turan
greatly influenced our day’s mathematics just by asking gresity version of Van der
Waerden'’s theorem. This is well described, at least itsygaliod, in the book of
Graham, Rothschild and Spencer [190]. Many important detaih be learned from
the paper of Vera S6s [340], papers of Gowers, Green, TaaJsa will include a very
short section on this topic.

8 For two “mini-surveys” see e.g. Spencer[341] and Alor [10].
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(9) Sectio Ib discusses a paper of Szekeres and Turan ovettzgya of the square
of the determinants of randorhl matrices.

3. Turan type graph problems

Paul Turan’s graph theoretical and combinatorial reswts roughly be classified as
follows:

(a) His classical extremal graph theorém [358], |359] aredahalogous results of
Kévari, V.T. S6s and Turan [252] on the extremal numbeKefa, b).

(b) His results on applications of his graph theorem, se8, 1365, 366], and
also the papers of Eéd, Meir, V.T. S6s and Turah [182, 1 4]

(c) Results on randont1-matrices, estimating the average of iffepower of their
determinants [347, 357, 360, 362].

(d) Beside this, it was him who asked the first general questiconnection with
the crossing numbers (see e.g., one of his last papers [86Begineke and Wilson

[46]).

3.1. Turan’s graph theorem
In 1935 Erdds and Szekeres proved [149] that

Theorem 3.1.For everyk there exists am;, such that if we fixa,, points in the plane
arbitrarily (but in general position), then there are alwsdly of them spanning a convex
k-gon.

To prove this, they applied Ramsey’s theorem. Actually tdiglynot know it, but
rediscovered it. Motivated by Ramsey Theorem, Turan provedamous theorem.
Before formulating it we introduce some notations.

Notation. Given a graph, hypergraph, the first subscript will almosigk denote the
number of vertices@,,, S, H, will mostly denote graphs (digraphs, hypergraphs) of
n vertice@. Mostly we shall restrict our considerations to ordinarypdra (without
loops and multiple edges). Given a graph (digraph, hypptor&, v(G) ande(G)
denote the number of vertices and edges respectivelyy @aglis G’s chromatic num-
ber. K, denotes the complete graph pwertices,C, and P, are the cycle and path
of ¢ vertices, respectivelys, (n1, . . ., n,) is the completg-partite graph withn; ver-
tices in itsi™ class, andr;, , is the Turén graph of. vertices ang classes, that is,
Tnp = Kp(na,...,np) where} n; = nand|n; — 7| < 1.

Given two graphg and H, denoteG ® H the graph obtained from vertex-disjoint
copies ofG and H by joining each vertex of7 to each one of{. (Occasionally we
denote their disjoint union b& + H, and the disjoint union of copies ofH by kH.)

® and a corrigendum t6_[134] (misprints).
10 Very rarely we shall consider some “excluded” graphs and the subscrljtstienumerate them.
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Turén’s problem. Given p and n, how large can e(G),) be if G, does not contain
a Kp+1 ?

Clearly, T;, , does not contaitf, 1. Turan's theorem asserts thgt ), is extremal
in the following sense:

Turan’s Theorem. ([358] (1940)). For givenn and p any graph having more
edges thart;, , or having exactly as many edges As,, but being different from it
must contain &, 1, as a subgraph.

As Turan remarks, from this form one can easily verify that taximum number
of edges a grapty,, can have without containing &, 1 is

% <l — 1> (n? —1?) + (;), if n=r (modp) and 0< 7 < p. (3.1)
p

In this sense Turan’s theorem yields a complete solutiohe@pbsed questiﬂ.

How did Turan arrive at this theorem? In Ramsey’s theorem we ask (in some
sense): Assume we know th@f, contains nak independent vertices. For how large
p can we ensure the existence okg, 1 in G,,. Turan replaced the condition that,
had nok independent vertices by a simpler condition that the gragghrhany edges.
He asked:

Given a graphy,, of e edges, how largé(, 1 must occur inG,,? Or, in
other words, givem andp, how largee does ensure the occurrence of a
Kp+1 in Gp?

The “complementary” form. A lesser known but equally useful form of Turan’s
theorem can be obtained by switching to the complementaytgr,, = H,. If H,

has nop + 1 independent vertices, the(H,,) > e(7}, ;) and the equality implies that
H, =T,,. (Thisis Theorem Ill in his original paper[358].)

On the history of Turan’s theorem. As Turan remarks in the "Added in Proof of
[358], he has learnt from J. Kraus that W. Mantel has alreadyqa his theorem in
the special casg = 3, [273]. It is interesting to realize that this theorem cbbhve
been found by Mantel back in 1907, but he missed it. It is everersarprising that
P. Erdds missed to find this theorem in 1938. As a matter of factpErhd E. Klein
have proved an analog result (n [106]. Here &&dnvestigated a number theoretical
question and arrived at the following graph theoreticalites

Theorem 3.2.If G,, contains naCy, thene(G,,) = O(n®/?).

11 | etters: Mostly we shall exclude + 1-chromatic graphs but there will be cases when we shift the
indices and excludg-chromatic graphs.
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At the same time, E. Klein gave a "finite geometric" consiarcshowing that there
exist graphs?,, with e(G,,) > ¢n®? edges and without containing 4-cycles. Turan,
proving his theorem, immediately posed several other @nptoblems (such as the
problem of excluded pathky, excluded loops, the problem whénis the graph deter-
mined by the vertices and edges of a regular polyhedron)s Jtairted a new line of
investigations. Erds, (as he stated many times), felt, it was a kind of blindoedsis
side not to notice these nice problems.

In 1949 Zykov [375] rediscovered Turan’s theorem, givingompletely different
proof. He used an operation which could be calsgdhmetrizatiorand which was
later successfully used to prove many analog results. Shatemany further proofs
of Turan’s theorem have been found. Some of them are sinulaath other, some
others are completely different. Thus e.g. proofs of An@ig23] G. Dirac [100]
and the proofs of Katona, Nemetz and Simonovits [215] areesdmat similar, the
proof of Motzkin and Strau$ [277] seems to be completely nkaugh it is actually
strongly related to Zykov's proof [375]. Most of these protdd to interesting new
generalizations. In other cases the generalizations weneulated first and only then
were they proved. This is the case of the proof of@&dand also with the proof of
Erdés-T. Sés-Bollobas-Thomason-Bondy, see [146], [60],.[&dfore turning to the
general case | state three of these results.

Dirac’s theorem.  Assume that > p ande(G,) > e(T,,). Then, for every
Jj < p, G, contains not only &, 1 but a K, » with an edge missing,..., B, +1
with j edges missing, assumed that- p + j + 1.

Observe that for eachthis immediately implies Turan’s theorem, sinc& g, ;.1 —
(j edges) contains &) 1.

Erd6s theorem ([118]). If G,, contains nok, 1 then there exists @ -chromatic
graph H,, such thatifd; < dp, < dsz < --- < dj,andd] < d; <dj <--- < dy are
the degree sequences®@f and H,, respectively, thed’ > d;, (i =1,2,...,n).

This again immediately implies Turan’s theorem, by

2e(Gp) = di <Y di =2¢(H,) < 2¢(T,).

Denote byN (z) the neighborhood of.

Erd6s-T. Sés-Bollobas-Thomason theorem [60, 146]. If G,, is a graph with
e(Gn) > e(Typ), thenG, has a vertex: of, say, degree, for which forG,,_q :=
Gy — N(z), we havee(G,—q) > e(Tp—ap-1)

This theorem was slightly improved by Bondy [63]. This reésoiplies Turan’s
theorem if we apply induction op. G,,_4 contains ak, yielding together withe a
K,41in G,,. (Above | deliberately forgot the cas€G,) = e(T),,), for the sake of
simplicity.)
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3.2. General Problem
Since 1941 a wide theory has developed around Turan’s timeore

Let £ be a finite or infinite family of graphs and lek(n, £) denote the
maximum number of edges a gragh (without loops and multiple edges)
can have without containing adly e £ as a subgraph. Further, BX (n, £)
denote the family of graphs attaining this maximum. Givearaify £, de-
termineex(n, £) andEX(n, ).

When£ = {L}, we shall replacex(n, {L}) by ex(n, L). The general asymptotics
onex(n, L) was given by

Theorem 3.3(Erdds and Simonovit$ [136], Eés [114], [115] and Simonovit5 [321)).
For any familyL of excluded graphs, if

p(£) = minx(L) - 1, (3.2)

then L
n
ex(n,L)=(1— —= + o(n? as n — 0o. 3.3
0= (155) (5) +o” 63
Further, if S, is any extremal graph fo£, then it can be obtained froffi, , by chang-
ing o(n?) edges.

(The weaker result of Efts and Simonovits, namelly (3.3), is an easy consequence
of the Erdds-Stone theorem) [148]. The most important conclusion egéttheorems
is that the maximum number of edges and the structure of tinere&l graphs depend
only very weakly on the actual familg, it is asymptotically determined by the min-
imum chromatic number. A further interesting conclusiorthiat for any£ we can
find a singleL € £ such thaex(n, £) — ex(n, {L}) = o(n?). This is acompactness
type phenomenon asserting that there is not much differeatveeen excluding many
graphs or just one appropriate member of the family.)

Remark 3.4.Several authors call the result according to whichl(3.2)liesp3.3) as
Erdds-Stone theorem, in my opinion, incorrectly. This “thentalid not exist before
our first joint paper with Erds, [136]. It changed the whole approach to this field.
Finally, Erdds always considered it as an BedSimonovits result.

3.3. Degenerate extremal graph problems

If £ contains at least one bipartifg thenex(n, £) = o(n?), otherwise

ex(n, L) > e(T2) = Kﬂ .

This is why we shall call the caggL) = 1 degenerate
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Here we arrive at the second — and again very important — grvapér of Turan. In
1954 Kovéri, V.T. S6s and Turan proved the following result.

K évari-T. Sés-Turan theorem [252].

ex(n, K(p,q)) < %{/q — 102~ /P) 1 O(n). (3.4)

We should remark that an important footnote on the first pdf@5?] states:

“As we learned, after giving the manuscript to the Redugtfoom a letter
of P. Erdds, he has found independently most of the results of thisrdap

This theorem can be regarded as a sharpening of thésEstbne theoreni [148]
asserting that

ex(n, Ka(m,...,m)) = (1— dil> (Z) +o(n?)

and yielding thaiex(n, K>(m, m)) = o(n?). Both these theorems were motivated
by some topological problems[_(8.4) is probably sharp fargy < ¢, apart from
the value of the multiplicative constant, however this i$ kimown in general. As a
construction of Erds, Rényi and T. S65[135] and of W.G. Brovin|[76] shows,](34) i
sharp forp = 1,2, and 3. Fop = ¢ = 2 even the value of the multiplicative constant
is sharp. A construction aff. Cavallius-Hylten[[204] shows that it is also sharp for
p = 2,q = 3. Further, the Mors constructidn [278] on the analog matrisblem, and
the Furedi construction [171] show th&i(3.4) is sharpifor 2 and allg > 2. We
shall return to this question (that is, to the correspondiagrix problem) below.

Remark 3.5.1t was a great surprise when it turned out thatn, K(3,3)) ~ 3n%3:
by the lower bound given by Brown [F6] we knew that the expar®i® in (3.4) is
sharp, however, when Firedi [169] improved the upper bothat, showed that the
multiplicative constam} of the Brown construction is the right one.

Another interesting degenerate problem is the problem vahgathP;, is excluded.
As | learnt from Gallai, this was one of those problems askediran (in a letter
written to Erdbs) which started the new development in this field. The ansves
given much later by the

Erd 6s-Gallai theorem [126]. ex(n, ) < £5%n.

Clearly, ifn is divisible byk — 1, the disjoint union ofi/(k — 1) Kj_1’s shows that
the theorem is sharp. H is not divisible, this construction yields onéx(n, P;) >
E>2n — O(k?). The exact value ofx(n, P;) was found by Faudree and Schelp, who

used it to prove some generalized Ramsey theoréms [153]6sEadd Gallai also
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proved [126] that ifZ, is the family of all the cycles of at leagt vertices, then
ex(n,Ly) = %(k — 1)n + O(k?), and in some cases the extremal graphs are ex-
actly those graphs whose doubly connected componentkflareK;_1's. Kopylov
[250] considered the problem of connected graphs wittiuand his results implied
the earlier ones. Balister, @yi, Lehel and Schelf [31] also have results sharpening
Kopylov's theorems. The reader can find further informatiofiL80].

It is worth mentioning that Eiis and T. Sés conjectured [113] that for every tree
Tk, ex(n, Tg) < %(k — 2)n. Ajtai, Komlés, Simonovits and Szemerédi proved (under
publication) this for all sufficiently largé:

Theorem 3.6(Ajtai, Komlds, Simonovits and Szemerédi [2]] [3],[4])here exists a
ko such that fork > kg andn > k

1
ex(n,Ty) < E(k —2)n.
We close this part with the following

Theorem 3.7(G. Dirac, [98]).If P, C G, andG is (at least) 2-connected, théhalso
contains aC,,, with m > v/2¢.

3.4. Even Cycles

An unpublished result of Efib states that
ex(n, Ca) = O(n*/"), (3.5)

Two different generalizations of this result were given lynBy and Simonovits [66],
and by Faudree and Simonovits [155]. | skip this area sinisefdtirly well described
in [180]. Let me discuss the Cube-theorem. Turan asked ftiatlenotes the graph
defined by the vertices and edges of a regular polyhedronldrgeex(n, L) is. Erds
and Simonovits[138] proved thatdjs denotes the cube graph, then

Theorem 3.8(Cube theorem)ex(n, Qg) < Cg - n®/5 .

Actually if Qg is obtained fronQg by joining two opposite vertices, thex (n, @8) =
O(n®/®), too. One intriguing open question is whether there exists-a0 such that
ex(n,Qg) > c - n¥>, or at leastex(n, Qg) > ¢ - n¥/>.

Remark 3.9.As | mentioned above, this topic is also discussed in mucterdetails
in the recent survey of Furedi and Simonovits [180]. The sappdies to large part of
the next subsection.
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3.5. Finite geometric constructions

If the extremal graph problem fa€ in consideration is non-degenerate, anig de-
fined by [3.2) therT}, , yields an asymptotically extremal sequence in the sense tha
T, contains noL € £ and has asymptotically maximum number of edges. The
extremal graph is often (but not always, see [329], [325famted fromT, ,, by

(a) first slightly changing the sizes of the classes, tha¢dacingl;, , by aK,(n1, ..., ny),
wheren; = 2 + o(n);

(b) then adding(n?) edges to thigs,(n1, . . ., np).

(c) The assertion that this is not always the case meansdhstsnes we need a
third step too, namely, to delet¢n?) edges in a suitable way, sée [329].

In this sense the non-degenerate case is relatively é&sy;) is an asymptotically
extremal sequence of graphs. The extremal structures ieifpenerate cases seem to
be much more complicated in the sense that in most cases wet d@ve lower and
upper bounds differing only in a constant multiplicativetta. Thus for example we
do not know whether the upper bound in the cube theorem igpsbhathat the upper
bound given by the Kvari-T. Sés-Turan theorem is sharp for any > 4. We do not
even know the existence of a positive constastich that

ex(n, Ky(4,4))
n2—(1/3)+c

Still, whenever we know that our upper bound for a bipatrfites sharp, we always
use either explicitly or in an equivalent form some finite ig@tric construction, or
some algebraic construction very near to it. | have alreadgtioned some of these
constructions, namely that of E. Klein in [106], of B Rényi and T. S6§ [135] for
graphs withoutCy, and that of Hylten-Cavallius for graphs not containifig(2, 3).
Two further very important constructions are the Brown ¢ardion [76] for graphs
not containingk,(3, 3) and the Bensor [48] construction (see also the Singleton con
struction [336]) of graphs not containinds, C4, Cs, Cs and C7, and of graphs not
containingCs, . .., C11. These constructions of Benson show thatl(3.5) is sharp for
t = 3 andt = 5, while W. G. Brown’s construction shows that théwari-T. Sos-
Turan theorem is sharp for= ¢ = 3 (and therefore for app = 3, ¢ > 3), apart from
the value of the multiplicative constants.

Remark 3.10.Since [180] is a much more detailed survey, however mostiricted
on the Degenerate Extremal Graph Problems, and since tm#segieometric prob-
lems mostly refer to degenerate cases, we suggest to thestad reader to read the
corresponding parts from [180]. Here we mention only thaess constructions us-
ing finite geometries or related methods were found sincé&idied. Perhaps Mors
[278], Firedi[171], Ball and Peppe [32] Wenger [371], shidot mentioned here, and
several slightly different constructions of Lazebnik, id&nko, and their school (see
e.g., [256/ 257, 258]) and also the breakthrough resultsalitK Rényai, and Tibor
Szabd,[[235] and Alon, Ronyai and Szabdl[18], (see also [9]A280]).
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3.6. Adigression: the extremal matrix problems

If G,, is a graph, the condition thét,, does not contain ani € £ implies that if we
consider the adjacency matrik of G, and av(L) x v(L) symmetrical submatrix of
A then this submatrix cannot be the adjacency matrik .off for every L € £ we
add to£ all those graphs which are obtained frdnby addition of edges, and denote
by L the resulting family of forbidden graphs, then the extregraph problems fo£
andZ are the same, further the exclusion of every Lis equivalent to the exclusion
of their adjacency matrices as a symmetrical submatrices of

The number of edges aF,, is half of the 1's in the adjacency matrix, thus each
extremal graph problem generates an equivalent problei-ifomatrices, where the
number of 1's is to be maximized. Sometimes this approacérisuseful, e.g., enables
us to find continuous versions of graph theorems. Howeveuiittase there is an even
better matrix theoretical approach. Assume thatis a bipartite graph with vertices
in its first class andn vertices in the second one. Then we often repre§ehy an
n x m 0-1 matrix, and e.g. the exclusion Bh(p, ¢) in G is equivalent to the condition
that taking arbitrary rows and; columns ofA, at least one of the corresponding ¢
entries of the matrix will be 0, further, taking arbitraryows andp columns the same
holds.

Now, as one can read on the first page of tli&ti-T. S6s-Turan paper, K. Zaran-
kiewicz has raised the following interesting question:egiva 0-1 matrix4, of n rows
andn columns, and an integgr how large the number of 1's should be to guarantee
that A contains a minor of ordej consisting merely of 1's? If the solution of this
problem is denoted by;(n), then one main result of thed<ari-T. S6s-Turan paper
asserts in a somewhat more complicated but sharper form that

ki(n) = O(n>= /), (3.6)

Further, they show that lim, ., k2(n)/n%? = 1. Then they point out that their matrix
results imply

ex(n, Ka(p,p)) < %{/p “1.0% O(n). (3.7)

Some historical remarks. (a) The authors of [252] mention the general of excluding a
px g submatrix of 1's and that they restrict the discussion t&Z#w@nkiewicz problem,
wherea = b.

(b) Kévéari, T. S6s and Turan used a finite geometric constructioprove that
ka(n) > n®? — o(n%?). However, they did not use finite geometric language. Neithe
did Erdds, describing E. Klein's construction [106].

(c) Here again we should make a historical remark. Accorthri@52]

2 where symmetric submatrix means that if we take sgffieow of A then we also take the corre-
sponding;™ column and vice versa.
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“S. Hartman, J. Mycielski and C. Ryll-Nardzewski have proveat
3 < ka(n) < com®/? (1.2)

with numericale; andcey”.

Of course the Erdis-Klein result from 1938 was sharper, though it was formu-
lated for graphs, and therefore formally it did not imply tHartman-Mycielski-RylI-
Nardzewski result.

Two more historical notes should be made. Above we made g ghstinction
between degenerate and non-degenerate extremal gragkrpsobThe germ of this
distinction can be found in [252]. In Section 3 the authoriav'Let us call attention
to a rather surprising fact". And this fact is thak(n, Ko(p, p)) = O(n?~(1/P),

while to ensure a fairly similar graph, namel,, 1, we needx % (1 — %) n? edges,
which is much more. Further, in Section 6 the authors forteutlae conjecture that
k;(n) > ¢;n?~(1/9), which is equivalent with the conjecture thai(3.4) is sharp

The reader more interested in this topic is referred to tieesuof R.K. Guy [193]
and to the paper of Mors [278] completely solving the case efZarankiewicz prob-

lem when a 2x p submatrix of am x m 0-1 matrix is excluded.

4. Some non-degenerate extremal problems

Let R, denote the graph determined by the vertices and edges ouaregmlyhe-
dronfL3 Clearly, R4 = K4 is the tetrahedron grap®Rs = K3(2, 2, 2) is the octahedron
graph,Rg = Qg is the cube graph anft1,, D2g = Ry are the icosahedron graphs
and the dodecahedron graphs. As we have mentioned, Tus&al ithie question: how
many edges ca@',, have without containind?;, as a subgraph? Fdf, Turan’s theo-
rem yields the answer. For the cubg Theoreni 3B describes the situation. For the
dodecahedron and the icosahedron Simonavits| [325, 324] gaharp answer. (It is
strange that the simplest polyhedron, namely the cubetesrélae most trouble.) To
formulate some results, we need a definition.

Definition 4.1. H(n,p, s) := Th—s+1p @ Ks—1: We join each vertex of(;_, to each
vertex of7T;, g1 1.

It turns out that in very many cases this graph is the (onlyx&eenal graph. Below
first I will give some examples, and then, in Section 4.1 a \gegeral theorem on
the symmetric extremal graph sequences, and finally, inic3edi2, a few further
examples.

Why is H(n,d, s) a good candidate to be extremal? The simpler, shorter answer
is that H(n, p, s) is a simple generalization df, ,. But then comes the question:

13 Herek = 4,6, 8,12, 20 is the number of vertices.
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why is (7}, ,) a good candidate to be the extremal graph sequence for gaxidremal
problems? The answer is

Theorem 4.2(Simonovits, Critical edgel [321])f p(£) is defined by[(312), and some
Lo € L has an edge for which

X(Lo —¢€) =p, (4.1)

then there exists ang, such that fom > ng T}, , is extremal forZ, moreover, it is the
only extremal graph (for each fixed> ny).

On the other hand, i{{3]2) holds and for infinitely mamyf, ,, is extremal forZ,
then there is ar. € £ and an edge in L for whichx (L — e) = p.

Remarks 4.3.(a) Erdds had some results from which he could have easily deduced
the above result fop = 2.

(b) The above theorem has the corollary th&tif, € EX(n, £) for infinitely many
n, then forn > ng there are no other extremal graphs.

(c) Those days | have formulated the meta-theorem

“Meta-Theorem” 4.4. If we can prove some results fér = K, 1, then most proba-
bly we can extend them to ardywith critical edges.

This can be seen in the Kolaitis-Promel-Rothschild papgd]2which extends the
main results of Erds, Kleitman and Rothschild [131], and in many-many otheesa
of which we list only Mubayi [279], Babai—Simonovits—Spen{28], Prémel and
Steger,[[291], Balogh and Butterfield [37]. ..

e 1)

Figure 1.0¢-extremal, Grotzsch, Octahedron, Dodecahedron, Icosahedron
One interesting immediate corollary of Theorem 4.2 is thiefdng.

Theorem 4.5.T, » is (the only) extremal graph fab = Cy.1 for n > ng(k).

The value okex(n, Cy1) can be read out from the works of Bondy[62], Woodall[373],
and Bollobas[[55] (pp. 147-156) concerning (weakly) paticygraphs for alln
andk. It implies that the bound fong(k) is 4% in Theorenl4b. Firedi and Gun-
derson [[17R] gave a new streamlined proof based on works pf/lke [250] and
Brandt [71] and completely described the extremal grapleyTre unique fon ¢
{3k — 1,3k, 4k — 2, 4k — 1} (for 2k + 1 > 5).
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Another related result is that of Tomasz Dziflo [103]. Acdogdto
this, if we consider the even whéély, := K1®C5._1 —where we know
by Theoren{ 42 that for sufficiently large 7,, 3 is the only extremal
graph, Dzido also proves that

Theorem 4.6 (Dzido, even wheels[ [103]For all n > 6k — 10,
ex(n, Wy,) = ex(n, Ka).

Theoreni 4.2 immediately yields the extremal number for tieelér-critical graphs,
among others for the Grotzsch-graph seen on[Hig. 1.

Theorem 4.7(Grétzsch-extremal [321, 325, 330Det 11 be the Grétzsch-graph on
Figure[d. Forn > no, T,, 3 is the only extremal graph.

Theorem 4.8(Dodecahedron theorem [325For n > no, H(n, 2, 6) is the only ex-
tremal graph for the dodecahedron graphg = Ryo.

Theorem 4.9(Icosahedron theorem [324For n > ng H(n, 3, 3) is the only extremal
graph for the icosahedron grapRi».

Let us return to the questions:

(o) “When isH (n, p, s) extremal for£?”, and

(8) “When is H(n, p, s) the only extremal graph fof, forn > n,?”

In [330] | asked if there are cases whéf{n, p, s) is extremal graph but there are
infinitely many other extremal graphs as well. Now | know tN&S, there are. (We
skip the details). The next question is: whyAgn,p, s) extremal graph in many
cases? In particular, why B (n, 2, 6) extremal forD»o? Of course, for such questions
there are no clear cut answers, yet | try to answer this ls¢éerRemark 4.22.

The octahedron graph problem was solved (or, at least rediocthe sufficiently
well described problem afx(n, Cy4)) by Erdds and Simonovits.

Theorem 4.10(Octahedron theorernh [1B7]f..S,, is extremal forRg, then one can find
an extremal graph4,,, for C, and an extremal grapiB,,_,, for Ps of %n + O(y/n)
vertices each, such tha&t, = A,, ® Bh—m.

Clearly, B,,—., is either a set ofn—m) /2 independent edges or a se%@h—m—l)
independent edges and an isolated vertex.

Some very similar theorems can be found in Griggs, Simosanit Thomas [192],
see Sectiof 151, and some general results enK,(a, b, ¢, . .., c) in [137].

In the late 60’s and early 70’'s some basic techniques wermdfamainly by Erds
and Simonovits, to prove non-degenerate extremal gragitghes. Often sharp solu-
tions are given in terms of the solution of some degeneratel@ms. This is the case
in the Octahedron theorem (which is the simplest case of soore general theo-
rems [137]). The reason of this phenomenon is discussedaisim [326], [327] and
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[329]. Further, many particular extremal graph results iwethanically be deduced
from a fairly general theorem of Simonovits [325]. This ig ttase e.g. with Moon’s
theorem,[[275] or with the dodecahedron theorem. In somer atises, e.g, in the case
of the icosahedron, this deduction is possible but not teg.ea

Questions related to this will be discussed in the next stiluse

4.1. How to solve non-degenerate extremal problems?

Given a family £ of forbidden subgraphs, beside the subchromatic nump@y de-
fined in [3:2) the so called “Decomposition family” gfis the second most important
factor influencingex(n, £) andEX(n, £). So first we define it, then give a few ex-
amples and show how it influences the extremal structures.

Definition 4.11 (DecompositionM of £). Given a family£ of forbidden subgraphs,
with a p defined by[(3R), we collect it those graphs/ for which there exists an
L € £,suchthatM @ K,_1(v(L),...,v(L)) containsL. [14

In other words, M € M if puttin it into a classA; of a largeT;, ,, the resulting
graph contains some € L. The extremal graph problem df is always degenerate,
sincep + 1-coloring somelg € £ and taking subgraphs spanned by any two color-
classes of.g we get (several) bipartitd/ € M.

In the general results of Eéd [114,115] and myself [321] we proved that com-
paring an extremal graph fat and7, ,, the error terms are determined up to some
multiplicative constants, byx(n, M(L)).

EXAMPLES
(@) If £ = {K,+1}, thenM(L) = {K>}. More generally, if there is ah € L of
minimum chromatic numbery (L) = p(£) + 1, and there is a critical edgec E(L),
i.e.,x(L —e) =p, thenM = {K>}.
(b) If £ = {Dy}, the Dodecahedron graph, theA6 € M(L)
where @< is the graph consisting of 6 independent edges. However,
M(Dyp) contains als@’s + P4 + K, see the figure.
(c) If £L = {R12}, the Icosahedron graph, thég, 2K3 € M(L).
(d) The decomposition class & = {K3z(a,b,c) consists of
K(a,b),ifa<b<ec

Remark 4.12.The Decomposition family does not (always) deter-
mine the extremal graphs. Thus e §.(2, 2,2) and K (2, 2, 3) have the same decom-
position, however, by [137], their extremal numbers aréediit.

14 To get finite familiesVl when/ is finite, we may also assume thit is minimal for the considered
property, or at leas¥/ C L.

15 “putting” means selecting(M ) vertices in this class and joining them so that the resulting subgraph
be isomorphic ta/.
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4.2. Some further examples

If the decompositio (L) contains a tree (or forest), then the remainder terms in the
general theorems become linear. A subcase of this, W) contains a path (or a
subgraph of a path) is described in my paper [325].

Giving a lecture in Sfin (1997) | wanted to illustrate the general power of these
results to solve extremal graph problems. So | selected goleided graph from
tuczak’s lecture, another one from N&#&t lecture, seen in Fid]2. | called in [330]
these graphs of Fi@l 2 accordingly tuczak and NélSgtaphs.

Theorem 4.13(Luczak-extremal)For n > no, H(n, 4,2) is the only extremal graph
for the Luczak graptLqo.

Theorem 4.14(NeSefil-extremal).For n > ng, H(n, 2, 2) is the only extremal graph
for the NeSetfil-graphVi 2.

(a) Petersen graph (b) Luczak Graph (b) Nesetril graph

Figure 2. Some excluded subgraphs

Theorem 4.15 (H,,, ,-theorem)(i) Let Li,...,L, be given graphs with
minx(L;) = p + 1. Assume that omitting any — 1 vertices of anyl; we obtain
a graph of chromatic number p + 1, but L; can be colored irp + 1 colors so that
the subgraph of.1 spanned by the first two colors is the uniorkahdependent edges
and (perhaps) of some isolated vertices. Thenpfor ng(L1,...,Ly), Hy p is the
(only) extremal graph.

(ii) Further, there exists a constant > 0 such that ifG,, contains nal; € £ and

e(Gn) > e(Hpps) — % e

then one can delete— 1 vertices ofG,, so that the remainings,,_. 1 is p—colorable.

This theorem is strongly connected with Theorem 4/2._[[32%] [B30] contain
much more general theorems than the above ones, these ail@ugigtions of the
general results. Without going too much into details, | defirsequence of symmetric
graphs and provide a fairly general theorem.
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Definition 4.16.G(n, p, r) is the family of graphs-,,, whereV/ (G,,) can be partitioned
intop + 1 classed/y, ..., U, andIW with

‘|UZ-—Z <r W<

whereG[U;] is the vertex-disjoint union of the connected, pairwiserisgphic sub-
graphs oiG,,, the “blocks”B; ;. Further, eaclr € W is joined —foreaci=1,...,p
—to each blockB; ; in the same way: the isomorphismis; : B;1 — B; ; are fixed
andz € W is joined to ay € B; 1 iff it is joined to eachy; ;(y).

Theorem 4.17.If M(L£) contains a pathP; then there exists ansuch that for every
sufficiently largen, G(n, p, ) contains an extremal grapfi, € EX(n, £).

This theorem helps to prove many extremal graph results. eSativer results of
[325] ensure the uniqueness of the extremal graphs, tooréasen why these results
are easily applicable in several cases is that they applpmigtto ordinary extremal
graph problems but to extremal graph problems with “chrécr@inditions”.

Assume that instead of only excluding subgraphs fibave also have some addi-
tional conditions orGG,,:

Consider a graph proper®y and assume thdf, € P. Does this change
the maximum in a Turdn type problem?

Denote byex(n, £, P) the maximum ok(G,,) under the condition tha,, has no
subgraphs fromC and satisfies?. Mostly we think of “chromatic properties” (see
Definition[4.18).

Clearly, if no L-extremal graph has propery, thenex(n, £, P) < ex(n,L). If
the condition is thak (G,) > t, for somet > p, that will only slightly diminish the
maximum: we can take a fixed gragph, of high chromatic number and high girth and
then considef!, + T, , 19

Definition 4.18 (Chromatic conditions). The chromatic prope@ly; is the family of
graphs from which one can not delatgertices ofL to get at-chromatic graph.

Theorem 4.19.Assume that, s, t are given, aneéx(n, £, Cs ) is the maximum num-
ber of edges arL-free G,, € C,; can have. IfM(L) contains a pathP, then there

exists anr such that for every sufficiently large, G(n,p,r) contains an extremal
graphS,, € EX(n, £,Cs4).

Theoreni4.1l7 can be used to solve the extremal graph prokd&garithmically”,
sinceW andB; , have bounded sizes. The details are omitted.

Below we describe an algorithms to solve extremal graphlpros: This algorithm
works if we know the appropriate information @h

16 There is an exception wheficontains some trees.
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Algorithm 4.20 (The stability method). (a) We look for a propefywhich we feel
is an important feature of the conjectured extremal grafhs
(b) Show that ifG,, does not contain somk € £ and does not have the propeRy
thene(G,,) is significantly smaller than the conjectured extremal nemb
(c) This shows that all the extremal graphs have propBrtyJsing this extra infor-
mation we prove the conjectured structure of the extrenapys.

Example 4.21.If the decomposition clasil contains anV/ consisting ofr indepen-
dent edges, then we can immediately see that if/apwhas at least two vertices (and
therefore, being connected, has an edge), then the syrorgeaiph sequences con-
tain someL, a contradiction. Hence the blocks; , reduce to vertices. Therefore any
x € W is either joined to each vertex 6f or to none of them. Now it is not too diffi-
cult to see that the extremal graphs must be (almostfthe, p, k) graphs: The only
difference which can occur is that the vertices of degree O(1) do not necessarily
form a complete subgraph.

Remark 4.22.So we have seen that if the decomposition clEg£) contains an\/
consisting of independent edges, then we have can applielbesms from [325] and
have a good chance to hat#n, p, s) as the extremal graph.

Following this line, one can easily deduce Theofem4.15 fidvaoreni 4. 19. The
next few results follow from these theorems.

Theorem 4.23(Petersen-extremal graphBpr n > no, H,, 23 is the (only) extremal
graph for the Petersen gragPyy.

(An alternative proof of this can be derived from TheofenD8the next section.)

| close this part with two cases, when Theofem¥.17 is appkchut the extremal
graph is not & (n, p, s). Both results follow from Theoreﬂ]@.Let Ly, ¢ denote
the graphs withk vertices and’ edges.

Theorem 4.24(Simonovits [328]) Let k be fixed and’ := e(7},) + b, for1 < b <
k/(2p). If n is sufficiently large, then

ex(n,Lye) =e(Typ) +b—1

A theorem of Erds, Firedi, Gould, and Gunderson determines
ex(n, Fori1), WwhereFy, 1 = (kK2) ® Kj: k triangles with one com-
% mon vertex. Clearly, here the Decomposition class containk,, hence
Theoren{ 4117 is applicable. Yet the extremal graph is nék(a, 2, s),
since even one vertex completely joined @23 » creates arfy;, 1. (For
evenk, the extremal graph is obtained fronig » by putting twoK}’s into its first
class.)

17 They can be obtained directly, by much simpler arguments, as well.
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4.3. Andrasfai-Erd6s-Sos type theorems
We have seen thaix(n, L) — ex(n, L) = O(n) if P is thatx(G,) is high. The
situation completely changes if we try to maximizgn(G,,), instead ok(G,,).

Theorem 4.25(Andréasfai-Erés-Sos([24])If G,, does not contairk,, and x(Gy,) >
p, then

dmin(Gr) < (l - ) n+ O(1).

_ 4
3

Comparing this with Turan’s theorem, whefgin(7;, ,—1) ~ (1 — Iﬁ)n, we see
that because of the extra conditiQ0G,,) > p, the maximum ofiin(G,,) dropped by

cpn, for somec, ~ %2 > 0. Below we shall need

Definition 4.26 (Blowing up a graph). Given a grapl,, its blown-up versio/ [az, . . ., a,]
is a graph where each vertex € V(M,) is replaced by a seX; of a; independent
vertices (and thes¥;'’s are disjoint) and we joina € X; and aw € X if the original
verticesz; andz; were joined inM,,. If a; = --- = a, = a, then we use the simpler
notationM a].

To generalize Theorem 425, Bxsland Simonovits [139] defined
¥(n, L, t) == max{e(Gn) : L € Gnandx(Gr) = t},

whereL is a fixed excluded graphi,is fixed, andn — oc. Using this language and
including some further results of [24], we can say that

Theorem 4.27(Andrasfai-Erds-Sds[[24]).

P(n, Kp,p) = <l — ) n+ O(1). (4.2)

_ 4
3

For n > no, the extremal grapl®,, for this problem is a productsS,, = T, ,-3 ®
Cslai, ag, ..., as], where the parameters: and a; should be chosen to maximize
e(.S,,) among these structures.

The above description ¢f, almost completely determines its structuref;jf ,_z =
Kpfg(ml, . 777”Lp,3), then

n 3n
—3n74+0(1) and mi =gy

To formulate a more general and sharper result, assume that

+0(2).

a;

L has a critical edge: anfor which x(L — e) < x(L). (4.3)
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Theorem 4.28(Erdés-Simonovits[[139])If x(L) = p and L has a critical edge, then,
for n > ng(L),
Y(n, L,p) < ¢(n, Kp, p).

Actually, equality may hold only for. = K.
@D ' Theorem 4.29(Erd6s-Simonovits[139])Let x (L) = pandL # K,

satisfy [4.8). Then, fon > ng(L),

Fig. 3:
Extremal
structure

v(n,L,p) < (1 — ) n+ O(1). (4.4)

_ 3
2
Of course, this theorem does not cover the case of the Peterse
graph: it has no critical edge. Figurk 2 shows that one castal&l
independent edges froifyg to get a bipartite graph. Moreover, if
T(v,p, s) is the graph obtained froffi, ,, by puttings independent edges into the first
class of7,, ,, then Figur€R shows th&o C 7122 3. So the “stability” ofP1o-extremal
graphs is covered by

Theorem 4.30(Simonovits[[330]) For everyv (andt < v/2) there exists & = K (v)
such that if

2
andT,,; ¢ G, then one can delet& vertices ofG,, to get a bipartite graph.

Remarks 4.31.(a) Theoreni 430 is sharp, as shown@yin]. Clearly,s(Cs[En]) >
Zn —2andT,,; ¢ Cs[in]. Further, replacing’, » by any graphl C T, », we get
the same sharpnesshf; C L, sinceC5[%n] contains naks.

(b) Moreover, Theorerl 4.80 is sharp also Rag: one can relatively easily show
thatP1 cannot be embedded in€@[:n).

(c) The theorem isiot sharpif x (L) = 3 andL C Cs|u| for someu

The real question was if(n, K3,t) < ¢;n + o(n) for some
constants;; — 0 ast — oo. In other words, is it true that if
the chromatic number tends o, we can push down the degree
density arbitrarily?

In [24] it was conjectured that YES, however, it turned out in
the Erdds-Simonovits papef [189] that NO. This follows from
Fig. 4: Hajnal Constructio 4.33 of A. Hajnal beldtd For this we shall need

Construction the definition of the Kneser grafiiN (2k+-/¢, k). Its vertices are

18 CZM+1 - CS[M] for "> 1.
19| think that this construction was found by Hajnal, but now that | reraachaper, | cannot exclude
that it was found by Erdls and Hajnal.
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the k-subsets of 42k + ¢)-element setV and we joinX,Y C U
if XNY = 0. Itis easy to cololKN (2k + ¢, k) with £+ 2 colors. The Petersen graph
P10 = KN(5, 2) is the simplest non-trivial Kneser graph.

Theorem 4.32(Kneser Conjecture, Lovasz Theorem [262]).
X(KN(2k + 0, k) = £+ 2. (4.5)

Construction 4.33(A. Hajnal, in [139]). Letk, ¢/, h — oo, £ = o(k), k = o(n). Our
graphH,, hasn ~ 3h vertices partitioned into three groups B, andC, where

H[A] =KN(Q2k+0,k),  |B|~2h, |C|~h.

(Casek = 2,¢ = 1 can be seen in Figure 4).

(a) Each vertex of KN (2k + ¢, k) is a subset of 1, . . ., 2k + ¢}: call its elements
the “names” ofv. The vertices of are partitioned into 2 + ¢ subclasses3;. j =
1,2,...,2k + ¢ of approximately equal sizes. We join the verticesifto those
vertices ofA whose name-set contaigisFinally, join each vertex front to each one
of B.

Let us verify the implicitly or explicitly stated properseof H,,. x(H,) > { + 2,
by (43). H,, contains nak3, because there are no edges betw&emdA, so all the
triangles have to be iA U B. However,A does not contairk(s’s, and by the “name-
rule”, if z,y € A are connected, then they have no common neighbdss Finally,
if k,0,n — 0o, k = o(n), £ = o(k), thendmin(H,,) > n/3 — o(n), since the vertices

z € A have
k  2n

d@o)~ 53
because of the name-rule, while for the vertice Bqfd.8) is trivial; for anz € C,
d(x) = %n —o(n).

(4.6)

Remark 4.34.When we described this construction originally, the Knésenjecture
was still unproved: we used a much weaker assertion (an Ulispatl argument of
Szemerédi, based on a theorem of Kleitman) $H@ N (2k + ¢, k)) — oo. Soon the
Kneser conjecture was proved by Lovdsz [262], then an altproof was given by
Barany [44] and then many nice results were proved, of whiemvention here just
one, due to Schrijvef[315], describing the color-critisabgraphs oKN (m, k).

There are many interesting related results in this area. Afgion here only a few
of them:

Theorem 4.35(Haggkvist [197], Guoping Jin[207]).
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The sharpness of this result follows from an “optimally” Wlo up version of the
Grotzsch graph, where “optimally” means thatertices are partitioned into 11 classes
Ui, ....U11 and the classes are joined as in the Grotzsch graph, howey@rapor-
tions are chosen so that the number of edges be maximizech Wwappens when each
degree is approximately the same. Improving earlier anlrest"homassen[[355],
tuczak proved

Theorem 4.36(Luczak [268]).For everye > 0 there exists ar. = L(e) such that if
G, is triangle-free andimin(G,,) > (% + ¢)n, thenG,, is contained in some blown up
version of a triangle fred?,,, for somemn < L(¢).

As Erdds and myself, using the construction of Hajnal, pointedsagh a result does
not hold belown /3, more precisely, with an < 0. The results above leave open the
case= = 0 which was very recently answered by Brandt and Thomasgéijié also
completely described the structure of triangle free graghwith dmin(Gy) > n/3.
Their results imply

Theorem 4.37.All graphsG,, with dmin(G,) > %n are 4-colorable.

4.4. The structure of denseL-free graphs

Below we shall writeG — H if H contains a homomorphic image @f or, in other
words, a blown up versio# (¢) of H containsG. To avoid too technical arguments,
we restrict ourselves to the 3-chromatic case. For a gfapie define

§(L) = max{m: misoddandl — Cy,}
= max{m: misoddandL C Cy,[v(L)]}.

Note that ifx(L) = 3, thené(L) cannot be larger thagirthoqd(L), the length of the
shortest odd cycle contained In Finally, by 3(G) we denote the minimum number
of edges that must be deleted frarto make it bipartite.

In this section we study the structure ffree graphs of large minimum degree for
a general 3-chromatic gragh Our main result can be stated as follows.

Theorem 4.38(Luczak and Simonovit$ [271]).et L be a 3-chromatic graph. Then
for everya, n > 0, there exists amg such that for every.-free graphG with v(G) =

n > ng and

2n

o> |22

—‘ +nn, 4.7)

we have3(G) < an?,
Furthermore, for everye > 0 there exist any > 0 and anng such that each.-free
graphG with v(G) = n > ng and

2n _
dmin(G) > {E(L)—FZ-‘ —nn, (4.8)
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contains a subgrapli’ with at leaste(G) — an? edges such that’ — Ce(L)+2-

Similar but sharper results were proved by&@y Nikiforov and Schelp for the
special case wheh is an odd cycle.

Theorem 4.39(Gybri, Nikiforov and Schelp[[196])lf a non-bipartite graphG,, has
minimum degreelnin(Gy) > n/(4k + 2) + cim, Wherecy, ,,, does not depend on
n and n is sufficiently large, and it0>;.1 C G, for somek < s < 4k + 1 then
Cos12j41 C Gy, foreveryj =1,... ,m.

They describe the structure of all graphsrovertices withdmin(G,,) > n/(4k + 2)
not containing odd cycles longer thah-2 1. In particular they prove that these graphs
can be made bipartite by deletion of a fixed number of edgesnices.

Further sources to read: Alon and Sudakov [22].

5. Problem of Supersaturated Graphs

5.1. Counting complete subgraphs

For the sake of simplicity we restrict ourselves to the casent has only one mem-
ber L. By definition, ife(G,) = ex(n, L) + 1, thenG,, contains arL. It is rather
surprising that generally(G,,) > ex(n, L) ensures much more than just cheThe
first result in this direction is an unpublished theorem ofi&aacher (1941) according
to which a graplG,, with {Z—Z} + 1 edges contains at legs} | copies ofi(3. This was
immediately generalized by

2

Theorem 5.1(Erdds [109]). There exists a constant> O such that ife(G,,) = {Z—} +
k,1 <k < cn, thenG,, contains at leask| %5 | copies ofK(3.

T, 2.1 Shows that this result is sharp, apart from the value dfideede(T), 2 ) =
[ﬁ—z} + k and it has onlyk| % | triangles. Later Erdls extended this result th, 1

and graphs+,, with e(7}, ,) + k edges|[[11l7]. Many similar results were proved by
Erd6s [117/112], Moon and Moser [2[76], Bollobas[[53].[[54], Loxand Simonovits,
[264,1265].

For complete graphs Lovasz and Simonovits proved a comgofierdds and for-
mulated a general conjecture [n[264, 265] which they couttv@ only for special
values ofk = e(G,,) — ex(n, K,+1), namely, wherk € [1,en?] . Later, in several
steps it was solved by Fisher, [158, 159], Razborov [2954jfhliov [286] and finally,
“completely”, by Reiher[[297].

20 More precisely, when for some> p, e(Th,q) < e(Gy) < e(Tp,q) + eqn®.
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We have already mentioned the “meta-theorem” that if oneprane a result for
K,, then one can also prove it for graphs with critical edgese @mample of this is

Theorem 5.2(D. Mubayi, [279]: critical edges).et L be p + 1-chromatic with a
critical edge. Letc(n, L) be the minimum number of copies bfproduced by the
addition of an edge td’, ,. There existo(L) andd(L) such that every grapty,, of

ordern > ng with e(G,,) = ex(n, K,11) + k edges contains at least(n, L) copies
of L, providedk < n.

The proof uses the graph removal lemma and thé&®imonovits stability theo-
rem.

5.2. General sample graphs

Turning to the general case we fix an arbitrdryand call a grapli7,, supersaturated
if e(G,) > ex(n,L). The problem is, at least how many copieslofust occur in a
G, with ex(n, L) + k edges. Erd@s and Simonovits [140] proved that

Theorem. For everyc > 0 there exists a* > 0 such that ife(G,,) > ex(n, L) +
en? andv = (L), thenG,, contains at fewestn” copies ofL.

Further sources to read: The reader interested in further information is suggesied t
read the papers of Lovasz-Simonovits on structural stafill65], Erdds—Simonovits,
[140Q], or Brown—Simonovitd [85], or my survey [328].

5.3. Razborov’s method, Flag algebras

Given a graphG,,, we may count the occurrences of several possible subgiaphs
it. Denote byc(L, G,,) the number of occurrences éfin G,,. Inequalities for such
“counting functions” were the basic tools in several cases,e.g.[[252][[276] [265].
The connection between Supersaturated Graph theoremsraoid pf ordinary ex-
tremal graph problems was discussed e.d. inl[328]. In thddasyears Razborov has
developed a new method which enables the researchers tp @ppputers to prove
inequalities between counting functions on a graph. Thighoteturned out to be very
successful and popular. To describe it and its applicatiemsld go far beyond our
scope. | just mention one of the first papers of A. Razbdro@J2®d his very recent
survey [296] on this topic, or Keevadh [218].

5.4. The general case, bipartite graphs

As we have mentioned, the theory of supersaturated graptisgwith Rademacher’s
theorem, and the first few papers in the field counted compigbgraphs of super-
saturated graphg, [117], [100]... (Perhaps one exceptionld be mentioned here:
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counting walks in graphs, e.g. Blakley and Royl|[49] that wasnfl independently
also by [282],[[260]. Counting walks is important e.g., if wesh to get information
on the eigenvalues of a graph.)

The theory of supersaturated graphs is completely diffefi@n(a) the case when
the excluded graph, is bipartite, and (b) when it is not. The case when it is bipart
is described in details in [180], and from other viewpoirtsmy survey, [328], so |
will describe the situation here only very shortly.

Fore(G,) < ex(n, L), of course, it may happen th&t, contains no copies af.
As soon as we go abowex(n, L), we immediately have very many copies. Yet, to
give a precise description is hopeless, even for one of thaithplest cases, fary:
we do not know enough of the finite geometries to tell, how m@pynust occur in
G, if e(G,) = ex(n,Cy) + 1.

Erdds and | conjectured (se€e [328]) thakif.) = 2 then for every > O there exists
ann(e) > 0 such that ife(G,,) > (1 + ¢)ex(n, L), thenG,, contains at leagn’(")
copies ofL. We also formulated a weaker conjecture, asserting that arfp fixed L
— there exist a (small) > 0 and aC' > 0 such that ife(G,,) > Cex(n, L), thenG,,
contains at leasyn’(%) copies ofL. It is also mentioned (implicitly?) if[328] that
these conjectures mean that the random graph has the fewpéss of L [51 Sidorenko
[319], [320] considered dense graph sequences, turnesthesponding inequalities
into integrals, the error terms disappeared, and he foteailaore explicitly that for
given number of edges the Random Graph has the least coples of

Today this became one of the most important conjecturessratiea. The simplest
case when the conjecture is unknown is wiies obtained from & (5, 5) by deleting
edges of &10. We could mention here several results, however basicalyefer the
reader to[[180] and mention only Simonovifs, [328], Conlbox and Sudakov [95].

Remark 5.3.Earlier we always first proved an extremal graph theorem hed the
corresponding supersaturated graph theorem. Today thig tguite so: Fok > 4 we

do not really know any reasonable upper boun@=(v, Q,) (for the k-dimensional
cube), while the corresponding ErstSimonovits-Sidorenko conjecture is proved by
Hatami [199]. This may seem to be surprising, however, tlhle®nko Conjecture is
aboutdenseggraphs.

5.5. Ramsey-supersaturated?

The general question would be (though not the most genesl that if we have a
sample graptl andn > ng, and wer-color K, at least how many monochromatic

2! Those days quasi-random graphs were “non-existent”, today we knovrahathis point of view
the random and the quasi-random graphs are indistinguishable.
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subgraphs must ocdﬁ.The simplest case is to determine
min (c¢(Kp, Gp) + c(Kp, Gr)) -

For K3 the answer is relatively easy, see Goodman|[184]6&mbnjectured [110] that
the minimum is achieved by the Random Graph. This was diggkdey Thomason

[354]. (See alsd [205].)

6. Regularity Lemma

When the Szemerédi Regularity Lemrha [349] “arrived”, fitsidemed something too
complicated. The reason for this was that those days moghdheorists felt uneasy
about having this “approximation type statemerts”.

Today we know that (a) it is not that complicated and that {l§ one of themost
importanttools in Extremal Graph Theory. This is not the place to explta Surveys
like Komlés-Simonovits[[2419],1248] describe sufficienthell the usage of the Reg-
ularity Lemma in our setting, for “dense graph sequenceseveral excellent newer
surveys are also available, like Kohayakawa and Rodll[2288 and Schacht [302],
Gerke and Steger [183], and many others. Yet, for the sakeropleteness we for-
mulate it.

6.1. The original regularity lemma

Definition 6.1 (e-regular pairs). The pair of two disjoint vertex-sets,B C V(G) is
e-regular inG, if for every X C A andY C B satisfying|X| > ¢|A| and|Y| > ¢| B,
we have

e(X,Y) e(A,B)

— <e. (6.1)
(X1 [AllB

Theorem 6.2(Szemerédi Regularity LemmdaJor everyx > 0 ande > 0 there exists
a ko = ko(e, k) such that for each graplir,, V(G,,) can be partitioned intd: €
(k, ko) vertex-set§Us, ..., Uy), of < [n/k] vertices (each), so that for all but(%)
pairs (U;,U;) (1 < i < j < k) the subgraptG[U;, U] induced byU;, U; is e-regular.

The meaning of this “lemma” is that any graph can be approtéchay a “gener-
alized random graph”. Its applicability comes from the fdwt embedding certain
structures into randomlike graphs is much easier than irtiorary graphs. This ap-
proximation helps us to prove (instead of statements on &eldimg into arbitrary
graphs”) the simpler assertions on “embedding into geizedrandom graphs”.

22 A related question is, how many monochromatic forbidden subgraphs appeathe Ramsey
bound, see e.g., Rosta and Suraryi, [307], Karolyi and Riosta [212],

2 Harary, e.g., did not like assertions containing statements likeriforng”. ..

24 wheree(G,,) > cn® for some constant > 0 asn — oo.
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The Regularity Lemma completely changed that part of grapbry we are con-
sidering here. There are many excellent introductionsstapiplications. One of the
first ones was that of Komlés and mysélf [249], or its extens[248].

Remarks 6.3.(a) The Regularity Lemma can be applied primarily when a lyrsg
quence(G,,) is given with positive edge density(G,,) > cn?, for some fixed: > 0.

(b) For ordinary graphs it has several weaker or strongeiimes, and one could as-
sert that if one knows the statement, the proofs are not tfi@tdt: the breakthroughs
came from finding the right Regularity Lemma versions.

(c) For hypergraphs the situation completely changes: d¢helarity lemmas are
much more complicated to formulate and often their prooésadso very painful (?).
For a related survey see the PNAS paper of Rodl, Nagle Skdkelmacht and Ko-
hayakawa[298] and the “attached” Solymosi paper[337],Gaders,[188], and Tao
[351].

(d) Regularity Lemmas are connected with “removal lemmast] “counting lem-
mas” however, for ordinary graphs they are easy, while f@ehgraphs they are much
deeper.

(e) Regularity Lemmas can be applied to sparse graph seegiéfi) as well,
[225,[228] assumed that the graphs satisfy some technical assumptions, according
to which they do not have too dense subgraphs. Subgraphsddmagraphs satisfy
this condition, therefore Sparse Regularity Lemmas wepdicable in several cases
for non-random subgraphs of sparse random graphs.

(f) Regularity Lemmas were “invented” to ensure small salpips of given prop-
erties of a graplt,,. Later Komlds, G.N. Sarkozy, and Szemerédi started usita it
ensure spanning subgraphs. This is for what the “Blow Up Lesirwere invented,
see Komlés,[[245], Komlés, Sarkdzy, Szemerédi, [240]. L#tey worked out algo-
rithmic versions of the Blow-Up lemma tolo [242], (see alsa@Rand Ruchski [300])
and hypergraph versions (Keevash, [217]) were establishiedeturn to this topic in
Subsectiof 616.

(g) There are many cases where Regularity Lemmas are usedkta §jrst proof
for some theorems, but later it turns out that the “regutdeinma” can be eliminated.

(h) Regularity Lemmas play crucial role in the theory of quasdomness, in
"property testing”, and in the theory of graph limits.

6.2. Some newer regularity lemmas

In [249] we tried to give an easy introduction to the applimas of the Regularity

Lemma. We have described the earliest applications, tha-Biake-Lefmann-RodI-

Yuster paper[13] about the algorithmic aspects of the RegulLemma, which helps
to turn existence theorems using the Regularity Lemma ilgorighms, the Frieze-

Kannan version [164] which helps to make algorithms fastieice it uses a weaker
Regularity Lemma, however, with much fewer classes. Bddi6id], see alsoq]. The
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weak Regularity Lemma in my opinion also connects the coatbimal approach to
the Mathematical Statistics, above all, to Principal ConggarAnalysis.

There are also continuous versions of Regularity Lemmage e refer the Reader
to the paper of Lovasz and B. Szegedy [266] and to the book ea$0[263]. Many
further remarks and references could be added here but veethaut it short.

6.3. Regularity Lemma for sparse graphs

The Kohayakawa-Rodl version of the Szemerédi Regularityiiba uses a “technical”
assumption that the consideréd, does not contain subgraplig,, of much higher
density thanGz,,. Very recently Alex Scott proved a new version of the Regtylar
Lemma, for Sparse graphs [316]. Yet this have not solvechalproblems. As Scott
points out, it may happen in the applications of the Scottinenthat most of the edges
are in the “wrong place”. We skip the details. On the conmectf Random graph
models and Regularity Lemmas, we mention Bollobas and Rio[H9].

6.4. Regularity Lemma and Quasi-randomness
Quasi-randomness informally means that

(Q) We consider graph sequend&s,,) and look for “properties”P; that are
obvious for the usual random graphs (say, from the binomigtidution
Rn,p) and equivalent to each other.

Here there are two notions relatively near to each other:pfesido-random and
the quasi-random graphs. The investigations in this area wéiated by Andrew
Thomason (see e.g. his survey [353]) and were motivatedy@aby Ramsey prob-
lems. Chung, Graham and Wilsdn [94] showed that if we weakenetror terms,
then there are six properties satisfying (Q). Vera Sés amdvaual that there is another
propertyPr being equivalent to quasi-randomness:

Theorem 6.4(Simonovits—S6s [333])A graph sequencé’,,) is p-quasi-random in
the Chung-Graham-Wilson sense iff for evenand e > 0 there exist two integers
k(e, k) andno(e, k) such that forn > ng V(G,,) has a (Szemerédi) partition into
classed/y, ..., Uy (Where|U; — n/k| < 1, k < k < k(e, x)) where all but at most
ek? pairs1 < i < j < k aree—regular with densitieg(U;, U;) satisfying

AU Uy) — ] < <.

Several extensions exist for sparse graph sequences aadjhgph sequences, how-
ever, we do not discuss them in details. For the sparse case.ge Kohayakawa and
Rodl [229]. For hypergraph extensions (which are much mecértical) see, e.g.,

Keevash[[217].
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6.5. Regularity lemma and property testing

Property testing is among the important “Computer Scienoévated” areas. It is
perhaps two steps away from Turan’s results, yet | write sbiortly about it. Assume
that we have a graph properB. We would like to decide if a grapty,, € P or not.
However, we may ask only a few questions about pairéf they are edges of7,, or
not? For example, we would like to decide&if, contains a giverd. or not. Obviously,
we cannot decide this for sure — using only a few questionslesarwe allow some
errors in the answer: if we can change a few edge€into get aG,, € P then
we accept a YES. Some of the earliest questions of this type e@ming from Paul
Erdds, though in somewhat different form. In the papers of Alod 8hapira it turned
out that — in the reasonable cases — one can decide the quiéstie can decide it by
applying the regularity lemma t&',, and then considering the densities between the
partition classes.

6.6. Blow up lemma

In many cases we embed a small grdpimto a large one(=,,. There are some ex-
ceptions, when we wish to find iff,, a Hamiltonian cycle, or a spanning tree of given
structure, ...In these cases mostly (a) we have to assume Spanseness condition
on L, say a bound ofimax(L). (b) Even if we can embed into G,,, if v(L) = n, then
we have to struggle with finding places for the last few vesic

To solve this problem Komlés, G. Sarkdzy and Szemerédil[24€3blished a spe-
cial “extension” of the Regularity Lemma, called tBeow-Up LemmaKomlos has a
survey [245] on early successes of the Blow Up lemma. Thigesuvery nicely de-
scribes the classification of embedding probl@md lists several conjectures solved
with the help of the Blow-Up Lemma.

We call a pair( X, Y') of vertex-sets irG,, (¢, 7)-super-regular ifX| ~ |Y|, itis e-
regular,d(X,Y’) > 7 and the minimum degree 6(X,Y) is also at leastd(X,Y’) —

5)\X|@

Theorem 6.5(Blow Up Lemma, short form)ror everys, A > 0Othere exists agg > 0
such that the following holds. Given a graph),, and a positive integem, and G,,
and U,, are obtained by replacing every vertex 8f, by m or m — 1 vertices, and
replacing the edges dff,, with (e, §)-super-regular pairs and by complete bipartite
graphs, respectively. If,, C U,, anddmax(Ly) < A, thenL,, C G,,.

The meaning of this is that if we do not have large degreds,iand small degrees
in G,, and we apply the Regularity Lemmadg,, and replace each of tleregular
T-dense pairs by complete bipartite graphs, then, if we caoeem,, into the sq
obtainedl,,, then we can embef,, into the original, much sparsé#,, as well.

% fixed sizeL, o(n) size L, v(L) = en, v(L) = n
26 We could define this basic notion also slightly differently.
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The basic idea was (i) first to use a randomized greedy emhgddgorithm for
most of the vertices of the graph to be embedded and (ii) tldendare of the remain-
ing ones by applying a Kénig-Hall type argument [240].

The Blow Up Lemma successfully solved several open prohlegese.g., Komlos,
Sarkézy, and Szemerédi, proving the Pésa-Seymour conge246], the Alon-Yuster
conjecture[[243], . . . Here the Pdsa-Seymour conjecturefaskensuring thé™ power
of a Hamiltonian cycle, (meaning that we have a Hamiltonigoles where all the
vertices are joined whose distance on tHiss at mostk).

The randomization was later eliminated by Komlds, Sarkéxy$zemerédi and the
embedding became an algorithmic ohe [242]. An alternatderdndomized” proof
was also given by Rédl and Runski [300]. This approach turned out to be extremely
successful. The Blow-up lemma was also extended to hypatgraee Keevash [217].

When using the Regularity Lemma, or the Blow Up Lemma, wernéipply some
“classical” result to the Cluster Graphs. Here we often nbedamous

Theorem 6.6(Hajnal-Szemerédi[244]) n is divisible byp and

din(G) > (1 - ;) ",

thenV (G,,) can be covered by vertex-disjoint copieg9f.

When Hajnal and Szemerédi proved this conjecture obg&rthat was an enormous
technical achievement, but | do not think that most peoptaésurrounding new that
this will be also an important “tool”.

Further sources to read: Several related results discuss, how can one get rid of ap-
plying the Blow Up lemma (or variants of the Regularity Lemrseae, e.g. Levitt,
Sarkézy and Szemerédi [247]). Kuhn and Osthus have a retameey [255], and
Ro6dl and Rudiski another oné [301]. See also Alon-Rodl-Rasdii [19], B, Csaba,

[96].

7. Arithmetic structures and combinatorics

This will be the shortest section of this survey. Clearlyjtiwg of the influence of
Turan in Discrete Mathematics one cannot avoid thebEfBuran conjecture, nowa-
days Szemerédi's,(n)-theorem. This asserts that

Theorem 7.1(Szemerédi[348])For any fixedk, if a sequencel of integers does not
containk-term arithmetic progressions, then it has only:) elements i1, n].

This theorem was very strongly connected to combinator@=emerédi's proved
and used an earlier, weaker version of his Regularity Lemionprove Theoreri 711.
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Vera Sés has a paper describing the origins of this conjed®#0], (based on the
letters exchanged by E#d and Turén, during the war).

Remarks 7.2.(a) Szemerédi’s theorem is one of the roots of many resudtsctinnect
Combinatorics (Graph Theory?) and Combinatorial Numbezofr Beside this it
also connects Ergodic Theory and Combinatorial Number iheaince Furstenberg
[181] gave an ergodic theoretic proof of it, then Firstegb&atznelson[[182] and
others gave several generalizations, using ergodic thiearethods. The reader is
recommended to read e.g. the corresponding chapter of thle dfdGraham, Roth-
schild and Spencelr [190], The same time, there are faseghagproaches to this field
using deep analysis, due to Gowers, and othésge recent papers of Gowers [186],
or an even newer paper of Gowers [189] on these types of prshlen arithmetic
progressions.

(b) Historically it may be interesting to read the first, kaiweak results of Erds
and Turan in this topic, in [150]. They start with proving tha(n) < %n Then they
prove a slight improvement, and formulate a conjecture ek8ees which turned out
to be false.

One of the most famous conjectures of &dvas
Conjecture 7.3.1f A = (a1, ..., an,...) is asequence of integers with
1
RS
a;
then, for anyk, A contains &-term arithmetic progression.
One motivation of this conjecture is that it would imply

Theorem 7.4 (Green-Tao[[191])For arbitrary k there existk-term arithmetic pro-
gressions in the set of primes.

Further sources to read: Elek and Szegedy on the nonstandard methods in this area,

[104,[105]

8. Multigraph and digraph extremal problems

Here | formulate only the digraph problem, which includes thultigraph case. Let
be fixed and consider digraphs in which for any two verticea@dtr arcs of the same
orientation can join them. (Hence the number of arcs joiting vertices is at most
2r.) The problem is obvious:

27 This approach originates from Roth.
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For a given family? of digraphs what is the Lnaximum number of arcs a
digraph D,, can possess without containing ahy< 2?

The concepts oéx(n, 7) andEX(n, 7) are defined in the obvious way. Brown
and Harary[[84] started investigating multigraph extreprablems. Several general
theorems were proved by W. G. Brown, P. &scand M. Simonovits [78][[79]/.180],
[81]. Some results concerning directed multihypergragmsatso be found in a paper
of Brown and Simonovits [85]. For the Eid conference in 1999 we wrote a longer
survey on the topid [86]. The case= 1, at least, the asymptotics ek(n, 2) in this
case, is sufficiently well described. Below we formulateyomhe theorem, indicating
that the whole theory of digraph extremal problems is stipognnected to the theory
of matrices with non-negative integer entries.

Brown-Erd 6s-Simonovits theorem([7B]. Let us consider digraphs where any two
vertices are joined by at most one arc in each direction. febe a given family of
forbidden digraphs. Then there exist®-4 matrix A (of sayt rows and columns) such
that

(a) if we partitionn vertices intot classesl, ..., U, and fori # j join each
vertex ofU; to each vertex ot/;, by an arc oriented front;, to Uy, iff a; ; = 1,
and put transitive tournaments into the clas$gsiff a;; = 1 (otherwise these are
independent vertices) then the resulting digraph does ontain subdigraphs from

(b) One can patrtitiom vertices intot classed/, ..., U; in such a way that the
resulting digraphsD,, form an almost extremal sequence(:Bn)/ex(n, ?) — 1
(and D, contains no forbidden subdigraphs).

The meaning of this theorem is that for= 1 we can always find an almost ex-
tremal graph sequence of fairly simple structure, wherestheture itself exclude the
containment of forbidden subgraphs.

Example 8.1.(a) Letr = 1. Let L3 be the following digraphu is joined tob andc by
twogcs of opposite directions ands joined toc by one arc. The extremal structure
is aG), obtained frontf, » replacing each edge by two arcs of opposite direction. Any
tournamenﬁn is also an almost-extremal graph, and there are many otemes
graphs, see [86].

(b) There are digraph families for which the structure on[&{a) is extremal, and
for some other family? the structures ohl 5(b)-(e) forms an extremal sequence, re-
spectively.

Brown, Erdds, and myself had conjectures asserting that most of thétsder
r = 1 can be generalized to any fixechowever, most of our conjectures were “killed”
by some counterexamples of Sidorenko [317] and then of RadiiSadorenko[[304].



38 M. Simonovits

v =9 @

Figure 5. (a) Excluded (b), (c), (d) and (e) extremal structures for sbme

9. Hypergraph extremal problems

Just to emphasize that we are speaking of hypergraphs,ddges, ..., we shall use
script letters, and occasionally an upper index indicabes-tity: 7—[517’) denotes an
r-uniform hypergraph on vertices.

Given two positive integeré andr, we may consideh-uniform r-multihyper-
graphs, that ish-uniform hypergraphs, where the edges may have some nicitigs
< r. Obviously, given a family of such multihypergraples;(n, £) is defined as the
maximum number ofi-tuples (counted with multiplicity) such a multihyperghapn
n vertices can have without containing some member§ as submultinypergraphs.
Some results on such general extremal graph problems weamet by W.G. Brown
and M. Simonovits[[85], but for the sake of simplicity we shadhfine our considera-
tions tor = 1, that is, to ordinary:-uniform hypergraphs. Even fér= 3 most of the
problems we meet prove to be hopeless or at least extremily Tlaerefore we shall
mostly restrict our considerations to 3-uniform hyperdusp

9.1. Degenerate hypergraph problems

Let K;Lh)(m) be the followingh-uniform hypergraph: it hagm vertices partitioned
into disjointm-tuplesUy, . . ., Uy, and the edges are thosduples which have exactly
one vertex from each;.

Theorem 9.1 (Erdés’ theorem [[111])There exist two constants = ¢, > 0 and
A = A, such that

ph—em™"70 o ex(n, nglh) (m)) < Anh=m™"Y,

Clearly, Kéz)(m) = K>y(m,m), and the above theorem is a generalization of the
K6vari-T. Sés-Turan theorem. For the sake of simplicity, dreen[3.1 was given
only for the case when the sizes of classes of the exclieauiform A-partite graph
were equal. One annoying feature of this theorem is that waaddave matching
lower and upper bounds for the exponents even in the simpygstrgraph cask = 3
andm = 2[5 At this point, it is worth defining two different chromatic mibers of
hypergraphs.

2 This is the octahedron hypergraph, defined by the triangles of an octahedron
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Definition 9.2 (Strong-Weak chromatic number). A hypergrdplis stronglyt-colorable,
if V() can bet-colored so that each hyperedge uses each color at most thece;
strong chromatic numbey, () is the smallest such

A hypergraph#{ is weakt-colorable if we cant-color its vertices so that each of
them gets at least 2 colorg(H) is the smallest such

This way we see, by TheordmP. 1, thatfeuniform hypergraphs
ex(n, L") = o(n") if and only if there is ar(") e £(") that is
strongly r-colorable. This extends from = 2 tor > 2 what we
already knew from Sectidn 3.3.

Let £, denote the family of 3-uniform hypergraphs bfver-
tices and: edges. Brown, Eiik and T. Sog [82] started investigat-
ing the functionf(n, k,t) = ex(mﬁk,t) The problem of find-

Fig. 6: ing good estimates of(n, k, t) is sometimes relatively simple, for
S;;zi‘;f;;ﬁ some other values df andt it seems to be extremely hard. One
case which they could not settle wasfifn, 6,3) = o(n?). Ruzsa
and Szemerédi[311] proved the following surprising result

Ruzsa-Szemerédi theorem. Letr(n) denote the maximum number of integers
one can choose ifl, n] so that nok of them form an arithmetic progressi.Then
there exists a constant> 0 such that

enra(n) < f(n,6,3) = o(n?).

It is known that

Theorem 9.3(Behrend[[45], and Roth [309]).

1-—< ., n
n Ve <rg(n) <c :
log logn

The upper bound was recently improved by Tom Sanders [312] to

w, (loglogn)®
r3(n) < cn ogn

So, among others, the Ruzsa-Szemerédi theorem is suggriince it shows the
nonexistence of an € (1, 2) such thatC1n® < f(n,6,3) < Con®. Another surpris-
ing feature is that it implies that(n) = o(n), which was considered a beautiful result
of K. F. Roth [308/°300], though superseded by the famoudtret8zemerédi:

2 The same question was investigated in some sense by Dirac [100] anceialgeapers of Eis,
and of Simonovits, see also Griggs, Simonovits and Thomas [192].
30 We have already considered this problem in Se¢flon 7.
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Theorem 9.4(Szemerédi on arithmetic progressions [34B9r. every fixed:, asn —
00, ri(n) = o(n).

For some related generalizations, see Alon and Shapira [20]

9.2. The “simplest” hypergraph extremal problem?

Next we turn to a hypergraph extremal problem which has a senple extremal
structure. G.0.H. Katona conjectured and Bollobas prokat! t

Theorem 9.5(Bollobas [52]).If Héi) is a 3-uniform hypergraph with? + 1 triples,

then it contains three triples where one contains the symerdifference of the other
two.

This can be viewed as a possible generalization of Turde'srdm: K3 has three
pairs and the symmetric difference of two of them is contaiimethe third one. To
understand a statement like Theorlemd 9.5, one always hasisideo the conjectured
extremal structure. Now this is the complete 3-partite Bewm hypergraph with (al-
most) equal class sizes. For us it is much more interestiagsiiich a simple nice-
looking extremal problem exists for hypergraphs.

9.3. Turan’s hypergraph conjecture

We finish this part with the famous unsolved problem of P. myg&1]:

Given ap, we define the compleﬂeuniformp—graphIC,(Jh) as theh-uniform hyper-
graph onp vertices and with all theéﬁ) hyperedges. What is the maximum number of
hyperedges in ah-uniform hypergrapﬁ-[%m if it does not contairﬂcz(,h) as a subhyper-
graph?

For h = 3 Turan formulated some plausible conjectures. The camjedtextremal
hypergraphs differed in structure for the caseg Wfas even or odd. For the sake of
simplicity we formulate them only fop = 4 andp = 5.

(a) Forp = 4 let us consider the 3-uniform hypergraph obtained by t@mtng »
vertices into 3 classel1, U, andU; as equally as possible and then taking all the
triples of form (z,y, z) wherez,y, and z belong to different classes; further, take
all the triplets(z, y, z) wherez andy belong to thei" class and: to the (i + 1),
1=1,2,3,andUy := Us.

(b) Forp = 5 Turan had a construction with 4 classes and another one2with
classes. The one with 2 classes is simple: we take all tHegriaving two vertices in
one class and the third vertex in the other class. V.T. Séarged that the construction
with 2 classes can be obtained from the construction withadsels by moving some
triples in some simple way. Later J. Suranyi found a conssncshowing that Turan’s
conjecture forp = 5 is false forn = 9. As far as | know Kostochka has found a



Paul Turan’s influence in Combinatorics 41

Figure 7. The conjectured extremal hypergraphsl(ﬂ*ﬁr1 andIC(53)

generalization of Suranyi's construction: counterexasibr everyn = 4k + 1. Still
Turén’s conjecture may be asymptotically sharp.

(c) Let us return to the case @f = ICf). Even in this simple case Turan’s con-
jecture seems to be very hard, even if we look only for asytiggothat is, for
lim ex(n,lcf>)/n3. There are no counterexamples to the conjecture, howerar, fi
Katona, Nemetz and Simonovits [215] have found some othestoactions, slightly
different from Turan’s one, and only far= 3k+1 andn = 3k+2. Later W. G. Brown
[77] gave another construction Withdﬂf) and with the same number of triples, hav-
ing 6 classes, depending on one parameter and containidgn’$wonstruction as a
special case. Finally KostochKa [251] has found a constmiatith ¢ parameters, 13
classes, for arbitrary, and having the same number of triples as Turan’s one, withou
containingKf13>. His construction was a generalization of Brown’s one. ksthnew
constructions: = 3k, which seems to be the most interesting case. Next Fon der
Flaass[[160] gave a characterization of all of Kostochk&g)¢graphs, “explaining”
why do the Kostochka constructions work. Recently Andreohigmader[[166] found
some new constructions. As to numerical estimates, se€aung and Lu[[92].

Some people include intersection results into extremaétgmaph theory. | prefer
to distinguish between them. Yet, | will include here a veagnbus problem of Exibs
and Rado.

Problem 1 (Delta-systems[[130]/-[124].). Let us call a system of sdts ..., A; a
strongA-system, if the intersection of any two of them is the samé.ttsie that if A
is a system of-tuples on am-element set, without A-Delta-system, theph4| < C7*,
for some constant’,. > 0.

9.4. Do Hypergraphs jump?

Definition 9.6 (Jumping constants). The numhere [0, 1) is a jump forr if for any
e > 0 and integemn > r, anyr-uniform hypergrapl’?—lﬁ’) with n > n,(e, m) vertices
and at leasta + ¢) (') edges contains a subhypergraif}) with at least(e + ) (™)

edges, where = ¢(«) does not depend anandm.

By the Erdbs-Stone-Simonovits theorem, for ordinary graphs (i.e= 2) everya
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is a jump. Erds asked[[111] whether the same is truefor 3. For the sake of
simplicity we restrict ourselves to 3-uniform hypergrapker such a hypergraﬁh[ﬁ?)
define the triple density as
(3)
e(Hn
C(Hﬁ?)) = ( n )
(3)
Theoren{ 911 of Eréls shows that if for a three-uniform hypergraph seque{ﬁtﬁé))
the triple-densit)g(HﬁlS)) > > 0 then there exist some subgramg’)(n) c 1P
with m(n) — oo, for which

)2% as n — oo.

This means that — in this sense — the density jumps foom 0 to o/ = 2/9. It

seems to me that Eéd wanted to know if this minimum density/2 (i.e. the density
of Kf)(m)) is a jumping constant. However, he formulated his questiom more
general form and that was disproved (by a “random graph oact&in”), by Frankl

and Rodl:

Theorem 9.7(Frankl and RodI[163])Suppose that > 3and¢ > 2r. Thenl — ;1;
is not a jumping constant.

Theorem 9.8(Baber—Talbot[30])If o € [02299 023186, thena is a jump forr = 3.

These are the first non-trivial jumping constants. The pum#s Razborov's flag
algebra method. Theordm 9.8 follows from that for an appad@ly chosen family”
of 3-uniform hypergraphex(n, ) < 0.2299(3) + o(n®).

Remark 9.9. The jumping constant problem came up slightly differer{fhgrhaps ear-
lier) in the digraph extremal problems, in the followingrar“prove that the extremal
densities form a well ordered set under the ordinary reiatio ”. Actually, a YES
answer implies that the corresponding digraph extremdilpros can algorithmically
be solved. For the details we refer the readef td [81, 86]. arfsver was YES for
r = 1 and NO for large values of see Sidorenkd [317], and RodI-Sidorenko [304].

9.5. The story of the Fano problem

Consider the 3-uniform hypergraph defined by the “lines’h& Fano geometry (see
Fig[8(a)). This hypergraph has 7 vertices and 7 triples aydcwa (distinct) of them
intersect in exactly 1 vertex. This is the smallest finitergetry. As a hypergraph, it
will be denoted by7.

%1 We may define the density dividing by and by(").
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Figure 8. (a) Fano hypergraph (b) Fano Extremal graph

Vera Soés asked what is the extremal graph&er and conjectured [339] that it is
the complete bipartite 3-uniform graph shown in Fig. 8(b)hy\s this conjecture
natural?

(i) BecauseFy is 3-chromatic, by Definition 9]2,
(i) however, deleting any triple of7 we get a 2-chromatic hypergraph;
(i) F7 is relatively sparse.

Theorem 9.10(de Caen and Firedi[90]).

exs(n, F7) = j(g) +O(n?).

Theorem 9.11(Firedi—Simonovits [179], Keevash—Sudakov [2189r n > no(F7)
the complete bipartite 3-uniform hypergraph is the onlyaxial hypergraph forF.

Actually, in [179] a stronger, stability result was provesisily implying Theo-
rem[@.11. Observe that the degrees of the conjectured eadtgraph are aroungi(g).

Theorem 9.12.There exist a2 > 0and ann; such that the following holds. H is a
triple system om > n, vertices not containing the Fano configuratidh and

- (22) ()

holds for every: € V(#H), then is bipartite, X C H(X, X) for someX C V(H).
This result is a distant relative of Theorém 4.25 (of AnderErdbs and T. Sés).

Remark 9.13(Tools). These proofs heavily use some multigraph extreegllts of
Firedi and Kiindger [174]: the basic approach is that one fimisalcf) C Hf). If
its vertices are, b, ¢, d, then one considers the four link graphs of these verticksrev
the link-graph of an: in a 3-uniform hypergraph is the paits forming a 3-edge with
x. 9 These link-graphs define a (colored) multigraph‘b@‘Hﬁf)) —{a,b,c,d}. We

32 We used the complete-chromatic graph for Theoreln 9.1 in a slightly different way. Actuahgre
we considered the strong chromatic number, here the weak one.
33 Actually, we use only the three largest ones of them.
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apply a multigraph extremal theorem bf [174] to get/anc ’HS). The boundedness
of multiplicities is trivial.

There are a few further cases where we have sharp resultspengngph extremal
problems. | mention here e.g. Furedi, Pikhurko and Simdadw6/ 177, 178], where
the last one refers to 4-hypergraphs. Other sharp resuitsecéound on 4-hypergraph
cases in Firedi-Mubayi-Pikhurko [175].

9.6. Co-degree problems

For hypergraphs we have several options to define degretmsy Be restrict our con-
siderations again to the 3-uniform case and instead of degve consider co-degrees:
the co-degree of two verticasandy is the number of triples (ﬁiﬁf’) containing both
of them.

Theorem 9.14(Mubayi [280]).For everye > 0 there exists amg such that form >
no, if for any pair of verticese, y € V(’Hf’)) their co-degree is at Iea$% + ¢)n then

FrcH?,

Mubayi conjectured that = O would be sufficient to ensure a Fano subgraph.
Mubayi and Zhao remark i [281] that for co-degree problemsynuestions have
answers different from that of the ordinary hypergraphemtal problems. One such
case is the problem of jumping constants (see SeEfidn 9H@.co-degree densities
are defined in the obvious way, thus the jumping constantdefieed almost the same
way as for hyper-edge densities.

Theorem 9.15(Mubayi-Zhao [281]) For co-degree problems everyc (0,1) is a
non-jumping constant.

Further sources to read: We close this section mentioning some references on hy-
pergraph extremal theorems: Balogh, Bohman, Bollobas,Yathao: [33], Frankl
and Furedi[16R2], Keevash and Sudakiov [220].

10. Ramsey-Turan theory

Vera S6s[[338] and then Eid and Vera S65 [143] initiated a whole new research field,
the Ramsey-Turan theory. We shall concentrate primarilyhermost recent results,
since a longer survey of Vera Sés and myself [335] coversdheeresults well.

The extremal configuration in Turan’s original theorem ig tegular. This is why
one could feel that perhaps better estimates could be achisy replacing Turan’s
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original theorem by some version of it, where the too regetenfigurations are some-
how excluded. One way to exclude regular patterns is to assbaiG does not con-
tain too many independent vertices — Turan’s extremal gdagls. This means that we
exclude large complete graphs in the complementary graphis. is, how we arrive
at problems which, as a matter of fact, are combinations ofi$®y and Turan type
problems. Very soon after the first results of &dand Vera T. S0$ [148, 144, 145]
were published, many others joined to this research.

As we mentioned, Turan'’s original theorem was motivated BgnBey’s theorem. It
would have been quite natural to ask sooner or later, whétleefvo results could be
combined. The questions thus arising would have been sitegeon their own, too.
However, only much later, in connection with the applicasiaiscussed in Sectién]13
did the Ramsey-Turan problems emerge.

We denote byRT'(n, L, m) the maximum number of edges a grag can have if
L ¢ G, anda(G,,) < m. Settingm = n we arrive at Turan’s extremal theorem. On
the other hand, ifn is too small then, by Ramsey theorem, there are no graphgin th
considered class. The first problems and results in this¢aidoe found in S65[338],
generalized by Burr, Efis and Lovasz [87].

As we shall see in Sectidn 113, if we wish to apply Turan’s tkeoto find lower
bounds on “geometric sums” of type (1B.1), then we use maffigreint graphs on
the same vertex set, simultaneously. We know that the fiestcontains no complete
p1-graph, the second one contains no comppetgraph, and so on. We would like to
find some estimate on some weighted sum of the number of ttgése The simplest
case is, when these weights are equal. This is how Vera T.r8dsdain [338] at the
following question:

Partition the edges of &, into k sets, thus obtaining the grapfis, . . ., G
onV(K,). We know that fori = 1,...,k, G; contains no completg;-
graph. What is the maximum efG1) + - - - + e(Gj_1)?

Of course, ifk andps, . . ., pr. are fixed andV/| is too large, then such graphs simply
do not exist. This is just Ramsey’s theorem. However, in tiees interesting for us
p1,-..,pp—1 are fixed ang;, tends to infinity. We assume only that = o(n), or
more generally, that, = o(f(n)). Thus we could use the notation

RT(n, Ly, ..., Ly_1;0(f(n)) < cn?

or RT(...) = o(f(n)) where the left hand size means that we consider a graph se-
quence(Gy,) with a(G,,) = o(f(n)).

Surprisingly enough, such questions sometimes prove tatbeneely difficult. The
simplest tractable case was when we had two graghsnd its complementary graph
H,, and wanted to maximize(G,,) under the assumption thét, contains nai, 1
and the largest complete graphfify, is of sizeo(n). The first real breakthrough was
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Theorem 10.1(Erdds and Sé<[143)).
RT(n, Kopi1,0(n)) = e(Typ) + o(nz). (10.1)

So the estimate aRT'(n, K,,,, o(n)) was solved by Erdls and V.T. S [143] for the
case whenn is odd. The case of everis was much more difficult. Thus e.g. it was
a longstanding problem whether for= 4 ¢(G,,) = o(n?) or not. Finally Szemerédi
proved that

Theorem 10.2([350]). RT (n, Ka,0(n)) < 3n? + o(n?).

Later Bollobas and Ei@s [58] constructed graphs, showing that Szemerédi's esti-
mate is sharp.

Theorem 10.3([58]). RT'(n, K4, 0(n)) = $n? + o(n?).

The next breakthrough was when BsjHajnal, V.T. S6s and Szemeré(di, [129], de-
termined (among others) the limit 6t7'(n, K7,,0(n))/n?, (thus generalizing Theo-
rem[10.8). Ramsey—Turan theory is one of the areas of Extt®ra@h Theory where
many new results were proved lately. [n[127] &sd Hajnal, Simonovits, Sés, and
Szemerédi asked:

Problem 2.Does there exista> 0 for which RT'(n, K3, 557;) < (3 — c)n??

One step to answer Problér 2 was

Theorem 10.4(Sudakov [34R])If w(n) — oo, and f(n) = n/e*™V09  then
RT(”) K47 f(n)) = O(nz)'

Then Probleni]2 was answered in the negative by

Theorem 10.5(Fox, Loh and Zhad [T1]for ,/'999¢~ ., 1y < in,

logn

1 1
RT(n, Ka,m) > énz + <3 - 0(1)> mn.

On the other hand,
Theorem 10.6(Fox, Loh and Zhad [161])There is an absolute constant> 0, such
that for everyn, if e(G,,) > gn? andK4 ¢ G,, the

n

a(Gp) > ¢ log logn.

logn
In other words, if¢ > 0is small enough, then

logl 1
RT (n, K4,EM < Zn?
logn 8

34 Let us use binary log here, but assume thatiag 1.
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In addition, they proved that

Theorem 10.7(Fox, Loh and Zhad [161]).
1
RT(n, Ka,a0) < énz + 10Y%n.

J. Balogh, Ping Hu, and M. Simonovits [40] proved (among mahgioresults) the
following phase transition phenomenon.

Theorem 10.8.RT(n, Ks, o(v/nlogn)) = o(n?).

One difficulty in this area is that there are no known &¢6tone-Simonovits type
results (though there are some related conjectures in J12%jus, e.g. ifL(¢) is a
blown up version of, RT'(n, L, o(n)) andRT (n, L(t), o(n)) may behave completely
differently, even forl. = K3. We close this part with a related construction of V. RodlI.
Erdés asked if

RT(n,K(2,2,2),0(n)) = o(n?). (10.2)

Rodl modified the Bollobas-Eés construction [58]; his version still did not decide if
(@I0.2) holds, however, it answered another question ob&rd

Theorem 10.9(Rédl [299]). There exist graph&, with e(G,,) > $n? — o(n?) edges
and witha(G,,) = o(n), however, not containing’s, nor K (3, 3, 3).

Further sources to read: Erdds and S64 143, 144].

10.1. Sparse Ramsey-Turan problems

Starting out from completely different problems, Ajtai, s and Szemerédi also
arrived at Ramsey-Turan type problems. To solve some nuthberetical and geom-
etry problems, they arrived at the following Ramsey-Tut&otrem:

Theorem 10.10([5, [1,[€)). If the average degree @f,, isd and K3 Z G,, then

logd

a(Gyp) > ¢ y

(10.3)

This means a lod improvement over the ordinary Turan theorem. Another inter
pretation of this is that excluding a triangle in the compdertary graph make§',,
random-looking. These and similar results, €.g. [1] wertus improve earlier esti-
mates in some problems in Geomefry [239] [238] Combinaitdiienber Theory([6]
and Ramsey Theory|[5]. We skip the details.
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10.2. ay,-independence problems

We close this very short part with two relatively new resolt8alogh and Lenz [39].
Hypergraph Ramsey-Turan problems motivate the followirapfem:

Given two sample graphd and L, and two integers, andm. How many
edges can a grapgh,, have if any induced-,, C G,, contains ard andG,,
does not contaitd..

For H = K, we get back the ordinar®7'(n, L, m), while for H = K,, we call
the maximumm in the conditiona,,-independence and denote it by(G,,). Several
related results can be found [n 127, 128], and for newertesee Balogh and Lenz
[39]. We mention here just one of them:

Theorem 10.11(Balogh-Lenz)For t > 2and2 < £ < ¢, letu = [t/2]. Then
RT(n; Kyy4,0(n)) > % (1- %) 02,2

This is a breakthrough result, answering our earlier gaesti where we[[128]
wanted to decide, for which is RT;(n; K;.4,0(n)) > c(¢,t)n? for some constant
c(¢,t) > 0. Balogh and Lenz found important “generalizations” of Bwdlobas-Erds
construction[[58].

Further sources to read: Balogh and LenZz [38].

11. Anti-Ramsey theorems

Anti-Ramsey probler@ (in the simplest case) have the following form: Given an
arbitrary coloring of a graph, we call a subgrafghTotally Multi-colored (TMC) or
Rainbow if all its edges have distinct colofs.

Problem 3.We have a “sample graph¥l. Let AR(n, H) be the maximum number
of colors K, can be colored with without containing a TME.

The problem of determinind R(n, H) is connected not so much to Ramsey-theory
but to Turan-type problems. For a given famiy of finite graphs, the general result
corresponding to Theorelm 8.3 is

Theorem 11.1(Erdds-Simonovits-Sos [141]).et

d+1:= eErgi(r}q){x(H —e) :ec E(H)}. (11.2)

35 | heard this expression “anti-Ramsey” first from Richard Rado and it & thls title of his paper
[292], on sequences. There the topic is analogous but not really connectedgroblems.

36 QOriginally we called it TMC, later Eréls and Tuza started calling such &h“rainbow”-colored,
and some people would call it heterochromatic.
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Then
AR(n, H) = e(Tpa) +o(n?), if  n— oo (11.2)

The reason for this Transfer Principle:  Assume thatd — e has the minimum
chromatic number if(111.1). Consider an edge-colorindg{gfand choose one edge
from each color. This way we geta TMC gra@h. Now, e(G,,) > ex(n, H—e)+en?
would guaranteen!!) copies of H — e. Hence some paitv would be contained in
¢n?H)=2 copies ofH — e, yielding withuv this many copies off. We could choose
two of them having no common vertices huandwv. Since all the colors in this union
are distinct, whichever way we colow, we get a TMC copy of{. |

11.1. Path, cycles and further related results

The above approach gives a good asymptoticsif 1 in (I1.1). On the other hand,
for d = 1 new problems have to be overcome. The Anti-Ramsey probfef was
solved by Simonovits and Sds [334]. The questio@pfvas much more complicated.

Problem 4 (Erdés—Simonovits—S6$ [141]). How many colors ensure a totalijti-
colored (Rainbow’, with somef > k.

One immediately sees that this problem is an analog of thés=@&hllai problem on
cycles. One of the important open problems in this area wagitbblem of Rainbow
cycles.

Conjecture 11.2(Erdds, Simonovits and Sé5 [141]). Fix a cycle lengthConsider
the following edge-coloring of,,. First we cover the vertices by complete subgraphs
of £ — 1 vertices each and a remainder smaller diie(they form an extremal graph
for P,.) Give a “private color” to these edges. Enumerate the cetaubgraphs as
Hy,...,H,,... and color the edges betweéh and H; by the new colog; if ¢ < j.
One can easily see that this coloring/éf, has no totally multicolored (rainbowe),.
Show that this is the maximum number of colors one can use:

1
AR(n,C)) = 5(L~ n + E_Ll +0(1).

The conjecture is easy fdiz, was proved folC; by Noga Alon [8], then for =
5,6 independently by Schiermeyér [313] and by Jiang Tao andyDgest [206], and
finally the problem was completely settled by Montellanot&steros and Neumann-

Lara [274].

11.2. Other types of Anti-Ramsey graph problems

In the results of the previous section typically some colesused very many times
but the others only once. To eliminate this, &dand Tuza counted the “color-
degrees”
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Theorem 11.3(Erdés and Tuzd [151])Consider an arbitrary coloring of<,,. Denote
by k(i) the number of colors at th& vertex. IfK,, does not contain TMC (rainbow)
triangles, theny 27+() > 1,

They consider the cases when the color distribution is fbtode uniform in some
sense and list several problems and provide further thesorem

Theorem 11.4(Frieze—Reed [165])f ¢ > 0Ois a sufficiently small constant,is large,
and the edges dk,, are colored so that no color appears more thiae- ¢ gn times,
then K, has a TMC Hamilton cycle.

lo

We close this part with mentioning results stating thatehame very sparse graphs
having the Anti-Ramsey property. In the next two theoremssteiad of assuming that
the number of colors used is large, — we assume that they fqmopeer coloring.

Theorem 11.5(Radl and Tuza[305])There exist graph&' with arbitrarily high girth
such that every proper edge coloring @fcontains a cycle all of whose edges have
different colors.

The proof of the above results was probabilistic. Haxell Kotiayakawa proved
that the Ramanujan graphs constructed by Lubotzky, Phillipd Sarnak [267] also
have this property.

Theorem 11.6([200Q]). For every positive integet, every reald such thatd < § <
1/(2¢t + 1), and everyn sufficiently large with respect toandd, there is a graplG,,
such that (i)girth(G) = ¢ + 2, and

(ii) for any proper edge-coloring aof/,, there is a rainbowC, C G,, forall 2t +2 <
0<nd.

Further sources to read: Babai and Sé< [29], Babai [27], Alon, Lefmann and Rodl
[17], Hahn and Thomassen [198], Axenovich and Kiind@eh [R6ir, Erdds, Graham,
So6s, Frankl[[89, 88]. ..

12. Turan-like Ramsey theorems

Considering Ramsey theorems for ordinary graphs we mayrabtiee following “di-
chotomy™:

(a) Pseudo-random graphs: In many cases the Ramsey extremal graphs look as if
they were random grap

87 A famous conjecture of V.T. Sés suggests that (at least for complete ythphks are quasi-random
graphs.
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(b) Canonical structures: In other cases the Ramsey extremal structures look (al-
most?)Canonical Graph Sequencesvertices are partitioned intpclassed/1, U, . .., U,
and the graphs:[U;] are monochromatic cliques, the bipartite gragh#/;, U;] are
also monochromatic complete bipartite graphs, and thes Bfe¢hese classes may
vary. (However, in our cases it may happen that Canonical&smps are Ramsey-
extremal, but there are also some other almost-canonieghgsequences that are
Ramsey-extremal: we can change the colors of a negligibieoen of edges without
creating monochromatic forbidden subgraphs.)

Denote byRy. (L1, Ly, . . ., Li) the Ramsey number correspondindto Lo, . . ., Ly:
the minimumXN for which, if we k-edge-colorK v, then for some thei" color will
contain anZ;.

Conjecture 12.1(Bondy-Erds). If n is odd, then
Ri(Cyp) == Rp(Cr, Cry ..., Cp) = 287 (n — 1) + 1. (12.1)

The background of this conjecture is that for two colors,cading to the Bondy—
Erdds theorem[65], or the Faudree-Schélp [154] or Rosta the®([B06] the conjec-
ture is true. The sharpness can be seen if we take two conplél& K, 1's and
join them completely by RED edges.

Now, if we have a construction oN = 2¢~1(n — 1) vertices,k-colored, without
monochromatic”,,, then we may take two copies of this construction and a near col
k and join the two copies completely by this new color. Thisvies the lower bound
in (12.7).

For k > 3, the conjecture seemed to be harder to prove. tu¢zak [269kd that
if nis odd, thenR3(C),) = 4n + o(n), asn — oo. Later, Kohayakawa, Simonovits
and Skokan (adding some fairly involved stability argurseatt uczak’s original one)
showed that

Theorem 12.2(Kohayakawa, Simonovits and Skokahn, [231], [23Zhere exists an
ng for which forn > ny,

R3(Cyp, Cy,Cy) = 4n — 3. (12.2)
The special case = 7 of (I2.2) was proved i [152]. Conjectire 12.1 is still open

for k > 3. Bondy and Erds [65] remarked that they could prof& (C,,) < (k+2)!n
for n odd. The next result improves this:

Theorem 12.3(Luczak-Simonovits-Skokan [27 2]For every oddk > 4,
RL(Cy) < k3" In + o(n), as n— oo.

The following conjecture is unknown even for= 4:
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Conjecture 12.4(Kohayakawa, Simonovits, Skokan)sf, ny, .. ., n; are fixed, then
there are asymptotically Ramsey-extremal grafghsfor the corresponding Ramsey
problem of findingRy(C,,,, Cp,, ..., Chp,), WwhereV(Uy) can be partitioned into a
bounded numbedy, (1) of classes and — apart fro®,(N) edges — the color of each
edge depends only on the classes it joins.

The case of even cycles has a slightly different answergdine construction de-
scribed above contains long monochromatic even cyclesit®&etesults can be found
in e.g. Luczakl[270], Figaj and Luczak, Benevides and Skd#éah . For further re-
lated results see the 3-color-Path results of Gyarfas,iRk&zSarkdzy, and Szemerédi
[194], [195].

Slightly different, yet related questions are discussethepaper of Faudree and
Simonovits [158].

13. Applications of Turan’s graph theorem

13.1. Distance distribution

Here we shall discuss very shortly some applications of Targraph theorem to the
distribution of distances in metric spaces. Perhap®&mbticed first that Turan’s
theorem can be applied to distance distributions.

Theorem 13.1(Erdds [107]).If we have a sefX of n points in the plane, X =
{P,..., P,} and the diameter oKX is at most 1, then at least

() era=3(0

of the distance$’ P; is at mostl/v/2.

To prove this, observe that for any 4 points — by an easy argtimat least one of
the 6 distances is 1/+/2. So the graplir,, defined by the distances 1/+/2 contains
no Ky. Hencee(G,,) < ex(n, Ky). O

Obviously, this result is sharp: if we fix an equilateraligge of diameter 1 and put
n/3 points into each of its vertices, then roughly 1/3 of (Qﬁdistances will be 0 and
all the others are equal to 1.

14 years later Turan pointed out that a slight generalinatfcthis simple observa-
tion may yield far-fetching and interesting results (esiies) in geometry, analysis and
some other fields, too. Turan’s basic observation was asiellInstead ofl = 1/v/2,
we can apply the same idea simultaneously to several desan@e define the corre-
spondingPacking Constants

Definition 13.2.Given a metric spackl with the metrics(x, y) and an integek, let

dy, = max minp(P;, P;).
M7 diam{ Py P} <1 i )
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(If [IM| = o, it may happen that we have to replace the min by inf.)

Now, the above argument shows that if fhdiameter of am-element set is at most
1, then it contains at leagt)) — ex(n, Kj) distancesp(P;, P;) < dj. Using Abel
summation, we may obtain good estimates on sums of the form

> fp(Pi, Py)). (13.1)

This way, through distance-distribution results, Tura®33 V.T. S6s[[33B], and later
Erdds, Meir, V.T. S6s and Turan [182, 133,7134] could give estmamn certain in-

tegrals, potentials, certain parameters from functiomalyssis, and other geometric
sums. In[[132] the authors write:

“In what follows, we are going to discuss systematic appikices of graph
theory — among others — to geometry, potential theory andhecthieory
of function spaces. .. These applications show that syitdeVised graph
theorems act as flexible logical tools (essentially as g#izations of the
pigeon hole principle)...We believe that the applicatigign in this se-
quence of papers do not exhaust all possibilities of apjpdiea of graph
theory to other branches of mathematics. Scattered afiphsaof graph
theory, (mostly via Ramsey theorem) existed already in #peps of Erds

and Szekere$ [149] and Ersl[106], [116].”

Remarks 13.3.These lines are 40 years old, however, the development afdes
Mathematics really shows that Discrete Mathematics becameysapplicable theory
in very many areas of mathematics. Strangely enough, oapsrbecause Turan died
too soon, not too many results were published on applicati@extremal graph results
to distance distribution, after Turan’s death.

However, two further areas were strongly connected to fisa@ach. The first one
was the application of Turan type graph results in estingadistributions in Probabil-
ity Theory. This area was pioneered by G.O.H. Katona. He \bésta prove some
inequalities concerning the distribution of certain ramdeariables[[213]t[216]. Next
several important results of the field were proved by A. S8dé&p. This volume has
a separate article on this topic, by Katoha [214]. | woulé thse opinion that among
the several steps that led to the theory of graph limits ongoitant step was this:
introducing integrals in areas related to extremal grapbrh

The other one iRamsey-Turan theowjiscussed in Sectidn110.

13.2. Application to Geometry

Givenn points in the space (or in any bounded metric space), foyever O we can
define a graplt:(©) by joining the pointsP andQ iff PQ > c. By establishing some
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appropriate geometric facts, we may ensure €&t contains no completg = p(c)-
graph. Hence we know (by Turan’s theorem) that the numberoE PP, Q) with
PQ > cis at mostex(n, K, ()).

Assume that we apply this method with several constants ¢, > -+ > ¢ > 0.
If f(z)is a monotone decreasing functionin (13.1), then we mayimhiwer bounds
on this expression by replacing all the distances betwegandc; ; by ¢;. The 'only’
problems to be solved are:

How to choose the constants > cp, > --- > ¢ > --- > 0?
How to choose the integegs for the constants;, to get good results?

This was the point, where the packing constants (dependigglly on the geometric
situation) came in. Their investigation goes back at leaatdispute between Newton
and Gregory, see Turdh [364]. It was also somewhat surprisiat not all packing
constants count in our application. It is enough to regandétones, wher@, > cj.1.

It is not worth giving a detailed description of the resulkgained this way, since the
Introduction of [134] does it. We make only one critical reknan a side-issue:

In [364] Turan remarks that perhaps his method, implemente@ good com-
puter would help to decide problems such as the one in the dfeGtegory dispute.
Namely, it could decide whethey = ¢;1 or not.

This is not quite so. First of all, such an algorithm can ngree a positive answer.
Further, even if the answer is in the negative, and that cbeldroved by the method
suggested by Turan, then probably that could be decidedwathout using Turan’s
method.

13.3. Other applications

An old unsolved problem is that if we havepoints in thek-dimensional Euclidean
space, how many unit distances can occur. For the plarsEtoserved that the graph
given by the unit distances cannot contaik® 2, 3). Hence — by the Kvari-T. S6s-
Turan theorem — the number of unit distance®{*?). A similar argument works
in R3: the 3-space, but for higher dimension the situation chengefortunately, the
application of Turan type theorems is not enough to get thigectured bounds: to
prove that the number of unit distances is at n@gt'*<).

(b) Some other type of applications of hypergraph extremablems are found
in the works of Simonovits [322] and Lovasz [261] yieldingagh bounds on some
guestions related to color-critical graphs. For more tkesaie either the original papers
or the Firedi-Simonovits survey [180].

Further sources to read: Erdds [116], Erds and Simonovit$ [142], ...
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14. Extremal subgraphs of random graphs

What happens if, instead of considering all thdree graphg=,,, we consider only
L-free subgraphs/,, of some host-graphg,, and maximize their number of edges.
One of the most investigated subcases of this problem is uitheis a random graph
with some given distribution. The maximumeés(R,,, £), however this is a random
number, depending on the random grdph So we can state only that certain events
will hold with high probability.

R&dl and Schacht wrote very recently an excellent suiive8][8A this topic, so we
shall give only a very short introduction to this area.

Assume that?,, is a random graph of binomial distribution, with given eqgeb-
ability: R,, € G, ,,. The phenomena to be discussed are

If Lisasample graplt, = x(L)—1, and we take arandom graph < G, ,
with edge probability > 0,

(a) is the subgraplt,, C R, € G, , not containingL and having the
maximum number of edgéschromatic with probability - o(1)?

(b) if (a) does not hold, is it true that at least we can delétéR,,))
edges fromR,, to get ak-chromatic graph, almost surely?

An early result in this area was

Theorem 14.1(Babai-Simonovits-Spenceér [28]hhere exists ag < % for which in a
randomR,, € G, ,, almost surely, the maximum si&&-free subgraphf;,, C R, is
bipartite.

Several generalizations of this were proved.in [28], howah®se days no “Sparse
Regularity Lemma” was known, and the proofs of Babai, Sinvitsoand Spencer
were using the (ordinary) Szemerédi Regularity Lenimal[24@]the stability method.
Hence [28] could cover only the case when the edge probabiisp > py > O.
As soon as the Kohayakawa-Rddl version of the Regularityrharwas proved and
became known, the possibility to generalize the result2&f pecame possible. First
Brightwell, Panagiotou and Stegér [75] proved that Thedfghd holds under the
much weaker condition that > n~%/2%0 and very recently B. De Marco and Jeff
Kahn [97] proved that

Theorem 14.2.There exists & > 0such that if the edge probability is> C'\/logn/n,
then every maximum triangle-free subgrapl@f,, is bipartite, with probability tend-
ingto 1, asn — oc.

This is best possible.

Let

e(H")
v(H’)

do(H) = max{ . H' C H, andv(H') > 3}.
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Conjecture 14.3(Kohayakawa-RddI-Schacht [230]). LetH) > 3 ande(H) > O.
Let G = G, be arandom graph with edge probability= p,, wherep,n/%(H) —
oo. Then

(i) almost surely (ag — o),

ex(G, H) = (1 1 - 1) e(G) + ole(G)).

X(H)
(i) Further, forx(H) > 3, a stability phenomenon also holds: almost surely, delet-
ing o(e(Gyp)) edges, one can make, , (x(H) — 1)-colorable.

The above conjecture is proved for several cases. Thusfa@.gycles it was proved
by Haxell, Kohayakawa and tuczgk [201] and [202], while th@er of Kohayakawa,
tuczak and R6d[[227] contains a proof of (i) féf = K.

15. Typical structure of L-free graphs

Here we consider the following problem:

What is the typical structure di-free graphs? Or, more generally, we have
a Universe (graphs, hypergraphs, multigraphs, permuistiordered sets,
...) and a propertfP, can we say something informative about the typical
structures inP?

This question has basically two subcases: the exclusionroég, as a not neces-
sarily induced subgraph and the exclusion of some inducegraphs.

15.1. Starting in the middle

In this part excluding. C G,, we do not assume that (only) the induced subgraphs are
excluded. The difference can be seen alreadyCforIf we define a complete graph
on A and an independent set éhand join them arbitrarily, the resulting,, contains
manyCy’s but no induced’. So first we consider the case of not necessarily induced
subgraphs.

First we assume that the forbidden graphs are non-bipaatitbreturn to the degen-
erate case in the next, very short subsection. Denofe(by £) the family ofn-vertex
graphs without subgraphs frof. Since all the subgraphs of aiy, € EX(n, £)
belong toP(n, L), therefore

[P(n, £)] > 255, (15.1)
This motivated
Conjecture 15.1(Erdbés).
|P(n, £)| = 2ex(nL)to(n) (15.2)
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Of course, the meaning of this is thRtn, £) cannot be much larger than the right
hand side of[(15]1). This was confirmed first f§}, 1. The result fork’s was much
sharper than for the general case.

Theorem 15.2(Erd6s—Kleitman—Rothschild [131]{i) Almost all triangle-free graphs
G, are bipartite.
(ii) In general,

1
P(n, Kpir)] < 20073000,

Later Erdds, Frankl, and Rodl proved the original Bedconjecture.

Theorem 15.3(Erdos, Frankl, and ROdI[125]).
1P(n, £)| < 2ex(nL)to(n?),

As we have already pointed out, the finer structure in theeexdat graph problems
depends on the “Decomposition famil¥l of £. So Balogh, Bollobas and myself
improved Theorem 15.3 in several steps. First[ind [34] werowed the error term
o(n?) of Theoren 1513 t@) (n?°).

Theorem 15.4.For everyL, if M is the decomposition family @fandM is finite, then

2

1 1
|P(n,£)| < nex(n,M)+CL‘n .22 (l—;)n , (15.3)
for some sufficiently large constast > 0.

This was an improvement, indeed’ife £ andv = v(L) is of minimum chromatic
number, then we can choose a biparfiteC L from M. Henceex(n,M) < c- n2%
yielding a better error term in the exponent[in (15.3).

Our next result yields also structural information.

7

Theorem 15.5(Balogh, Bollobas, Simonovits [85]).et £ be an arbitrary finite family
of graphs. Then there exists a constaptsuch that for almost alC-free graphsG,,
we can deleté, vertices ofGG,, and partition the remaining vertices ingoclasses,
Uy, ..., Up, so that eaclG[U;] is M-free.

For some particular cases we can provide even more preoiggustl information.
A good test-case is when the Octahedron graph is excludexlirimain result below
we describe the structure of almost all octahedron-freplgraWe say that a grapgh
has property® = Q(C4, P3) if its vertices can be partitioned into two setg,andUy,
so thatCy Z G[U1] andPs € G[Us]. If G € Q thenG does not contaii®g. It was
proved by Erés and Simonovits [137] that far sufficiently large everys-extremal
G, has propertyQ. The typical structure afs-free graphs is described by
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Theorem 15.6(Balogh, Bollobas, Simonovits [36]T.he vertices of almost eve€)s-
free graph can be partitioned into two classég,and U, so thatU; spans aCy-free
graph andU, spans aPs-free graph.

A similar, slightly simpler, result is the following. Der®P(n;a, b) the family of
graphgs,, for which noa vertices ofG,, span at leadtedges. In some sense, G. Dirac
started investigating such problems [100]. Several resafltErdds and Simonovits
are related to this topic, and they became very importanhypergraphs, see e.g.,
Brown, Erdds and T. S64[82], or Ruzsa and Szemerédil[311]. Much latégg&r
Simonovits and Thomas [192] proved that, fosufficiently large, the vertex set of any
P(n, 6, 12)-extremal graph,, can be partitioned inté; andU> so that the induced
subgraphs(z[U1] is {C3, Ca}-free andG[Us] is an independent set. Note thatd is
{C3, C4}-free ande(G,) = 0 thenG1 ® G is (6,12)-free.

Theorem 15.7(Balogh, Bollobas, Simonovit$ [36]The vertex set of almost every
graph inP(n; 6, 12) can be partitioned into two class€$; and U, so thatlU; spans
a {C3, C4}-free graph and’; is an independent set.

To avoid technicalities, we formulated only this speciadeca Another line is the
problem of critical edges.

Theorem 15.8(Promel and Steger [291]For everyL having a critical edge, almost
all L-free graphs have chromatic numbefL) — 1.

This is sharp, since no graph with chromatic numgéE) — 1 containsL as a
subgraph, (see also Hundack, Promel, and Stéger [203].)effmudstrate the power
of our methods we proved a generalization of their resulindde bysH the vertex-
disjoint union ofs copies ofH. Let the excluded graph be = sH, whereH has a
critical edge, and((H) = p + 1 > 3. Simonovits[[321] proved that far sufficiently
large, the uniqud.-extremal graph i{ (n, p, s), see Theorem 4.15. Observe that if
one can delete — 1 vertices of a grapld,, to obtain ap-partite graph, theid,, is
L-free.

Theorem 15.9(Balogh, Bollobas, Simonovits [36]l.et p and s be positive integers
and H be ap + 1-chromatic graph with a critical edge. Then almost evefy-free
graphG,, has a sefS of s — 1 vertices for whichy(G,, — S) = p.
15.2. Degenerate cases
One could think that if. is bipartite but not a tree, theln (15.2) remains valid:

|P(n, L)| < 28x(mL)(to(l), (15.4)

Yet, this is not known even in the simplest case, fo= C,4. The first important
result in this area was
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Theorem 15.10(Kleitman—Winston[[224]).
26OV < |P(n, Cy)| < 2°VP with ¢ = 1.082
The result itself is highly non-trivial. The next result img direction was

Theorem 15.11(Kleitman-Wilson [372]).
1P(n, Cg)| < 2"V

The corresponding results fah;, for k > 4 are still open. Balogh and Samotij also
have analogous results féf; ;, and — more generally, — fdk, ;.

Theorem 15.12(Balogh and Samoti[ [42, 43]For L = K, there exist a constant
¢ = ¢y, for which
[P(n,L)| < 2°0x(mE),

Their method also implies that

Theorem 15.13(Balogh and Samoti[ [42, 43]For L = K>, there exists a constant
¢ = ¢y, for which for almost allL-free G,,, we have

1
Tzex(n,L) <e(Gp) < (1—c)ex(n, L).

Several of the related papers contain a “mini-survey” of gleation, so we stop
here.

15.3. Typical hypergraph structures

As we have mentioned, for many years there were only a fewrgyaeh extremal
results. In the last few years this dramatically changedwa$ave seen in Sectibh 9,
several interesting extremal hypergraph theorems weneedriately. Also some cor-
responding “typical structure results” were obtained, ¢4dl]. Here we give only a
few examples. The first one is connected to the Fano-red€d pnd [219].

Theorem 15.14(Person and Schacht[287BImost all 77-free 3-uniform hypergraphs
are 2-chromatic.

Call the following three edges a triangl@t, v, w), (u, v, z), (z,y,w). The follow-
ing result extends the sharper version of Thedrem] 15.2aat fer triangles.

Theorem 15.15(Balogh and Mubayi[41])Almost all triangle free 3-uniform hyper-
graphs are tripartite.

The following result attacks already the general casenestéhe Erds-Frankl-Rédl
Theorem to 3-uniform hypergraphs.
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Theorem 15.16(Nagle and R6dI[[283])For any fixed 3-uniform hypergraph,
‘P(TL?LH < 2ex(n,L)+o(n3)‘

This was extended tb-uniform graphs by Nagle, Rédl and Schacht[284].

Other structures. There are some other structures where analogous resuégpveeed
fairly early, showing that some specific structures don@n@ number) the others.
Here we mention some results of Kleitman and Rothschild][222the number of
partially ordered sets om elements.

ConsiderQ(n), the family of partial orders of the following structures:vertices
are distributed in three classés, L,, and L3, where|L1| = n/4 + o(n), |L2| =
n/2+ o(n), |L3| = n/4+ o(n). Define a partial order by its Hasse diagram. Define
the partial order) as follows: the arcs go from; to L, .1, ¢ = 1,2, and if we forget
about the orientations, we ge%aquasi—random graph betweénandL;, . Kleitman
and Rothschild proved that [222]]

Theorem 15.17(Kleitman and Rothscild [222], see al$o[221]).

1P| = <1+ O <71L>> |Qnl-

’an| _ 2n2/4+o(n2) )

Thus

See also Kleitman, Rothschild and Spenter[223].

15.4. Induced subgraphs?

If instead of excluding some not necessarily induced syfigrawe exclude induced
subgraphs, the situation completely changes. The firsttseisuthis direction were
proved by Prémel and Stegér [288][290]. .. Several extessieere proved by Alek-
seev, Bollobas and Thomason, and others.

Definition 15.18.The sub-coloring number.(P) of a hereditary graph properfy is
the maximum integey for which if we put complete graphs into some classesBf g
(somehow), and delete some original edges, the resultegghgrannot have property
P.

Example 15.19L et the propertyP be thatG,, contains an induced’s. Consider a
complete grapli, and a sef,,, of independent vertices (with disjoint vertex sets) and
join them arbitrarily. The resulting graph will not contaimducedCy’s. It is easy to
see that herg.(P) = 2.
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Theorem 15.20(Alekseev|[7], Bollobas-Thomasan [61]j.P is a hereditary property
of graphs, andP(n, £) denotes the family of-vertex graphs of propert, andp :=
pe(L) then

Pn, )| = 28 (15 ) o),
This was improved in[12].

Definition 15.21.Given an integek, the universal grapt/ (k) is the bipartite graph
with partsA = {0,1}¥ andB = {1,...,k}, wherej € B is joined to ak-tuple X if
j € X, (i.e., thej!" coordinate ofX is 1).

Theorem 15.22(Alon, Balogh, Bollobas, Morris[12]).et P be a hereditary property
of graphs, with coloring numbey.(P) = p. Then there exist constarits= k(P) € N
ande = ¢(P) > 0such that the following holds. For almost all grapfi € P, there
exists a partition 4, S1, ..., Sp) of V(Gy,), such that:

(@) |A] < nt=,

(b) G[S;] is U (k)-free for everyj € [p].
Moreover, ifP,, is the family ofn-vertex graphs oP, then

21-1/0)(3) < |p,| < 20-1/p)(5)+n*~*

for every sufficiently large € N.

There are several further interesting result$in [12], beistop here.

Further sources to read: Bollobas [56].

15.5. Counting the colorings

Some of the above results are strongly connected to estignati
¢, 7 (H) := #{r — colorings of# without monochromatic copies @f}

Estimatingc,  is strongly connected to the extremal problen¥gfi.e. determining
ex(n, F') and also with Erds-Frankl-Rodl type theorems, first of all, with Theorems
[I5.2 andI5]3. Eik and Rothschild conjectured that

Conjecture 15.23.
CZ,KZ(Gn) < 2ex(n,Ke)

For triangles this was proved by Yuster [374]. This was edéehto arbitrary com-
plete graphs by Alon, Balogh, Keevash and Sudakav [11]. Alaimooloring-counting
theorem was proved by Lefmann, Person, Rodl and ScHacHj; @56 explaining the
connection of these results to each other. We skip the detail
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16. “Random matrices”

This part is devoted to randofl matrices, where the questions are:

(i) How large is the determinant of a random matrix,
(i) what is the probability that a random matrix is singular
(iif) what can be said about the eigenvalues of a random raatri
Recently very many new results were obtained in this fieldoBé shall mention
some of them and provide some references, and also refeeddernrto the excellent
survey paper of Van VIL[370].
Szekeres and Turah [347] were primarily interested in (iprenprecisely, in the
average of the absolute value of the determinantbfanatrix. Later Turan continued
this line, Szekeres went into another direction.

16.1. Hadamard Matrices

According to the famous theorem of Hadamard, given a matrix (a;;), | det(A)|
can be estimated from above by the product of the lengthseafitiv vectors. Equality
holds iff the row vectors are pairwise orthogonal. If therest of the matrix are 1's
and -1's, then Hadamard's result yields that

| det(A)| < n™/2. (16.1)

It is natural to ask whether the equality [0 (116.1) can beeaad for+1 entries. In

other words, are there orthogonalx n matrices with+1 entries? Such matrices are
: 11 .

called Hadamard matrices. The smallest onegArand 1 1) One can easily

prove that if for some: > 2 such a matrix does exist, thens divisible by 4. Itis a
very famous, old and widely investigated but still open echjre that

Conjecture 16.1.Hadamard matrices exist for evenydivisible by 4.

One can easily construct Hadamard matricesifer 2¢ and it is not too difficult to
construct them fon = 4k if n — 1 is a prime.

16.2. Szekeres-Turan approach

In connection with the Hadamard problem, Gy. Szekeres afdr@n arrived at the
following question[[3417]:

Problem 5. Consider all thet1 matricesA of n rows and columns. How large is the
average of detA)|*, as a function of?

They proved in[[3477] that
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Theorem 16.2.The average ofdet(A)|? for then x n +1 A, isn!.

They simply calculated the sum of the squares of the detemisrof all then x n
+1 matrices. Their proof was very simple and elegant. They ladso calculated the
sum of the fourth powers of these determinants, provingtthigis (n!)?- o(n), where
©(n) is a function defined by the recursion

P =1 ¢2)=2 e =¢ln-1+ pm-2.  (162)

Remark 16.3.For everyc > 0, ¢(n) is betweem?~¢ andn?, if n is sufficiently large.
This means that the average of the squares and fourth pofwtbiesse determinants are
(in some weak sense) fairly near to the desired maximum. @garally, if we taken
+1-vectors independently, at random, they will be roughthegonal to each other.

Remark 16.4.Superficially we could think that the main goal of the SzekeFaran
paper was to prove the existence of a good approximation dértard matrices, using
Random Matrix methods. Maybe, originally this was their pwgo-However, as they
remarked, Erds had pointed OE that the following direct construction provides a
much better result on the maximum value of the determinant:

Find a primep = 4k — 1 < n sufficiently near ton and then build an Hadamard
matrix for thisn = 4k. Using the monotonicity of the maximum, one gets a much
better estimate than by the Szekeres-Turan argument.

Is this result more than merely answering an important aretésting mathematical
problem in an elegant way? YES, in the following sense:

Here we can see one of the first applications of stochastibadstinstead of giv-
ing constructions for some optimization problem in Diser®tathematics. Later this
method was applied many times and proved to be one of our neastrful methods.

(In combinatorics and graph theory it was Paul@&&avho started applying probabilis-
tic methodssystematically From this point of view the Szekeres-Turan paper was
definitely among the pioneering ones.

16.3. Turan’s and Szekeres’ continuation

Later both Turan[357,°360, 352] and Szekefes [344] 345imetlto these questions.
They generalized their original results in various wayswieer, they did not really
succeed in estimating the average of th& power of the considered determinafs.
(The average of the odd powers is, by symmetry, 0!) Turdn sdeim be more in-
terested in finding analytically various averagestdf determinants. Szekeres went
basically into two directions:

%8 This was remarked in the paper of Turan and Szekeres and also, e.g., in thef{piilection

paper” of Erds [108].
3 As | see, they could not estimate the average of thedwers.
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(a) He considered the so callsdlew Hadamard matricesestricted the averaging
to these matrices i.e., where fot~ j a; ; = —a;,;. For them the averaging method
[344] gave higher average.

(b) Also, Szekeres invented new combinatorial/algebraicstructions of Hada-
mard Matrices, Skew Hadamard Matricés [345]. He also used at@ngearch to
find “small” examples. e.g. for = 52, 92.

16.4. Expected or typical value?

The paper of Szekeres and Turan determines the average esdubare average of
det(A)2. In many cases the typical values of some random varighle very near to

its expected values. This is e.g. the case in Turan’s “H&dgranujan” papel [356].
In case of thet-1 determinants the situation is different.

A Correction/Historical Remark. Here | have to make a “Correction”: Writing my
notes for Turan’ Collected Papeis [368] | “overstated” THe®o[16.2. | wrote that
Szekeres and Turan proved that the determinant of almost @l Theoren{ 162 is
near to the averagg'n!. This holds only in some fairly weak logarithmic sense. In
ordinary sense, not only they did not state this, but — agristout below, — this is not
even true.

Of course, Szekeres and Turan did not speak of “probahilitye point is that they
did not use Chebishev inequality, and they did not calcula¢estandard deviation.
(Slightly earlier, Turan, in his proof of the Hardy-Ramaamutheorem, without speak-
ing of probabilities, calculated the mean and the standevihtion of the number of
prime divisors and then applied Chebishev inequality.) sFam[16.6 below implies
that for a positive percentage of the considered randomieeatthe determinant is
above(1 + ¢)v/n!, for some fixed: > 0.

This question, wher§ is noticeably abovéE(¢) (whereE denotes the expected
value) is discussed in e.g. in

Theorem 16.5(Schlage-Puchta [314]Let¢ be a non-negative real random variable,
and suppose thdt(¢) = 1andE(£2) = a > 1. Then the probabilityP(¢ > a) is

positive, and for every < a we haveflgbb £ >a—0b.

The paper remarks that this theorem is nearly a trivialiy,ibhas several interest-
ing corollaries. One of them is a lower estimate fdet A)| in the Szekeres-Turan
problem. Since the™moment is much larger than th8%(by (16.2)), Theorem 16.5
is applicable here.
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16.5. The Hadamard “goodness” of Random Matrices

Denote the (Euclidean) norm afby ||a||. Let A be ann x n matrix with column
vectorsa;, (i = 1,...,n). Define its “Hadamard goodness” as

_ det(A)
- Il

if the denominator does not vanish, otherwise defifi¢) = 0.

John Dixon[[101] wrote a nice and interesting paper on thevelsliscussed ques-
tion, primarily on the typical goodness of the random methothe “Hadamard ap-
proach”. He wrote that for him a paper of Cabay and Lam sugdeasiat (logarithmi-
cally, in some natural settings) the values of the determigaf random matrices are
close to their maximum. He proved that this is not so: thellitigaic distance is typ-
ically what is suggested in the Szekeres-Turan theorenfAgEt* ~ (v/n!)¥ (") ~

The question investigated by Dixdn [101] is, how large theeeted value ok(A) is
if Aisarandom matrix, where the distribution of entries obeypseveak smoothness
conditions. The conclusion of Dixon’s results is that tyg h(A)Y™ ~ 1/+/e.

h(A)

Condition (D1) If ay, ..., a, are the columns afl, then the density of the distribution
at A depends only on the values (61|, . . ., [|a,||-

Condition (D2) The probability that d¢td) # O is 1.

Theorem 16.6(Dixon [101]). Let A be a random matrix whose distribution satisfies
(D1) and (D2). Denote by, ando2 the mean and variance of the random variable
logh(A). Then

(i) pin = —2n — 2logn + O(1), ando? = 3logn + O(1), asn — oc;

(ii) For eache > 0, the probability of that

1 1 1 1
n~a fe 2" < h(A) <n it 2"

tendsto 1 as — oo.

16.6. Probability of being singular

In this section we are discussing the upper bounds for theghibty that detA) = 0.
One interested in more details is suggested to read someedbllowing sources:
Komlés [237], Kahn, Komlés, and Szemerédi [211], or someamecent papers of
Van Wu [370], Terry Tao and Van Vi [352].

Obviously, for continuous distributions this probabilisy0. One can easily see that
this probability must be the largest farl matrices, where both values are taken with
equal probabilities.
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Theorem 16.7(Komlés, [237]).Let A = (a;;) be ann x n matrix whose entries are
random independent variables, taking valuebwith probability%. Thendet A) # 0
with probabilityp,, — 1asn — oo.

A more general result is

Theorem 16.8(Komlds, [237]).Let A = (&;;) be ann x n matrix whose entries are
random independent variables, with common, non-degemeitstributio@. Then
det( A) = 0 with probabilityp,, — 1asn — co.

Conjecture 16.9.Let P, be the probability that a randomx n matrix with elements
+1is singular. TherP, = (1 + o(1))n?2t".

The first breakthrough was

Theorem 16.10(Kahn, Komlés and Szemerédi[211])here is a positive constant
for whichP,, < (1 —¢)™.

This is a considerable improvement on the best previousdabn = O(1/y/n)
given by Komlés in 1977.

16.7. Eigenvalues of Random Matrices

This field is again a very wide one, with many interesting lssurhe beginnings of
this part heavily relies on the Fiiredi-Komlés paper |173].

Investigating the distribution of the eigenvalues of nesigoes back to E. P. Wigner
(1955), who was motivated by quantum mechanics. The foligwgeneralization is
due to L. Arnold [25].

Theorem 16.11(Wigner, Semicircle law.)Assume tha# is a random symmetric ma-
trix with random independent entrias; for ¢ > j. Let the distribution of these entries
be F for i # j andG fori = j. Assume thaf |z|* dF < oo, [ |z|FdG < oo for
k=12,... and setD?q;; = Vara;; = o%. W, () be the empirical distribution of
the number of eigenvalues dfnot exceedingn. Let

W) = {3\/13:2 for |z| <1,

0 for |z| > 1.

Then
lim W, (20v/n - z) = W(x).

n—oo

40 A distribution is degenerate if with probability 1, its outcometie same.
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This implies that for > 20 with probability 1-o0(1), all buto(n) of the eigenvalues
belong to]—c+/n, ¢y/n]. Yet, this does not give information on the largest eiganwsl
Ferenc Juhasz [209] gave some weak estimates on this arel wese improved to
much better ones by the Fiiredi-Komlos theorems which biasessert that

Theorem 16.12(Firedi, Komlos[[17B])Let A = (ai;)nxn be ann x n symmetric
matrix wherea;; are independent, (not necessarily identically distrilolyteandom
real variables bounded with a common boukld for i > j. Assume that, for > 7,
a;; have a common expectatiprand variances?. Further, assume that(a;) = v.
(Herea;; = aj;.) The numberss, u, o2, v will be kept fixed ag — oc.

If 1« > 0 then the distribution of the largest eigenvaluedt= (a;;) can be approx-
imated in orderl/+/n by a normal distribution of expectation

(n—Du+v+o®/u (16.3)
and variance2o2. Further, with probability tending td,

m>a2x|)\i(A)| < 20+y/n+ O(y/nlogn), (16.4)

where); is thei™ eigenvalue oﬂ@

Remark 16.13.The semi-circle law implies that max |\;(A)| cannot be much smaller
than 2r/n.

16.8. Singularity over finite fields

One could ask what happens if we take the entries of a randemm matrix from a
finite field F.

Theorem 16.14(Jeff Kahn, J. Koml6s[[210])The probability that a random square
matrix of ordern, with entries drawn independently from a finite fiéldy) according
to some distribution, is nonsingular is asymptotically {as> oc) the same as for the
uniform distribution (excepting certain pathological ess see below):

Pr(M,, is nonsingular) — ] | <1 - 1> as n— oo. (16.5)

i
i>1 q

What is pathological? Kahn and Komlds write that if the entries of the random
matrix M,, are chosen independently and uniformly frdmthat is enough to ensure
(I6.3) and this was fairly widely known. Among others[inl[94¢e alsd[253, 254]) it
is proved that

41)\12)\22"'2>\n-
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Theorem 16.15L et M,, be a random x n F-matrix with entries chosen according
to some fixed non-degenerate probability distributioon 7. Then[[16.b) holds if and
only if the support of: is not contained in any proper affine field &t

We skip the details here, again.
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